1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-17 20:02:53 +08:00
oh/axi/hdl/emaxi.v
Andreas Olofsson abd25426b6 Fixing various small bugs
-sandbox accelerator working in simulation!
-t0+6 hrs wall time (lost 2 hours due to travel)
2016-01-20 17:23:09 -05:00

529 lines
19 KiB
Verilog

/*
########################################################################
Epiphany eLink AXI Master Module
########################################################################
NOTES:
--write channels: write address, write data, write response
--read channels: read address, read data channel
--'valid' source signal used to show valid address,data,control is available
--'ready' destination ready signal indicates readyness to accept information
--'last' signal indicates the transfer of final data item
--read and write have separate address channels
--read data channel carries read data from slave to master
--write channel includes a byte lane strobe signal for every eight data bits
--there is no acknowledge on write, treated as buffered
--channels are unidirectional
--valid is asserted uncondotionally
--ready occurs cycle after valid
--there can be no combinatorial path between input and output of interface
--destination is permitted to wait for valud before asserting READY
--source is not allowed to wait for READY to assert VALID
--AWVALID must remain asserted until the rising clock edge after slave asserts AWREADY??
--The default state of AWREADY can be either HIGH or LOW. This specification recommends a default state of HIGH.
--During a write burst, the master can assert the WVALID signal only when it drives valid write data.
--The default state of WREADY can be HIGH, but only if the slave can always accept write data in a single cycle.
--The master must assert the WLAST signal while it is driving the final write transfer in the burst.
--_aw=write address channel
--_ar=read address channel
--_r=read data channel
--_w=write data channel
--_b=write response channel
*/
module emaxi(/*autoarg*/
// Outputs
wr_wait, rd_wait, rr_access, rr_packet, m_axi_awid, m_axi_awaddr,
m_axi_awlen, m_axi_awsize, m_axi_awburst, m_axi_awlock,
m_axi_awcache, m_axi_awprot, m_axi_awqos, m_axi_awvalid, m_axi_wid,
m_axi_wdata, m_axi_wstrb, m_axi_wlast, m_axi_wvalid, m_axi_bready,
m_axi_arid, m_axi_araddr, m_axi_arlen, m_axi_arsize, m_axi_arburst,
m_axi_arlock, m_axi_arcache, m_axi_arprot, m_axi_arqos,
m_axi_arvalid, m_axi_rready,
// Inputs
wr_access, wr_packet, rd_access, rd_packet, rr_wait, m_axi_aclk,
m_axi_aresetn, m_axi_awready, m_axi_wready, m_axi_bid, m_axi_bresp,
m_axi_bvalid, m_axi_arready, m_axi_rid, m_axi_rdata, m_axi_rresp,
m_axi_rlast, m_axi_rvalid
);
parameter M_IDW = 12;
parameter PW = 104;
parameter AW = 32;
parameter DW = 32;
//########################
//EMESH INTERFACE
//########################
//Write request
input wr_access;
input [PW-1:0] wr_packet;
output wr_wait;
//Read request
input rd_access;
input [PW-1:0] rd_packet;
output rd_wait;
//Read response
output rr_access;
output [PW-1:0] rr_packet;
input rr_wait;
//########################
//AXI MASTER INTERFACE
//########################
input m_axi_aclk; // global clock signal.
input m_axi_aresetn; // global reset singal.
//Write address channel
output [M_IDW-1:0] m_axi_awid; // write address ID
output [31 : 0] m_axi_awaddr; // master interface write address
output [7 : 0] m_axi_awlen; // burst length.
output [2 : 0] m_axi_awsize; // burst size.
output [1 : 0] m_axi_awburst; // burst type.
output m_axi_awlock; // lock type
output [3 : 0] m_axi_awcache; // memory type.
output [2 : 0] m_axi_awprot; // protection type.
output [3 : 0] m_axi_awqos; // quality of service
output m_axi_awvalid; // write address valid
input m_axi_awready; // write address ready
//Write data channel
output [M_IDW-1:0] m_axi_wid;
output [63 : 0] m_axi_wdata; // master interface write data.
output [7 : 0] m_axi_wstrb; // byte write strobes
output m_axi_wlast; // last transfer in a write burst.
output m_axi_wvalid; // indicates data is ready to go
input m_axi_wready; // slave is ready for data
//Write response channel
input [M_IDW-1:0] m_axi_bid;
input [1 : 0] m_axi_bresp; // status of the write transaction.
input m_axi_bvalid; // channel is a valid write response
output m_axi_bready; // master can accept write response.
//Read address channel
output [M_IDW-1:0] m_axi_arid; // read address ID
output [31 : 0] m_axi_araddr; // initial address of a read burst
output [7 : 0] m_axi_arlen; // burst length
output [2 : 0] m_axi_arsize; // burst size
output [1 : 0] m_axi_arburst; // burst type
output m_axi_arlock; // lock type
output [3 : 0] m_axi_arcache; // memory type
output [2 : 0] m_axi_arprot; // protection type
output [3 : 0] m_axi_arqos; // quality of service info
output m_axi_arvalid; // valid read address
input m_axi_arready; // slave is ready to accept an address
//Read data channel
input [M_IDW-1:0] m_axi_rid; // read data ID
input [63 : 0] m_axi_rdata; // master read data
input [1 : 0] m_axi_rresp; // status of the read transfer
input m_axi_rlast; // last transfer in a read burst
input m_axi_rvalid; // signaling the required read data
output m_axi_rready; // master can accept the readback data
//#########################################################################
//REGISTER/WIRE DECLARATIONS
//#########################################################################
reg [31 : 0] m_axi_awaddr;
reg [7:0] m_axi_awlen;
reg [2:0] m_axi_awsize;
reg m_axi_awvalid;
reg [63 : 0] m_axi_wdata;
reg [63 : 0] m_axi_rdata_reg;
reg [7 : 0] m_axi_wstrb;
reg m_axi_wlast;
reg m_axi_wvalid;
reg awvalid_b;
reg [31:0] awaddr_b;
reg [2:0] awsize_b;
reg [7:0] awlen_b;
reg wvalid_b;
reg [63:0] wdata_b;
reg [7:0] wstrb_b;
reg [63 : 0] wdata_aligned;
reg [7 : 0] wstrb_aligned;
reg rr_access;
reg [31:0] rr_data;
reg [31:0] rr_srcaddr;
reg [3:0] rr_datamode;
reg [3:0] rr_ctrlmode;
reg [31:0] rr_dstaddr;
reg [63:0] m_axi_rdata_fifo;
reg rr_access_fifo;
//wires
wire aw_go;
wire w_go;
wire readinfo_wren;
wire readinfo_full;
wire [40:0] readinfo_out;
wire [40:0] readinfo_in;
wire awvalid_in;
wire [1:0] wr_datamode;
wire [AW-1:0] wr_dstaddr;
wire [DW-1:0] wr_data;
wire [AW-1:0] wr_srcaddr;
wire [1:0] rd_datamode;
wire [4:0] rd_ctrlmode;
wire [AW-1:0] rd_dstaddr;
wire [AW-1:0] rd_srcaddr;
wire [1:0] rr_datamode_fifo;
wire [3:0] rr_ctrlmode_fifo;
wire [31:0] rr_dstaddr_fifo;
wire [2:0] rr_alignaddr_fifo;
wire [103:0] packet_out;
wire fifo_prog_full;
wire fifo_full;
wire fifo_rd_en;
wire fifo_wr_en;
//#########################################################################
//EMESH 2 PACKET CONVERSION
//#########################################################################
//RXWR
packet2emesh p2e_rxwr (
// Outputs
.write_in (),
.datamode_in (wr_datamode[1:0]),
.ctrlmode_in (),
.dstaddr_in (wr_dstaddr[AW-1:0]),
.data_in (wr_data[DW-1:0]),
.srcaddr_in (wr_srcaddr[AW-1:0]),
// Inputs
.packet_in (wr_packet[PW-1:0])
);
//RXRD
packet2emesh p2e_rxrd (
// Outputs
.write_in (),
.datamode_in (rd_datamode[1:0]),
.ctrlmode_in (rd_ctrlmode[4:0]),
.dstaddr_in (rd_dstaddr[AW-1:0]),
.data_in (),
.srcaddr_in (rd_srcaddr[AW-1:0]),
// Inputs
.packet_in (rd_packet[PW-1:0])
);
//RR
emesh2packet e2p (
// Outputs
.packet_out (rr_packet[PW-1:0]),
// Inputs
.write_out (1'b1),
.datamode_out (rr_datamode[1:0]),
.ctrlmode_out ({1'b0,rr_ctrlmode[3:0]}),
.dstaddr_out (rr_dstaddr[AW-1:0]),
.data_out (rr_data[DW-1:0]),
.srcaddr_out (rr_srcaddr[AW-1:0])
);
//#########################################################################
//AXI unimplemented constants
//#########################################################################
//AW
assign m_axi_awid[M_IDW-1:0] = {(M_IDW){1'b0}};
assign m_axi_awburst[1:0] = 2'b01; //only increment burst supported
assign m_axi_awcache[3:0] = 4'b0000; //TODO: should this be 0000 or 0010???
assign m_axi_awprot[2:0] = 3'b000;
assign m_axi_awqos[3:0] = 4'b0000;
assign m_axi_awlock = 1'b0;
//AR
assign m_axi_arid[M_IDW-1:0] = {(M_IDW){1'b0}};
assign m_axi_arburst[1:0] = 2'b01; //only increment burst supported
assign m_axi_arcache[3:0] = 4'b0000;
assign m_axi_arprot[2:0] = 3'h0;
assign m_axi_arqos[3:0] = 4'h0;
assign m_axi_arlock = 1'b0;
//B
assign m_axi_bready = 1'b1;//TODO: tie to wait signal????
//W
assign m_axi_wid[M_IDW-1:0] = {(M_IDW){1'b0}};
//#########################################################################
//Write address channel
//#########################################################################
assign aw_go = m_axi_awvalid & m_axi_awready;
assign w_go = m_axi_wvalid & m_axi_wready;
assign wr_wait = awvalid_b | wvalid_b;
assign awvalid_in = wr_access & ~awvalid_b & ~wvalid_b;
// generate write-address signals
always @( posedge m_axi_aclk )
if(!m_axi_aresetn)
begin
m_axi_awvalid <= 1'b0;
m_axi_awaddr[31:0] <= 32'd0;
m_axi_awlen[7:0] <= 8'd0;
m_axi_awsize[2:0] <= 3'd0;
awvalid_b <= 1'b0;
awaddr_b <= 'd0;
awlen_b[7:0] <= 'd0;
awsize_b[2:0] <= 'd0;
end
else
begin
if( ~m_axi_awvalid | aw_go )
begin
if( awvalid_b )
begin
m_axi_awvalid <= 1'b1;
m_axi_awaddr[31:0] <= awaddr_b[31:0];
m_axi_awlen[7:0] <= awlen_b[7:0];
m_axi_awsize[2:0] <= awsize_b[2:0];
end
else
begin
m_axi_awvalid <= awvalid_in;
m_axi_awaddr[31:0] <= wr_dstaddr[31:0];
m_axi_awlen[7:0] <= 8'b0;
m_axi_awsize[2:0] <= { 1'b0, wr_datamode[1:0]};
end
end
if( awvalid_in & m_axi_awvalid & ~aw_go )
awvalid_b <= 1'b1;
else if( aw_go )
awvalid_b <= 1'b0;
//Pipeline stage
if( awvalid_in )
begin
awaddr_b[31:0] <= wr_dstaddr[31:0];
awlen_b[7:0] <= 8'b0;
awsize_b[2:0] <= { 1'b0, wr_datamode[1:0] };
end
end // else: !if(~m_axi_aresetn)
//#########################################################################
//Write data alignment circuit
//#########################################################################
always @*
case( wr_datamode[1:0] )
2'b00: wdata_aligned[63:0] = { 8{wr_data[7:0]}};
2'b01: wdata_aligned[63:0] = { 4{wr_data[15:0]}};
2'b10: wdata_aligned[63:0] = { 2{wr_data[31:0]}};
default: wdata_aligned[63:0] = { wr_srcaddr[31:0], wr_data[31:0]};
endcase
always @*
begin
case(wr_datamode[1:0])
2'd0: // byte
case(wr_dstaddr[2:0])
3'd0: wstrb_aligned[7:0] = 8'h01;
3'd1: wstrb_aligned[7:0] = 8'h02;
3'd2: wstrb_aligned[7:0] = 8'h04;
3'd3: wstrb_aligned[7:0] = 8'h08;
3'd4: wstrb_aligned[7:0] = 8'h10;
3'd5: wstrb_aligned[7:0] = 8'h20;
3'd6: wstrb_aligned[7:0] = 8'h40;
default: wstrb_aligned[7:0] = 8'h80;
endcase
2'd1: // 16b hword
case(wr_dstaddr[2:1])
2'd0: wstrb_aligned[7:0] = 8'h03;
2'd1: wstrb_aligned[7:0] = 8'h0c;
2'd2: wstrb_aligned[7:0] = 8'h30;
default: wstrb_aligned[7:0] = 8'hc0;
endcase
2'd2: // 32b word
if(wr_dstaddr[2])
wstrb_aligned[7:0] = 8'hf0;
else
wstrb_aligned[7:0] = 8'h0f;
2'd3:
wstrb_aligned[7:0] = 8'hff;
endcase // case (emwr_datamode[1:0])
end // always @ *
//#########################################################################
//Write data channel
//#########################################################################
always @ (posedge m_axi_aclk )
if(~m_axi_aresetn)
begin
m_axi_wvalid <= 1'b0;
m_axi_wdata[63:0] <= 64'b0;
m_axi_wstrb[7:0] <= 8'b0;
m_axi_wlast <= 1'b1; // TODO:bursts!!
wvalid_b <= 1'b0;
wdata_b[63:0] <= 64'b0;
wstrb_b[7:0] <= 8'b0;
end
else
begin
if( ~m_axi_wvalid | w_go )
begin
if( wvalid_b )
begin
m_axi_wvalid <= 1'b1;
m_axi_wdata[63:0] <= wdata_b[63:0];
m_axi_wstrb[7:0] <= wstrb_b[7:0];
end
else
begin
m_axi_wvalid <= awvalid_in;
m_axi_wdata[63:0] <= wdata_aligned[63:0];
m_axi_wstrb[7:0] <= wstrb_aligned[7:0];
end
end // if ( ~axi_wvalid | w_go )
if( wr_access & m_axi_wvalid & ~w_go )
wvalid_b <= 1'b1;
else if( w_go )
wvalid_b <= 1'b0;
if( awvalid_in )
begin
wdata_b[63:0] <= wdata_aligned[63:0];
wstrb_b[7:0] <= wstrb_aligned[7:0];
end
end // else: !if(~m_axi_aresetn)
//#########################################################################
//Read request channel
//#########################################################################
//1. read request comes in on ar channel
//2. use src address to match with writes coming back
//3. Assumes in order returns
assign readinfo_in[40:0] = {rd_srcaddr[31:0],//40:9
rd_dstaddr[2:0], //8:6
rd_ctrlmode[3:0],//5:2
rd_datamode[1:0] //1:0
};
//Rest synchronization (for safety, assume incoming reset is async)
wire sync_nreset;
oh_dsync dsync(.dout (sync_nreset),
.clk (m_axi_aclk),
.din (m_axi_aresetn)
);
//Synchronous FIFO for read transactions
oh_fifo_sync #(.DW(104),
.DEPTH(32))
fifo_async (.full (fifo_full),
.prog_full (fifo_prog_full),
.dout (packet_out[103:0]),
.empty (),
// Inputs
.nreset (sync_nreset),
.clk (m_axi_aclk),
.wr_en (fifo_wr_en),
.din ({63'b0,readinfo_in[40:0]}),
.rd_en (fifo_rd_en)
);
assign rr_datamode_fifo[1:0] = packet_out[1:0];
assign rr_ctrlmode_fifo[3:0] = packet_out[5:2];
assign rr_alignaddr_fifo[2:0] = packet_out[8:6];
assign rr_dstaddr_fifo[31:0] = packet_out[40:9];
//###################################################################
//Read address channel
//###################################################################
assign m_axi_araddr[31:0] = rd_dstaddr[31:0];
assign m_axi_arsize[2:0] = {1'b0, rd_datamode[1:0]};
assign m_axi_arlen[7:0] = 8'd0;
assign m_axi_arvalid = rd_access & ~fifo_prog_full; //BUG& ~rr_wait & ~fifo_prog_full; //remove
assign fifo_wr_en = m_axi_arvalid & m_axi_arready ;
assign rd_wait = ~m_axi_arready | fifo_prog_full;//BUG| rr_wait
assign fifo_rd_en = m_axi_rvalid & m_axi_rready;//BUG & ~rr_wait
//#################################################################
//Read response channel
//#################################################################
assign m_axi_rready = ~rr_wait; //BUG!: 1'b1
//Pipeline axi transaction to account for FIFO read latency
always @ (posedge m_axi_aclk)
if(!m_axi_aresetn)
begin
rr_access_fifo <= 1'b0;
rr_access <= 1'b0;
end
else
begin
rr_access_fifo <= fifo_rd_en;
rr_access <= rr_access_fifo;
end
//Alignment Mux (one cycle)
always @ (posedge m_axi_aclk)
begin
m_axi_rdata_fifo[63:0] <= m_axi_rdata[63:0];
rr_datamode[1:0] <= rr_datamode_fifo[1:0];
rr_ctrlmode[3:0] <= rr_ctrlmode_fifo[3:0];
rr_dstaddr[31:0] <= rr_dstaddr_fifo[31:0];
//all data needs to be right aligned
//(this is due to the Epiphany right aligning all words)
case(rr_datamode_fifo[1:0])//datamode
2'd0: // byte read
case(rr_alignaddr_fifo[2:0])
3'd0: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[7:0]};
3'd1: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[15:8]};
3'd2: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[23:16]};
3'd3: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[31:24]};
3'd4: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[39:32]};
3'd5: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[47:40]};
3'd6: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[55:48]};
3'd7: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[63:56]};
default: rr_data[31:0] <= {24'b0,m_axi_rdata_fifo[7:0]};
endcase
2'd1: // 16b hword
case(rr_alignaddr_fifo[2:1])
2'd0: rr_data[31:0] <= {16'b0,m_axi_rdata_fifo[15:0]};
2'd1: rr_data[31:0] <= {16'b0,m_axi_rdata_fifo[31:16]};
2'd2: rr_data[31:0] <= {16'b0,m_axi_rdata_fifo[47:32]};
2'd3: rr_data[31:0] <= {16'b0,m_axi_rdata_fifo[63:48]};
default: rr_data[31:0] <= {16'b0,m_axi_rdata_fifo[15:0]};
endcase
2'd2: // 32b word
begin
if(rr_alignaddr_fifo[2])
rr_data[31:0] <= m_axi_rdata_fifo[63:32];
else
rr_data[31:0] <= m_axi_rdata_fifo[31:0];
end
// 64b word already defined by defaults above
2'd3:
begin // 64b dword
rr_data[31:0] <= m_axi_rdata_fifo[31:0];
rr_srcaddr[31:0] <= m_axi_rdata_fifo[63:32];
end
endcase
end // always @ (posedge m_axi_aclk1 )
endmodule // emaxi
// Local Variables:
// verilog-library-directories:("." "../../emesh/hdl" "../../memory/hdl" "../../common/hdl" )
// End: