1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-21 22:12:54 +08:00
oh/elink/dv/elink_e16_model.v
Andreas Olofsson 130caa64b6 E16 model cleanup
-fixing false error message
-removed emesh_interface isntance (not needed..)
-set floating inputs to zero
2015-05-02 21:28:09 -04:00

5701 lines
214 KiB
Verilog

`define CFG_FAKECLK 1 /*stupid verilator doesn't get clock gating*/
`define CFG_MDW 32 /*Width of mesh network*/
`define CFG_DW 32 /*Width of datapath*/
`define CFG_AW 32 /*Width of address space*/
`define CFG_LW 8 /*Link port width*/
`define CFG_NW 13 /*Number of bytes in the transmission*/
module e16_arbiter_priority(/*AUTOARG*/
// Outputs
grant, arb_wait,
// Inputs
clk, clk_en, reset, hold, request
);
parameter ARW=99;
input clk;
input clk_en;
input reset;
input hold;
input [ARW-1:0] request;
output [ARW-1:0] grant;
output [ARW-1:0] arb_wait;
//wires
wire [ARW-1:0] grant_mask;
wire [ARW-1:0] request_mask;
//regs
reg [ARW-1:0] grant_hold;
//hold circuit
always @ (posedge clk or posedge reset)
if(reset)
grant_hold[ARW-1:0] <= {(ARW){1'b0}};
else if(clk_en)
grant_hold[ARW-1:0] <= grant[ARW-1:0] & {(ARW){hold}};
//request blocking based on held previous requests
genvar i;
generate
for(i=0;i<ARW-1;i=i+1) begin : gen_block
assign request_mask[i]=request[i] & ~(|grant_hold[ARW-1:i+1]);
end
assign request_mask[ARW-1]=request[ARW-1];//awlays on, loses on priority
endgenerate
genvar j;
assign grant_mask[0] = 1'b0;
generate for (j=ARW-1; j>=1; j=j-1) begin : gen_arbiter
assign grant_mask[j] = |request_mask[j-1:0];
end
endgenerate
//grant circuit
assign grant[ARW-1:0] = request_mask[ARW-1:0] & ~grant_mask[ARW-1:0];
//wait circuit
assign arb_wait[ARW-1:0] = request[ARW-1:0] & ({(ARW){hold}} | ~grant[ARW-1:0]);
//makes sure we hold request one cycle after wait is gone!!!
// synthesis translate_off
always @*
if((|(grant_hold[ARW-1:0] & ~request[ARW-1:0])) & ~reset & $time> 0)
begin
$display("ERROR>>Request not held steady in cell %m at time %0d", $time);
end
// synthesis translate_on
endmodule // arbiter_priority
module e16_arbiter_roundrobin(/*AUTOARG*/
// Outputs
grants,
// Inputs
clk, clk_en, reset, en_rotate, requests
);
/************************************************************/
/*PARAMETERS */
/************************************************************/
parameter ARW = 5;
/************************************************************/
/*BASIC INTERFACE */
/****I*******************************************************/
input clk;
input clk_en; //2nd level manual clock gater
input reset;
/************************************************************/
/*ARBITRATION INTERFACE */
/****I*******************************************************/
input en_rotate;//enable mask rotation, makes arbiter more flexible
//in mesh there should be a way to control freq of rotation
input [ARW-1:0] requests;
output [ARW-1:0] grants;
//loop variable
integer m;
//Masks
reg [ARW-1:0] request_mask; //rotating mask
//Wires
reg [2*ARW-1:0] grants_rotate_buffer;
reg [ARW-1:0] grants; //output grants
wire [ARW-1:0] shifted_requests[ARW-1:0];
wire [ARW-1:0] shifted_grants[ARW-1:0];
wire [2*ARW-1:0] requests_rotate_buffer;
/********************************************************************/
/*Rotating Mask Pointer On Every Clock Cycle */
/********************************************************************/
//request vector[7:0]-->regular
//hold vector[7:0] -->sets the priority to the request when it wins
// there can be multiple bits set
// the only one active is the one where the
// mask is currently located.
// en_rotate=~(hold_vec[7:0] & requeste_mask[7:0])
//every request should also be able to send a "start/stop" signal
//instead of having an en_rotate signal, we have
//if then en-rotate signal is low
always @ ( posedge clk or posedge reset)
if(reset)
request_mask[ARW-1:0] <= {{(ARW-1){1'b0}},1'b1};
else if(clk_en)
if(en_rotate)
request_mask[ARW-1:0] <= {request_mask[ARW-2:0],request_mask[ARW-1]};
/********************************************************************/
/*Creating Shifted Request Vectors */
/********************************************************************/
assign requests_rotate_buffer[2*ARW-1:0]={requests[ARW-1:0],requests[ARW-1:0]};
genvar i;
generate
for (i=0;i<ARW;i=i+1) begin: gen_requests
assign shifted_requests[i]=requests_rotate_buffer[ARW-1+i:i];
end
endgenerate
/********************************************************************/
/*Priority Encoders For Each Vector */
/********************************************************************/
//Priority Encoders For Each Vector
genvar k;
generate
for (k=0;k<ARW;k=k+1) begin: gen_arbiter
e16_arbiter_priority #(.ARW(ARW)) simple_arbiter(
.clk (clk),
.clk_en (clk_en),
.reset (reset),
.hold (1'b0),
.request (shifted_requests[k]),
.arb_wait (),
.grant (shifted_grants[k])
);
end
endgenerate
/********************************************************************/
/*One Hot Mux */
/********************************************************************/
//Note that grants have to be rotate back to their right positiona again.
always @*
begin
grants[ARW-1:0] = {(ARW){1'b0}};
for(m=0;m<ARW;m=m+1)
begin
grants_rotate_buffer[2*ARW-1:0]={shifted_grants[m],shifted_grants[m]};
grants[ARW-1:0] =grants[ARW-1:0] |
({(ARW){request_mask[m]}} &
grants_rotate_buffer[2*ARW-1-m-:ARW]
);
end
end
/********************************************************************/
/*Checkers */
/********************************************************************/
/*
// synthesis translate_off
always @*
begin
if((|(grants[ARW-1:0]&~requests[ARW-1:0])) & $time>0)
$display("ERROR>>Grant granted with out request in cell %m at time %0d",$time);
if((~(|grants[ARW-1:0]) & (|requests[ARW-1:0])) & $time>0)
$display("ERROR>>Zero granted when there was a request in cell %m at time %0d",$time);
end
// synthesis translate_on
*/
endmodule // arbiter_roundrobin
// ###############################################################
// # FUNCTION: Synchronous clock divider that divides by integer
// # NOTE: Combinatorial output becomes new clock
// ###############################################################
module e16_clock_divider(/*AUTOARG*/
// Outputs
clk_out, clk_out90,
// Inputs
clk_in, reset, div_cfg
);
input clk_in; // Input clock
input reset;
input [3:0] div_cfg; // Divide factor
output clk_out; // Divided clock phase aligned with clk_in
output clk_out90; // Divided clock with 90deg phase shift with clk_out
reg clk_out_reg;
//reg clk_out90_reg;
//reg clk90_div2_reg;
reg [5:0] counter;
reg [5:0] div_cfg_dec;
wire div2_sel;
wire posedge_match;
wire negedge_match;
wire posedge90_match;
wire negedge90_match;
wire clk_out90_div2;
wire clk_out90_div4;
wire clk_out90_div2_in;
wire clk_out90_div4_in;
// ###################
// # Decode div_cfg
// ###################
always @ (div_cfg[3:0])
begin
casez (div_cfg[3:0])
4'b0000 : div_cfg_dec[5:0] = 6'b000010; // Divide by 2
4'b0001 : div_cfg_dec[5:0] = 6'b000100; // Divide by 4
4'b0010 : div_cfg_dec[5:0] = 6'b001000; // Divide by 8
4'b0011 : div_cfg_dec[5:0] = 6'b010000; // Divide by 16
4'b01?? : div_cfg_dec[5:0] = 6'b100000; // A lof of different ratios
4'b1??? : div_cfg_dec[5:0] = 6'b100000; // Divide by 32
default : div_cfg_dec[5:0] = 6'b000000;
endcase // casez (div_cfg[3:0])
end // always @ (div_cfg[3:0])
assign div2_sel = div_cfg[3:0]==4'b0;
//Counter For Generating Toggling Edges
//always @ (posedge clk_in or posedge reset)
//if(reset)
//counter[5:0] <= 6'b000001;// Reset value
always @ (posedge clk_in or posedge reset)
if (reset)
counter[5:0] <= 6'b000001;
else if(posedge_match)
counter[5:0] <= 6'b000001;// Self resetting
else
counter[5:0] <= (counter[5:0]+6'b000001);
assign posedge_match = (counter[5:0]==div_cfg_dec[5:0]);
assign negedge_match = (counter[5:0]=={1'b0,div_cfg_dec[5:1]});
assign posedge90_match = (counter[5:0]==({2'b00,div_cfg_dec[5:2]}));
assign negedge90_match = (counter[5:0]==({2'b00,div_cfg_dec[5:2]}+{1'b0,div_cfg_dec[5:1]}));
//Divided clock
//always @ (posedge clk_in or posedge reset)
//if(reset)
//clk_out_reg <= 1'b0;
always @ (posedge clk_in)
if(posedge_match)
clk_out_reg <= 1'b1;
else if(negedge_match)
clk_out_reg <= 1'b0;
assign clk_out = clk_out_reg;
/**********************************************************************/
/*Divide by 2 Clock
/**********************************************************************/
//always @ (posedge clk_in or posedge reset)
//if(reset)
//clk_out90_reg <= 1'b0;
//always @ (posedge clk_in)
// if(posedge90_match)
// clk_out90_reg <= 1'b1;
// else if(negedge90_match)
// clk_out90_reg <= 1'b0;
assign clk_out90_div4_in = posedge90_match ? 1'b1 :
negedge90_match ? 1'b0 :
clk_out90_div4;
DFFQX4A12TR clk90_flop (.CK(clk_in),
.D(clk_out90_div4_in),
.Q(clk_out90_div4)
);
//always @ (negedge clk_in)
// if(negedge_match)
// clk90_div2_reg <= 1'b1;
// else if(posedge_match)
// clk90_div2_reg <= 1'b0;
assign clk_out90_div2_in = negedge_match ? 1'b1 :
posedge_match ? 1'b0 :
clk_out90_div2;
DFFNQX3A12TR clk90_div2_flop (.CKN(clk_in),
.D(clk_out90_div2_in),
.Q(clk_out90_div2)
);
//assign clk_out90 = div2_sel ? clk90_div2_reg : clk_out90_reg;
MX2X4A12TR clk90_mux2 (.A(clk_out90_div4),
.B(clk_out90_div2),
.S0(div2_sel),
.Y(clk_out90)
);
endmodule // clock_divider
module e16_mesh_interface(/*AUTOARG*/
// Outputs
wait_out, access_out, write_out, datamode_out, ctrlmode_out,
data_out, dstaddr_out, srcaddr_out, access_reg, write_reg,
datamode_reg, ctrlmode_reg, data_reg, dstaddr_reg, srcaddr_reg,
// Inputs
clk, clk_en, reset, wait_in, access_in, write_in, datamode_in,
ctrlmode_in, data_in, dstaddr_in, srcaddr_in, wait_int, access,
write, datamode, ctrlmode, data, dstaddr, srcaddr
);
parameter DW = `CFG_DW;
parameter AW = `CFG_AW;
//###########
//# INPUTS
//###########
input clk;
input clk_en; //2nd level manual clock gater
input reset;
//# from the mesh
input wait_in;
input access_in;
input write_in;
input [1:0] datamode_in;
input [3:0] ctrlmode_in;
input [DW-1:0] data_in;
input [AW-1:0] dstaddr_in;
input [AW-1:0] srcaddr_in;
//# from the internal control
input wait_int;
input access;
input write;
input [1:0] datamode;
input [3:0] ctrlmode;
input [DW-1:0] data;
input [AW-1:0] dstaddr;
input [AW-1:0] srcaddr;
//###########
//# OUTPUTS
//###########
//# to the mesh
output wait_out;
output access_out;
output write_out;
output [1:0] datamode_out;
output [3:0] ctrlmode_out;
output [DW-1:0] data_out;
output [AW-1:0] dstaddr_out;
output [AW-1:0] srcaddr_out;
//# to the internal control
output access_reg;
output write_reg;
output [1:0] datamode_reg;
output [3:0] ctrlmode_reg;
output [DW-1:0] data_reg;
output [AW-1:0] dstaddr_reg;
output [AW-1:0] srcaddr_reg;
/*AUTOINPUT*/
/*AUTOWIRE*/
//#########
//# REGS
//#########
reg wait_out;
reg access_out;
reg write_out;
reg [1:0] datamode_out;
reg [3:0] ctrlmode_out;
reg [DW-1:0] data_out;
reg [AW-1:0] dstaddr_out;
reg [AW-1:0] srcaddr_out;
reg access_reg;
reg write_reg;
reg [1:0] datamode_reg;
reg [3:0] ctrlmode_reg;
reg [DW-1:0] data_reg;
reg [AW-1:0] dstaddr_reg;
reg [AW-1:0] srcaddr_reg;
//#########
//# WIRES
//#########
//##########################
//# mesh input busses
//##########################
always @ (posedge clk or posedge reset)
if(reset)
access_reg <= 1'b0;
else if(clk_en)
if(~wait_int)
access_reg <= access_in;
always @ (posedge clk)
if(clk_en)
if(~wait_int & access_in)
begin
write_reg <= write_in;
datamode_reg[1:0] <= datamode_in[1:0];
ctrlmode_reg[3:0] <= ctrlmode_in[3:0];
data_reg[DW-1:0] <= data_in[DW-1:0];
dstaddr_reg[AW-1:0] <= dstaddr_in[AW-1:0];
srcaddr_reg[AW-1:0] <= srcaddr_in[AW-1:0];
end
//##########################
//# mesh output busses
//##########################
always @ (posedge clk or posedge reset)
if(reset)
access_out <= 1'b0;
else if(clk_en)
if(!wait_in)
access_out <= access;
always @ (posedge clk)
if (clk_en)
if(!wait_in & access)
begin
srcaddr_out[AW-1:0] <= srcaddr[AW-1:0];
data_out[DW-1:0] <= data[DW-1:0];
write_out <= write;
datamode_out[1:0] <= datamode[1:0];
dstaddr_out[AW-1:0] <= dstaddr[AW-1:0];
ctrlmode_out[3:0] <= ctrlmode[3:0];
end
//#####################
//# Wait out control
//#####################
always @ (posedge clk or posedge reset)
if(reset)
wait_out <= 1'b0;
else if(clk_en)
wait_out <= wait_int;
endmodule // mesh_interface
module e16_mux7(/*AUTOARG*/
// Outputs
out,
// Inputs
in0, in1, in2, in3, in4, in5, in6, sel0, sel1, sel2, sel3, sel4,
sel5, sel6
);
parameter DW=99;
//data inputs
input [DW-1:0] in0;
input [DW-1:0] in1;
input [DW-1:0] in2;
input [DW-1:0] in3;
input [DW-1:0] in4;
input [DW-1:0] in5;
input [DW-1:0] in6;
//select inputs
input sel0;
input sel1;
input sel2;
input sel3;
input sel4;
input sel5;
input sel6;
output [DW-1:0] out;
assign out[DW-1:0] = ({(DW){sel0}} & in0[DW-1:0] |
{(DW){sel1}} & in1[DW-1:0] |
{(DW){sel2}} & in2[DW-1:0] |
{(DW){sel3}} & in3[DW-1:0] |
{(DW){sel4}} & in4[DW-1:0] |
{(DW){sel5}} & in5[DW-1:0] |
{(DW){sel6}} & in6[DW-1:0]);
// synthesis translate_off
always @*
if((sel0+sel1+sel2+sel3+sel4+sel5+sel6>1) & $time>0)
$display("ERROR>>Arbitration failure in cell %m");
// synthesis translate_on
endmodule // mux7
module e16_pulse2pulse(/*AUTOARG*/
// Outputs
out,
// Inputs
inclk, outclk, in, reset
);
//clocks
input inclk;
input outclk;
input in;
output out;
//reset
input reset; //do we need this???
wire intoggle;
wire insync;
//pulse to toggle
pulse2toggle pulse2toggle(
// Outputs
.out (intoggle),
// Inputs
.clk (inclk),
.in (in),
.reset (reset));
//metastability synchronizer
synchronizer #(1) synchronizer(
// Outputs
.out (insync),
// Inputs
.in (intoggle),
.clk (outclk),
.reset (reset));
//toogle to pulse
toggle2pulse toggle2pulse(
// Outputs
.out (out),
// Inputs
.clk (outclk),
.in (insync),
.reset (reset));
endmodule // pulse2pulse
module e16_pulse2toggle(/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in, reset
);
//clocks
input clk;
input in;
output out;
//reset
input reset; //do we need this???
reg out;
wire toggle;
//if input goes high, toggle output
//note1: input can only be high for one clock cycle
//note2: be careful with clock gating
assign toggle = in ? ~out :
out;
always @ (posedge clk or posedge reset)
if(reset)
out <= 1'b0;
else
out <= toggle;
endmodule // pulse2toggle
module e16_synchronizer #(parameter DW=32) (/*AUTOARG*/
// Outputs
out,
// Inputs
in, clk, reset
);
//Input Side
input [DW-1:0] in;
input clk;
input reset;//asynchronous signal
//Output Side
output [DW-1:0] out;
reg [DW-1:0] sync_reg0;
reg [DW-1:0] sync_reg1;
reg [DW-1:0] out;
//Synchronization between clock domain
//We use two flip-flops for metastability improvement
always @ (posedge clk or posedge reset)
if(reset)
begin
sync_reg0[DW-1:0] <= {(DW){1'b0}};
sync_reg1[DW-1:0] <= {(DW){1'b0}};
out[DW-1:0] <= {(DW){1'b0}};
end
else
begin
sync_reg0[DW-1:0] <= in[DW-1:0];
sync_reg1[DW-1:0] <= sync_reg0[DW-1:0];
out[DW-1:0] <= sync_reg1[DW-1:0];
end
endmodule // clock_synchronizer
//goes high for one clock cycle on every input transition
module e16_toggle2pulse(/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in, reset
);
//clocks
input clk;
input in;
output out;
//reset
input reset;
reg out_reg;
always @ (posedge clk or posedge reset)
if(reset)
out_reg <= 1'b0;
else
out_reg <= in;
assign out = in ^ out_reg;
endmodule
module elink_e16 (/*AUTOARG*/
// Outputs
rxi_rd_wait, rxi_wr_wait, txo_data, txo_lclk, txo_frame,
c0_mesh_access_out, c0_mesh_write_out, c0_mesh_dstaddr_out,
c0_mesh_srcaddr_out, c0_mesh_data_out, c0_mesh_datamode_out,
c0_mesh_ctrlmode_out, c0_emesh_wait_out, c0_mesh_wait_out,
// Inputs
reset, c0_clk_in, c1_clk_in, c2_clk_in, c3_clk_in, rxi_data,
rxi_lclk, rxi_frame, txo_rd_wait, txo_wr_wait, c0_mesh_access_in,
c0_mesh_write_in, c0_mesh_dstaddr_in, c0_mesh_srcaddr_in,
c0_mesh_data_in, c0_mesh_datamode_in, c0_mesh_ctrlmode_in,
c0_mesh_wait_in
);
parameter DW = `CFG_DW ;//data width
parameter AW = `CFG_AW ;//address width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
//Reset/core clock
input reset;
input c0_clk_in;
input c1_clk_in;
input c2_clk_in;
input c3_clk_in;
// # IO Signals
input [LW-1:0] rxi_data; // Byte word
input rxi_lclk; // receive clock (adjusted)
input rxi_frame; // indicates new transmission
input txo_rd_wait; // wait indicator on read transactions
input txo_wr_wait; // wait indicator on write transactions
output rxi_rd_wait; // wait indicator on read transaction
output rxi_wr_wait; // wait indicator on write transaction
output [LW-1:0] txo_data; // Byte word
output txo_lclk; // transmit clock
output txo_frame; // indicates new transmission
// # MESH
// # core0 (external corners and multicast)
input c0_mesh_access_in; // access control from the mesh
input c0_mesh_write_in; // write control from the mesh
input [AW-1:0] c0_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c0_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c0_mesh_data_in; // data from the mesh
input [1:0] c0_mesh_datamode_in;// data mode from the mesh
input [3:0] c0_mesh_ctrlmode_in;// ctrl mode from the mesh
input c0_mesh_wait_in; // wait
// ##############
// # Outputs
// ##############
// # MESH (write transactions internal and external corners)
// # core0
output c0_mesh_access_out; // access control to the mesh
output c0_mesh_write_out; // write control to the mesh
output [AW-1:0] c0_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c0_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c0_mesh_data_out; // data to the mesh
output [1:0] c0_mesh_datamode_out;// data mode to the mesh
output [3:0] c0_mesh_ctrlmode_out;// ctrl mode to the mesh
// # Waits
output c0_emesh_wait_out; // wait to the emesh
output c0_mesh_wait_out; // wait to the mesh
wire [3:0] ext_yid_k=4'h8;
wire [3:0] ext_xid_k=4'h4;
wire vertical_k=1'b1; // specifies if block is vertical or horizontal
wire [3:0] who_am_i=4'b0100; // (north,east,south,west)
wire cfg_extcomp_dis=1'b0;// Disable external coordinates comparison
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire c0_emesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c0_emesh_tran_out; // From link_port of link_port.v
wire c0_rdmesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c0_rdmesh_tran_out; // From link_port of link_port.v
wire c0_rdmesh_wait_out; // From link_port of link_port.v
wire c1_emesh_wait_out; // From link_port of link_port.v
wire c1_rdmesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c1_rdmesh_tran_out; // From link_port of link_port.v
wire c1_rdmesh_wait_out; // From link_port of link_port.v
wire c2_emesh_wait_out; // From link_port of link_port.v
wire c2_rdmesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c2_rdmesh_tran_out; // From link_port of link_port.v
wire c2_rdmesh_wait_out; // From link_port of link_port.v
wire c3_emesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c3_emesh_tran_out; // From link_port of link_port.v
wire c3_emesh_wait_out; // From link_port of link_port.v
wire c3_mesh_access_out; // From link_port of link_port.v
wire [3:0] c3_mesh_ctrlmode_out; // From link_port of link_port.v
wire [DW-1:0] c3_mesh_data_out; // From link_port of link_port.v
wire [1:0] c3_mesh_datamode_out; // From link_port of link_port.v
wire [AW-1:0] c3_mesh_dstaddr_out; // From link_port of link_port.v
wire [AW-1:0] c3_mesh_srcaddr_out; // From link_port of link_port.v
wire c3_mesh_wait_out; // From link_port of link_port.v
wire c3_mesh_write_out; // From link_port of link_port.v
wire c3_rdmesh_frame_out; // From link_port of link_port.v
wire [2*LW-1:0] c3_rdmesh_tran_out; // From link_port of link_port.v
wire c3_rdmesh_wait_out; // From link_port of link_port.v
// End of automatics
/* link_port AUTO_TEMPLATE (.\(.*\)_rdmesh_tran_in (16'b0),
.\(.*\)_rdmesh_frame_in (1'b0),
.\(.*\)_emesh_tran_in (16'b0),
.\(.*\)_emesh_frame_in (1'b0),
);
*/
wire c0_emesh_wait_in=1'b0;
wire c0_rdmesh_wait_in=1'b0;
wire c1_rdmesh_wait_in=1'b0;
wire c2_rdmesh_wait_in=1'b0;
wire c3_emesh_wait_in=1'b0;
wire c3_mesh_wait_in=1'b0;
wire c3_rdmesh_wait_in=1'b0;
wire [5:0] txo_cfg_reg=6'b0;
link_port link_port (.c3_mesh_access_in(1'b0),
.c3_mesh_write_in(1'b0),
.c3_mesh_dstaddr_in(32'b0),
.c3_mesh_srcaddr_in(32'b0),
.c3_mesh_data_in(32'b0),
.c3_mesh_datamode_in(2'b0),
.c3_mesh_ctrlmode_in(4'b0),
/*AUTOINST*/
// Outputs
.rxi_rd_wait (rxi_rd_wait),
.rxi_wr_wait (rxi_wr_wait),
.txo_data (txo_data[LW-1:0]),
.txo_lclk (txo_lclk),
.txo_frame (txo_frame),
.c0_emesh_frame_out(c0_emesh_frame_out),
.c0_emesh_tran_out(c0_emesh_tran_out[2*LW-1:0]),
.c3_emesh_frame_out(c3_emesh_frame_out),
.c3_emesh_tran_out(c3_emesh_tran_out[2*LW-1:0]),
.c0_rdmesh_frame_out(c0_rdmesh_frame_out),
.c0_rdmesh_tran_out(c0_rdmesh_tran_out[2*LW-1:0]),
.c1_rdmesh_frame_out(c1_rdmesh_frame_out),
.c1_rdmesh_tran_out(c1_rdmesh_tran_out[2*LW-1:0]),
.c2_rdmesh_frame_out(c2_rdmesh_frame_out),
.c2_rdmesh_tran_out(c2_rdmesh_tran_out[2*LW-1:0]),
.c3_rdmesh_frame_out(c3_rdmesh_frame_out),
.c3_rdmesh_tran_out(c3_rdmesh_tran_out[2*LW-1:0]),
.c0_mesh_access_out(c0_mesh_access_out),
.c0_mesh_write_out(c0_mesh_write_out),
.c0_mesh_dstaddr_out(c0_mesh_dstaddr_out[AW-1:0]),
.c0_mesh_srcaddr_out(c0_mesh_srcaddr_out[AW-1:0]),
.c0_mesh_data_out(c0_mesh_data_out[DW-1:0]),
.c0_mesh_datamode_out(c0_mesh_datamode_out[1:0]),
.c0_mesh_ctrlmode_out(c0_mesh_ctrlmode_out[3:0]),
.c3_mesh_access_out(c3_mesh_access_out),
.c3_mesh_write_out(c3_mesh_write_out),
.c3_mesh_dstaddr_out(c3_mesh_dstaddr_out[AW-1:0]),
.c3_mesh_srcaddr_out(c3_mesh_srcaddr_out[AW-1:0]),
.c3_mesh_data_out(c3_mesh_data_out[DW-1:0]),
.c3_mesh_datamode_out(c3_mesh_datamode_out[1:0]),
.c3_mesh_ctrlmode_out(c3_mesh_ctrlmode_out[3:0]),
.c0_emesh_wait_out(c0_emesh_wait_out),
.c1_emesh_wait_out(c1_emesh_wait_out),
.c2_emesh_wait_out(c2_emesh_wait_out),
.c3_emesh_wait_out(c3_emesh_wait_out),
.c0_rdmesh_wait_out(c0_rdmesh_wait_out),
.c1_rdmesh_wait_out(c1_rdmesh_wait_out),
.c2_rdmesh_wait_out(c2_rdmesh_wait_out),
.c3_rdmesh_wait_out(c3_rdmesh_wait_out),
.c0_mesh_wait_out(c0_mesh_wait_out),
.c3_mesh_wait_out(c3_mesh_wait_out),
// Inputs
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.txo_cfg_reg (txo_cfg_reg[5:0]),
.vertical_k (vertical_k),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis(cfg_extcomp_dis),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.txo_rd_wait (txo_rd_wait),
.txo_wr_wait (txo_wr_wait),
.c0_clk_in (c0_clk_in),
.c1_clk_in (c1_clk_in),
.c2_clk_in (c2_clk_in),
.c3_clk_in (c3_clk_in),
.c0_emesh_tran_in(16'b0), // Templated
.c0_emesh_frame_in(1'b0), // Templated
.c1_emesh_tran_in(16'b0), // Templated
.c1_emesh_frame_in(1'b0), // Templated
.c2_emesh_tran_in(16'b0), // Templated
.c2_emesh_frame_in(1'b0), // Templated
.c3_emesh_tran_in(16'b0), // Templated
.c3_emesh_frame_in(1'b0), // Templated
.c0_rdmesh_tran_in(16'b0), // Templated
.c0_rdmesh_frame_in(1'b0), // Templated
.c1_rdmesh_tran_in(16'b0), // Templated
.c1_rdmesh_frame_in(1'b0), // Templated
.c2_rdmesh_tran_in(16'b0), // Templated
.c2_rdmesh_frame_in(1'b0), // Templated
.c3_rdmesh_tran_in(16'b0), // Templated
.c3_rdmesh_frame_in(1'b0), // Templated
.c0_mesh_access_in(c0_mesh_access_in),
.c0_mesh_write_in(c0_mesh_write_in),
.c0_mesh_dstaddr_in(c0_mesh_dstaddr_in[AW-1:0]),
.c0_mesh_srcaddr_in(c0_mesh_srcaddr_in[AW-1:0]),
.c0_mesh_data_in(c0_mesh_data_in[DW-1:0]),
.c0_mesh_datamode_in(c0_mesh_datamode_in[1:0]),
.c0_mesh_ctrlmode_in(c0_mesh_ctrlmode_in[3:0]),
.c0_emesh_wait_in(c0_emesh_wait_in),
.c3_emesh_wait_in(c3_emesh_wait_in),
.c0_mesh_wait_in(c0_mesh_wait_in),
.c3_mesh_wait_in(c3_mesh_wait_in),
.c0_rdmesh_wait_in(c0_rdmesh_wait_in),
.c1_rdmesh_wait_in(c1_rdmesh_wait_in),
.c2_rdmesh_wait_in(c2_rdmesh_wait_in),
.c3_rdmesh_wait_in(c3_rdmesh_wait_in));
endmodule // elink_e16
module link_port(/*AUTOARG*/
// Outputs
rxi_rd_wait, rxi_wr_wait, txo_data, txo_lclk, txo_frame,
c0_emesh_frame_out, c0_emesh_tran_out, c3_emesh_frame_out,
c3_emesh_tran_out, c0_rdmesh_frame_out, c0_rdmesh_tran_out,
c1_rdmesh_frame_out, c1_rdmesh_tran_out, c2_rdmesh_frame_out,
c2_rdmesh_tran_out, c3_rdmesh_frame_out, c3_rdmesh_tran_out,
c0_mesh_access_out, c0_mesh_write_out, c0_mesh_dstaddr_out,
c0_mesh_srcaddr_out, c0_mesh_data_out, c0_mesh_datamode_out,
c0_mesh_ctrlmode_out, c3_mesh_access_out, c3_mesh_write_out,
c3_mesh_dstaddr_out, c3_mesh_srcaddr_out, c3_mesh_data_out,
c3_mesh_datamode_out, c3_mesh_ctrlmode_out, c0_emesh_wait_out,
c1_emesh_wait_out, c2_emesh_wait_out, c3_emesh_wait_out,
c0_rdmesh_wait_out, c1_rdmesh_wait_out, c2_rdmesh_wait_out,
c3_rdmesh_wait_out, c0_mesh_wait_out, c3_mesh_wait_out,
// Inputs
reset, ext_yid_k, ext_xid_k, txo_cfg_reg, vertical_k, who_am_i,
cfg_extcomp_dis, rxi_data, rxi_lclk, rxi_frame, txo_rd_wait,
txo_wr_wait, c0_clk_in, c1_clk_in, c2_clk_in, c3_clk_in,
c0_emesh_tran_in, c0_emesh_frame_in, c1_emesh_tran_in,
c1_emesh_frame_in, c2_emesh_tran_in, c2_emesh_frame_in,
c3_emesh_tran_in, c3_emesh_frame_in, c0_rdmesh_tran_in,
c0_rdmesh_frame_in, c1_rdmesh_tran_in, c1_rdmesh_frame_in,
c2_rdmesh_tran_in, c2_rdmesh_frame_in, c3_rdmesh_tran_in,
c3_rdmesh_frame_in, c0_mesh_access_in, c0_mesh_write_in,
c0_mesh_dstaddr_in, c0_mesh_srcaddr_in, c0_mesh_data_in,
c0_mesh_datamode_in, c0_mesh_ctrlmode_in, c3_mesh_access_in,
c3_mesh_write_in, c3_mesh_dstaddr_in, c3_mesh_srcaddr_in,
c3_mesh_data_in, c3_mesh_datamode_in, c3_mesh_ctrlmode_in,
c0_emesh_wait_in, c3_emesh_wait_in, c0_mesh_wait_in,
c3_mesh_wait_in, c0_rdmesh_wait_in, c1_rdmesh_wait_in,
c2_rdmesh_wait_in, c3_rdmesh_wait_in
);
parameter DW = `CFG_DW ;//data width
parameter AW = `CFG_AW ;//address width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
// #########
// # Inputs
// #########
input reset; //reset input
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [5:0] txo_cfg_reg;// Link configuration register
input vertical_k; // specifies if block is vertical or horizontal
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
// # Vertical_k usage:
// # West/East link port is "vertical", i.e. sends transactions to the cores
// # horizontally, according to the row_k[2:0] index
// # North/South link port is "horizontal", i.e. sends transactions to the cores
// # vertically, according to the col_k[2:0] index
// # In order to distinguish between West/East and North/South,
// # vertical_k index is used.
// # Receiver
input [LW-1:0] rxi_data; // Byte word
input rxi_lclk; // receive clock (adjusted to the frame/data)
input rxi_frame; // indicates new transmission
// # Transmitter
input txo_rd_wait; // wait indicator on read transactions
input txo_wr_wait; // wait indicator on write transactions
// # Clocks
input c0_clk_in; // clock of the core
input c1_clk_in; // clock of the core
input c2_clk_in; // clock of the core
input c3_clk_in; // clock of the core
// # EMESH
input [2*LW-1:0] c0_emesh_tran_in; // serialized transaction
input c0_emesh_frame_in; // transaction frame
input [2*LW-1:0] c1_emesh_tran_in; // serialized transaction
input c1_emesh_frame_in; // transaction frame
input [2*LW-1:0] c2_emesh_tran_in; // serialized transaction
input c2_emesh_frame_in; // transaction frame
input [2*LW-1:0] c3_emesh_tran_in; // serialized transaction
input c3_emesh_frame_in; // transaction frame
// # RDMESH
input [2*LW-1:0] c0_rdmesh_tran_in; // serialized transaction
input c0_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c1_rdmesh_tran_in; // serialized transaction
input c1_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c2_rdmesh_tran_in; // serialized transaction
input c2_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c3_rdmesh_tran_in; // serialized transaction
input c3_rdmesh_frame_in; // transaction frame
// # MESH
// # core0 (external corners and multicast)
input c0_mesh_access_in; // access control from the mesh
input c0_mesh_write_in; // write control from the mesh
input [AW-1:0] c0_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c0_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c0_mesh_data_in; // data from the mesh
input [1:0] c0_mesh_datamode_in;// data mode from the mesh
input [3:0] c0_mesh_ctrlmode_in;// ctrl mode from the mesh
// # core3 (external corners only)
input c3_mesh_access_in; // access control from the mesh
input c3_mesh_write_in; // write control from the mesh
input [AW-1:0] c3_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c3_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c3_mesh_data_in; // data from the mesh
input [1:0] c3_mesh_datamode_in;// data mode from the mesh
input [3:0] c3_mesh_ctrlmode_in;// ctrl mode from the mesh
//# Waits
input c0_emesh_wait_in; // wait
input c3_emesh_wait_in; // wait
input c0_mesh_wait_in; // wait
input c3_mesh_wait_in; // wait
input c0_rdmesh_wait_in; // wait
input c1_rdmesh_wait_in; // wait
input c2_rdmesh_wait_in; // wait
input c3_rdmesh_wait_in; // wait
// ##############
// # Outputs
// ##############
// # Receiver
output rxi_rd_wait; // wait indicator on read transaction
output rxi_wr_wait; // wait indicator on write transaction
// # Transmitter
output [LW-1:0] txo_data; // Byte word
output txo_lclk; // transmit clock (adjusted to the frame/data)
output txo_frame; // indicates new transmission
//# EMESH (write transactions with the off chip destination)
output c0_emesh_frame_out; // transaction frame
output [2*LW-1:0] c0_emesh_tran_out; // serialized transaction
output c3_emesh_frame_out; // transaction frame
output [2*LW-1:0] c3_emesh_tran_out; // serialized transaction
// # RDMESH (any read transaction)
output c0_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c0_rdmesh_tran_out; // serialized transaction
output c1_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c1_rdmesh_tran_out; // serialized transaction
output c2_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c2_rdmesh_tran_out; // serialized transaction
output c3_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c3_rdmesh_tran_out; // serialized transaction
// # MESH (write transactions internal and external corners)
// # core0
output c0_mesh_access_out; // access control to the mesh
output c0_mesh_write_out; // write control to the mesh
output [AW-1:0] c0_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c0_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c0_mesh_data_out; // data to the mesh
output [1:0] c0_mesh_datamode_out;// data mode to the mesh
output [3:0] c0_mesh_ctrlmode_out;// ctrl mode to the mesh
// # core3
output c3_mesh_access_out; // access control to the mesh
output c3_mesh_write_out; // write control to the mesh
output [AW-1:0] c3_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c3_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c3_mesh_data_out; // data to the mesh
output [1:0] c3_mesh_datamode_out;// data mode to the mesh
output [3:0] c3_mesh_ctrlmode_out;// ctrl mode to the mesh
// # Waits
output c0_emesh_wait_out; // wait to the emesh
output c1_emesh_wait_out; // wait to the emesh
output c2_emesh_wait_out; // wait to the emesh
output c3_emesh_wait_out; // wait to the emesh
output c0_rdmesh_wait_out; // wait to the rdmesh
output c1_rdmesh_wait_out; // wait to the rdmesh
output c2_rdmesh_wait_out; // wait to the rdmesh
output c3_rdmesh_wait_out; // wait to the rdmesh
output c0_mesh_wait_out; // wait to the mesh
output c3_mesh_wait_out; // wait to the mesh
/*AUTOINPUT*/
/*AUTOWIRE*/
// #########################
// # Receiver instantiation
// #########################
link_receiver link_receiver(/*AUTOINST*/
// Outputs
.rxi_wr_wait (rxi_wr_wait),
.rxi_rd_wait (rxi_rd_wait),
.c0_emesh_frame_out(c0_emesh_frame_out),
.c0_emesh_tran_out(c0_emesh_tran_out[2*LW-1:0]),
.c3_emesh_frame_out(c3_emesh_frame_out),
.c3_emesh_tran_out(c3_emesh_tran_out[2*LW-1:0]),
.c0_rdmesh_frame_out(c0_rdmesh_frame_out),
.c0_rdmesh_tran_out(c0_rdmesh_tran_out[2*LW-1:0]),
.c1_rdmesh_frame_out(c1_rdmesh_frame_out),
.c1_rdmesh_tran_out(c1_rdmesh_tran_out[2*LW-1:0]),
.c2_rdmesh_frame_out(c2_rdmesh_frame_out),
.c2_rdmesh_tran_out(c2_rdmesh_tran_out[2*LW-1:0]),
.c3_rdmesh_frame_out(c3_rdmesh_frame_out),
.c3_rdmesh_tran_out(c3_rdmesh_tran_out[2*LW-1:0]),
.c0_mesh_access_out(c0_mesh_access_out),
.c0_mesh_write_out(c0_mesh_write_out),
.c0_mesh_dstaddr_out(c0_mesh_dstaddr_out[AW-1:0]),
.c0_mesh_srcaddr_out(c0_mesh_srcaddr_out[AW-1:0]),
.c0_mesh_data_out(c0_mesh_data_out[DW-1:0]),
.c0_mesh_datamode_out(c0_mesh_datamode_out[1:0]),
.c0_mesh_ctrlmode_out(c0_mesh_ctrlmode_out[3:0]),
.c3_mesh_access_out(c3_mesh_access_out),
.c3_mesh_write_out(c3_mesh_write_out),
.c3_mesh_dstaddr_out(c3_mesh_dstaddr_out[AW-1:0]),
.c3_mesh_srcaddr_out(c3_mesh_srcaddr_out[AW-1:0]),
.c3_mesh_data_out(c3_mesh_data_out[DW-1:0]),
.c3_mesh_datamode_out(c3_mesh_datamode_out[1:0]),
.c3_mesh_ctrlmode_out(c3_mesh_ctrlmode_out[3:0]),
// Inputs
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.vertical_k (vertical_k),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis(cfg_extcomp_dis),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.c0_clk_in (c0_clk_in),
.c1_clk_in (c1_clk_in),
.c2_clk_in (c2_clk_in),
.c3_clk_in (c3_clk_in),
.c0_emesh_wait_in(c0_emesh_wait_in),
.c3_emesh_wait_in(c3_emesh_wait_in),
.c0_mesh_wait_in(c0_mesh_wait_in),
.c3_mesh_wait_in(c3_mesh_wait_in),
.c0_rdmesh_wait_in(c0_rdmesh_wait_in),
.c1_rdmesh_wait_in(c1_rdmesh_wait_in),
.c2_rdmesh_wait_in(c2_rdmesh_wait_in),
.c3_rdmesh_wait_in(c3_rdmesh_wait_in));
// ############################
// # Transmitter instantiation
// ############################
link_transmitter link_transmitter(.txo_lclk90 (txo_lclk),
/*AUTOINST*/
// Outputs
.txo_data (txo_data[LW-1:0]),
.txo_frame (txo_frame),
.c0_emesh_wait_out(c0_emesh_wait_out),
.c1_emesh_wait_out(c1_emesh_wait_out),
.c2_emesh_wait_out(c2_emesh_wait_out),
.c3_emesh_wait_out(c3_emesh_wait_out),
.c0_rdmesh_wait_out(c0_rdmesh_wait_out),
.c1_rdmesh_wait_out(c1_rdmesh_wait_out),
.c2_rdmesh_wait_out(c2_rdmesh_wait_out),
.c3_rdmesh_wait_out(c3_rdmesh_wait_out),
.c0_mesh_wait_out (c0_mesh_wait_out),
.c3_mesh_wait_out (c3_mesh_wait_out),
// Inputs
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.who_am_i (who_am_i[3:0]),
.txo_cfg_reg (txo_cfg_reg[5:0]),
.txo_wr_wait (txo_wr_wait),
.txo_rd_wait (txo_rd_wait),
.c0_clk_in (c0_clk_in),
.c1_clk_in (c1_clk_in),
.c2_clk_in (c2_clk_in),
.c3_clk_in (c3_clk_in),
.c0_mesh_access_in(c0_mesh_access_in),
.c0_mesh_write_in (c0_mesh_write_in),
.c0_mesh_dstaddr_in(c0_mesh_dstaddr_in[AW-1:0]),
.c0_mesh_srcaddr_in(c0_mesh_srcaddr_in[AW-1:0]),
.c0_mesh_data_in (c0_mesh_data_in[DW-1:0]),
.c0_mesh_datamode_in(c0_mesh_datamode_in[1:0]),
.c0_mesh_ctrlmode_in(c0_mesh_ctrlmode_in[3:0]),
.c3_mesh_access_in(c3_mesh_access_in),
.c3_mesh_write_in (c3_mesh_write_in),
.c3_mesh_dstaddr_in(c3_mesh_dstaddr_in[AW-1:0]),
.c3_mesh_srcaddr_in(c3_mesh_srcaddr_in[AW-1:0]),
.c3_mesh_data_in (c3_mesh_data_in[DW-1:0]),
.c3_mesh_datamode_in(c3_mesh_datamode_in[1:0]),
.c3_mesh_ctrlmode_in(c3_mesh_ctrlmode_in[3:0]),
.c0_emesh_frame_in(c0_emesh_frame_in),
.c0_emesh_tran_in (c0_emesh_tran_in[2*LW-1:0]),
.c1_emesh_frame_in(c1_emesh_frame_in),
.c1_emesh_tran_in (c1_emesh_tran_in[2*LW-1:0]),
.c2_emesh_frame_in(c2_emesh_frame_in),
.c2_emesh_tran_in (c2_emesh_tran_in[2*LW-1:0]),
.c3_emesh_frame_in(c3_emesh_frame_in),
.c3_emesh_tran_in (c3_emesh_tran_in[2*LW-1:0]));
endmodule // link_port
module link_receiver(/*AUTOARG*/
// Outputs
rxi_wr_wait, rxi_rd_wait, c0_emesh_frame_out, c0_emesh_tran_out,
c3_emesh_frame_out, c3_emesh_tran_out, c0_rdmesh_frame_out,
c0_rdmesh_tran_out, c1_rdmesh_frame_out, c1_rdmesh_tran_out,
c2_rdmesh_frame_out, c2_rdmesh_tran_out, c3_rdmesh_frame_out,
c3_rdmesh_tran_out, c0_mesh_access_out, c0_mesh_write_out,
c0_mesh_dstaddr_out, c0_mesh_srcaddr_out, c0_mesh_data_out,
c0_mesh_datamode_out, c0_mesh_ctrlmode_out, c3_mesh_access_out,
c3_mesh_write_out, c3_mesh_dstaddr_out, c3_mesh_srcaddr_out,
c3_mesh_data_out, c3_mesh_datamode_out, c3_mesh_ctrlmode_out,
// Inputs
reset, ext_yid_k, ext_xid_k, vertical_k, who_am_i, cfg_extcomp_dis,
rxi_data, rxi_lclk, rxi_frame, c0_clk_in, c1_clk_in, c2_clk_in,
c3_clk_in, c0_emesh_wait_in, c3_emesh_wait_in, c0_mesh_wait_in,
c3_mesh_wait_in, c0_rdmesh_wait_in, c1_rdmesh_wait_in,
c2_rdmesh_wait_in, c3_rdmesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
parameter DW = `CFG_DW;//data width
parameter AW = `CFG_AW;//address width
// #########
// # Inputs
// #########
input reset; // reset input
input [3:0] ext_yid_k; // external y-id
input [3:0] ext_xid_k; // external x-id
input vertical_k;// specifies if block is vertical or horizontal
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input [LW-1:0] rxi_data; // Byte word
input rxi_lclk; // receive clock (adjusted to the frame/data)
input rxi_frame; // indicates new transmission
// # Sync clocks
input c0_clk_in; // clock of the core
input c1_clk_in; // clock of the core
input c2_clk_in; // clock of the core
input c3_clk_in; // clock of the core
// # Wait indicators
input c0_emesh_wait_in; // wait
input c3_emesh_wait_in; // wait
input c0_mesh_wait_in; // wait
input c3_mesh_wait_in; // wait
input c0_rdmesh_wait_in; // wait
input c1_rdmesh_wait_in; // wait
input c2_rdmesh_wait_in; // wait
input c3_rdmesh_wait_in; // wait
// ##########
// # Outputs
// ##########
output rxi_wr_wait; //wait indicator for write transactions
output rxi_rd_wait; //wait indicator for read transactions
//# EMESH (write transactions with the off chip destination)
output c0_emesh_frame_out; // transaction frame
output [2*LW-1:0] c0_emesh_tran_out; // serialized transaction
output c3_emesh_frame_out; // transaction frame
output [2*LW-1:0] c3_emesh_tran_out; // serialized transaction
// # RDMESH (any read transaction)
output c0_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c0_rdmesh_tran_out; // serialized transaction
output c1_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c1_rdmesh_tran_out; // serialized transaction
output c2_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c2_rdmesh_tran_out; // serialized transaction
output c3_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c3_rdmesh_tran_out; // serialized transaction
// # MESH (write transactions internal and external corners)
// # core0
output c0_mesh_access_out; // access control to the mesh
output c0_mesh_write_out; // write control to the mesh
output [AW-1:0] c0_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c0_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c0_mesh_data_out; // data to the mesh
output [1:0] c0_mesh_datamode_out;// data mode to the mesh
output [3:0] c0_mesh_ctrlmode_out;// ctrl mode to the mesh
// # core3
output c3_mesh_access_out; // access control to the mesh
output c3_mesh_write_out; // write control to the mesh
output [AW-1:0] c3_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c3_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c3_mesh_data_out; // data to the mesh
output [1:0] c3_mesh_datamode_out;// data mode to the mesh
output [3:0] c3_mesh_ctrlmode_out;// ctrl mode to the mesh
/*AUTOINPUT*/
/*AUTOWIRE*/
//#################################
//# Write Transactions Receiver
//#################################
link_rxi_wr link_rxi_wr(/*AUTOINST*/
// Outputs
.rxi_wr_wait (rxi_wr_wait),
.c0_emesh_frame_out (c0_emesh_frame_out),
.c0_emesh_tran_out (c0_emesh_tran_out[2*LW-1:0]),
.c3_emesh_frame_out (c3_emesh_frame_out),
.c3_emesh_tran_out (c3_emesh_tran_out[2*LW-1:0]),
.c0_mesh_access_out (c0_mesh_access_out),
.c0_mesh_write_out (c0_mesh_write_out),
.c0_mesh_dstaddr_out (c0_mesh_dstaddr_out[AW-1:0]),
.c0_mesh_srcaddr_out (c0_mesh_srcaddr_out[AW-1:0]),
.c0_mesh_data_out (c0_mesh_data_out[DW-1:0]),
.c0_mesh_datamode_out(c0_mesh_datamode_out[1:0]),
.c0_mesh_ctrlmode_out(c0_mesh_ctrlmode_out[3:0]),
.c3_mesh_access_out (c3_mesh_access_out),
.c3_mesh_write_out (c3_mesh_write_out),
.c3_mesh_dstaddr_out (c3_mesh_dstaddr_out[AW-1:0]),
.c3_mesh_srcaddr_out (c3_mesh_srcaddr_out[AW-1:0]),
.c3_mesh_data_out (c3_mesh_data_out[DW-1:0]),
.c3_mesh_datamode_out(c3_mesh_datamode_out[1:0]),
.c3_mesh_ctrlmode_out(c3_mesh_ctrlmode_out[3:0]),
// Inputs
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.vertical_k (vertical_k),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.c0_clk_in (c0_clk_in),
.c3_clk_in (c3_clk_in),
.c0_emesh_wait_in (c0_emesh_wait_in),
.c3_emesh_wait_in (c3_emesh_wait_in),
.c0_mesh_wait_in (c0_mesh_wait_in),
.c3_mesh_wait_in (c3_mesh_wait_in));
//#################################
//# Read Transactions Receiver
//#################################
link_rxi_rd link_rxi_rd(/*AUTOINST*/
// Outputs
.rxi_rd_wait (rxi_rd_wait),
.c0_rdmesh_frame_out (c0_rdmesh_frame_out),
.c0_rdmesh_tran_out (c0_rdmesh_tran_out[2*LW-1:0]),
.c1_rdmesh_frame_out (c1_rdmesh_frame_out),
.c1_rdmesh_tran_out (c1_rdmesh_tran_out[2*LW-1:0]),
.c2_rdmesh_frame_out (c2_rdmesh_frame_out),
.c2_rdmesh_tran_out (c2_rdmesh_tran_out[2*LW-1:0]),
.c3_rdmesh_frame_out (c3_rdmesh_frame_out),
.c3_rdmesh_tran_out (c3_rdmesh_tran_out[2*LW-1:0]),
// Inputs
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.vertical_k (vertical_k),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.c0_clk_in (c0_clk_in),
.c1_clk_in (c1_clk_in),
.c2_clk_in (c2_clk_in),
.c3_clk_in (c3_clk_in),
.c0_rdmesh_wait_in (c0_rdmesh_wait_in),
.c1_rdmesh_wait_in (c1_rdmesh_wait_in),
.c2_rdmesh_wait_in (c2_rdmesh_wait_in),
.c3_rdmesh_wait_in (c3_rdmesh_wait_in));
endmodule // link_receiver
//############################################################################
//# The input data stream is of the following structure:
//#
//# --- --- --- --- --- ---
//# lclk _| |___| |___| |___| |___| |___| |_
//#
//# -------------------------------
//# frame ______/
//# --- --- --- --- ---
//# data XXXXXXX 0 X 1 X 2 X 3 X 4 X .....
//# --- --- --- --- ---
//#
//# byte0 (the byte received on the rising edge of the clock the
//# same cycle the frame's rising edge is detected) holds the
//# information of the transmitted transaction.
//#
//# byte0 | transaction type
//# ----------------- | ----------------
//# 8'b??_??_?0_<cid> | New transaction with incremental bursting address
//# 8'b??_??_?1_<cid> | New transaction with the same bursting address
//#
//# cid[1:0] - channel id (for now for debugging usage only)
//#
//# New transaction structure:
//# -------------------------
//# byte1 -> ctrlmode[3:0],dstaddr[31:28]
//# byte2 -> dstaddr[27:20]
//# byte3 -> dstaddr[19:12]
//# byte4 -> dstaddr[11:4]
//# byte5 -> dstaddr[3:0],datamode[1:0],write,access
//# byte6 -> data[31:24] (or srcaddr[31:24] if read transaction)
//# byte7 -> data[23:16] (or srcaddr[23:16] if read transaction)
//# byte8 -> data[15:8] (or srcaddr[15:8] if read transaction)
//# *byte9 -> data[7:0] (or srcaddr[7:0] if read transaction)
//# byte10 -> data[63:56]
//# byte11 -> data[55:48]
//# byte12 -> data[47:40]
//# byte13 -> data[39:32]
//# **byte14 -> data[31:24]
//# ...
//# ...
//# ...
//#
//# * byte9 is the last byte of 32 bit write or read transaction
//#
//# ** if 64 bit write transaction, data of byte14 is the first data byte of
//# bursting transaction
//#
//# -- The data is transmitted MSB first but in 32bits resolution. If we want
//# to transmit 64 bits it will be [31:0] (msb first) and then [63:32] (msb first)
//#
//# !!!
//# !!! According to the above scheme, any new transaction (burst or not)
//# !!! will take at least four cycles to be transmitted.
//# !!! There are some internal mechanisms in the transmitter-receiver logic
//# !!! which are implemented considering this assumption true.
//# !!! Any change to this assumption (transaction takes at least four cycles)
//# !!! should be carefully reviewed with its implications on the internal
//# !!! implementation
//# !!!
//#
//#####################################################################
module link_rxi_assembler (/*AUTOARG*/
// Outputs
rxi_assembled_tran, rxi_c0_access, rxi_c1_access, rxi_c2_access,
rxi_c3_access,
// Inputs
reset, rxi_lclk, vertical_k, ext_yid_k, ext_xid_k, fifo_data_reg,
fifo_data_val, start_tran, cfg_extcomp_dis
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter DW = `CFG_DW ;//data width
parameter AW = `CFG_AW ;//address width
// #########
// # INPUTS
// #########
input reset; //reset input
input rxi_lclk; //receive clock (adjusted to the frame/data)
input vertical_k; //specifies if block is vertical or horizontal
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [2*LW-1:0] fifo_data_reg;// output of the input receiver fifo
input fifo_data_val;// fifo_data_reg is valid
input start_tran; // Start transaction bit
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
// ##########
// # OUTPUTS
// ##########
output [14*LW-1:0] rxi_assembled_tran; // data to be transferred to secondary fifos
output rxi_c0_access; //transfering to c0_fifo
output rxi_c1_access; //transfering to c1_fifo
output rxi_c2_access; //transfering to c2_fifo
output rxi_c3_access; //transfering to c3_fifo
/*AUTOINPUT*/
/*AUTOWIRE*/
// #########
// # REGS
// #########
reg [LW-1:0] tran_byte0;
reg [2:0] rxi_assemble_cnt;
reg [3:0] ctrlmode;
reg [AW-1:0] dstaddr_int;
reg [1:0] datamode;
reg write;
reg access;
reg [DW-1:0] data;
reg [AW-1:0] srcaddr;
reg rxi_cx_access;
// #########
// # WIRES
// #########
wire byte0_inc8; // Address of the burst transaction should be incremented
wire dstaddr_2712_en;
wire dstaddr_1100_en;
wire datamode_en;
wire write_en;
wire access_en;
wire data_3116_en;
wire data_1500_en;
wire srcaddr_3116_en;
wire srcaddr_1500_en;
wire [2:0] rxi_assemble_cnt_next; // Next value of the assembly counter
wire [2:0] rxi_assemble_cnt_inc; // Incremented value of the assembly counter
wire rxi_assemble_cnt_max; // Maximum value of the counter
wire burst_tran; // detected burst transaction
wire [AW-1:0] dstaddr_inc; // Incremented value of burst transaction dstaddr
wire [AW-1:0] dstaddr_in; // Input to the next destination address FF
wire single_write; // single write transaction
wire single_write_complete; // single write transaction is complete
wire read_jump; // read transaction "jumps" over data part
wire tran_assembled; // transaction is assembled
wire [5:0] comp_addr;
wire [5:0] chip_addr;
wire [5:0] comp_low;
wire carry_low;
wire zero_low;
wire [5:0] comp_high;
wire carry_high;
wire c0_match;
wire c1_match;
wire c2_match;
wire c3_match;
wire multicast_match;
wire [AW-1:0] dstaddr;
//##############################
//# Assembled data and controls
//##############################
assign rxi_assembled_tran[14*LW-1:0]={
srcaddr[7:0],{(LW){1'b0}},
srcaddr[23:8],
data[7:0],srcaddr[31:24],
data[23:8],
dstaddr[3:0],datamode[1:0],write,access,data[31:24],
dstaddr[19:4],
ctrlmode[3:0],dstaddr[31:20]
};
//####################
//# Byte0 detection
//####################
always @ (posedge rxi_lclk)
if(fifo_data_val & start_tran)
begin
tran_byte0[LW-1:0] <= fifo_data_reg[2*LW-1:LW];
ctrlmode[3:0] <= fifo_data_reg[7:4];
end
//# byte0 decode
//# bit[2] is the only one in use for now
assign byte0_inc8 = ~tran_byte0[2];
//##########################
//# Transaction assembly
//##########################
//# destination address
//# There is a special mode set in the Link Bypass Configuration Register
//# which forces the chip to receive all of the transactions entering the chip
//# In this case we just replace the external coordinates of the destination
//# address with the chip coordinates.
// assign dstaddr[31:29] = cfg_extcomp_dis ? ext_yid_k[2:0] : dstaddr_int[31:29];
// assign dstaddr[28:26] = cfg_extcomp_dis ? ext_xid_k[2:0] : dstaddr_int[28:26];
// assign dstaddr[25:0] = dstaddr_int[25:0];
assign dstaddr[31:28] = cfg_extcomp_dis ? ext_yid_k[3:0] : dstaddr_int[31:28];
assign dstaddr[25:22] = cfg_extcomp_dis ? ext_xid_k[3:0] : dstaddr_int[25:22];
assign dstaddr[27:26] = dstaddr_int[27:26];
assign dstaddr[21:0] = dstaddr_int[21:0];
// assign comp_addr[5:0] = vertical_k ? {dstaddr[31:29],dstaddr[25:23]} :
// {dstaddr[28:26],dstaddr[22:20]} ;
// assign chip_addr[2:0] = vertical_k ? ext_yid_k[2:0] : ext_xid_k[2:0];
//# destination address is updated on the beginning of burst transaction
//# while datamode, write, access and control mode are unchanged
assign dstaddr_inc[AW-1:0] = dstaddr[AW-1:0] + {{(AW-4){1'b0}},byte0_inc8,3'b000};
assign dstaddr_in[31:28] = burst_tran ? dstaddr_inc[31:28] : fifo_data_reg[3:0];
assign dstaddr_in[27:12] = burst_tran ? dstaddr_inc[27:12] : fifo_data_reg[2*LW-1:0];
assign dstaddr_in[11:0] = burst_tran ? dstaddr_inc[11:0] : fifo_data_reg[2*LW-1:4];
always @ (posedge rxi_lclk)
if(fifo_data_val & (start_tran | burst_tran))
dstaddr_int[31:28] <= dstaddr_in[31:28];
always @ (posedge rxi_lclk)
if(fifo_data_val & (dstaddr_2712_en | burst_tran))
dstaddr_int[27:12] <= dstaddr_in[27:12];
always @ (posedge rxi_lclk)
if(fifo_data_val & (dstaddr_1100_en | burst_tran))
dstaddr_int[11:0] <= dstaddr_in[11:0];
//# data mode
always @ (posedge rxi_lclk)
if(fifo_data_val & datamode_en)
datamode[1:0] <= fifo_data_reg[3:2];
//# write
always @ (posedge rxi_lclk)
if(fifo_data_val & write_en)
write <= fifo_data_reg[1];
//# access
always @ (posedge rxi_lclk)
if(fifo_data_val & access_en)
access <= fifo_data_reg[0];
//# data
always @ (posedge rxi_lclk)
if(fifo_data_val & (data_3116_en | burst_tran))
data[31:16] <= fifo_data_reg[2*LW-1:0];
always @ (posedge rxi_lclk)
if(fifo_data_val & data_1500_en)
data[15:0] <= fifo_data_reg[2*LW-1:0];
//# srcaddr
always @ (posedge rxi_lclk)
if(fifo_data_val & srcaddr_3116_en)
srcaddr[31:16] <= fifo_data_reg[2*LW-1:0];
always @ (posedge rxi_lclk)
if(fifo_data_val & srcaddr_1500_en)
srcaddr[15:0] <= fifo_data_reg[2*LW-1:0];
//###################################################################
//# Order of the transaction fields in the fifo
//# -------------------------------------------
//# Entry "n+6" srcaddr[15:0]
//# Entry "n+5" srcaddr[31:16],
//# Entry "n+4" data[15:0],
//# Entry "n+3" data[31:16],
//# Entry "n+2" dstaddr[11:0],datamode[1:0],write,access,
//# Entry "n+1" dstaddr[27:12],
//# Entry "n" byte0[7:0],ctrlmode[3:0],dstaddr[31:28],
//# --------------------------------------------
//####################################################################
assign dstaddr_2712_en = (rxi_assemble_cnt[2:0] == 3'b001);
assign dstaddr_1100_en = (rxi_assemble_cnt[2:0] == 3'b010);
assign datamode_en = (rxi_assemble_cnt[2:0] == 3'b010);
assign write_en = (rxi_assemble_cnt[2:0] == 3'b010);
assign access_en = (rxi_assemble_cnt[2:0] == 3'b010);
assign data_3116_en = (rxi_assemble_cnt[2:0] == 3'b011);
assign data_1500_en = (rxi_assemble_cnt[2:0] == 3'b100);
assign srcaddr_3116_en = (rxi_assemble_cnt[2:0] == 3'b101);
assign srcaddr_1500_en = (rxi_assemble_cnt[2:0] == 3'b110);
//# Assemble counter
assign rxi_assemble_cnt_inc[2:0] = rxi_assemble_cnt[2:0] + 3'b001;
assign rxi_assemble_cnt_next[2:0] = burst_tran ? 3'b100 :
tran_assembled ? 3'b000 :
read_jump ? 3'b101 :
rxi_assemble_cnt_inc[2:0];
always @ (posedge rxi_lclk or posedge reset)
if (reset)
rxi_assemble_cnt[2:0] <= 3'b000;
else if(fifo_data_val)
rxi_assemble_cnt[2:0] <= rxi_assemble_cnt_next[2:0];
//# single write transaction completion
// assign single_write = access & write & ~(&(datamode[1:0]));
assign single_write = 1'b0; // no special treatment for single writes
assign single_write_complete = single_write & (rxi_assemble_cnt[2:0] == 3'b100);
//# read transaction "jumps" over data part of the counter
//assign read_jump = ~fifo_data_reg[1] & (rxi_assemble_cnt[2:0] == 3'b010);
//# read transaction "jump" feature is disabled because of the test-and-set inst
assign read_jump = 1'b0;
//# transaction completion
assign rxi_assemble_cnt_max = (rxi_assemble_cnt[2:0] == 3'b110);
assign tran_assembled = fifo_data_val & (single_write_complete | rxi_assemble_cnt_max);
//# burst transaction detection
assign burst_tran = (rxi_assemble_cnt[2:0] == 3'b000) & ~start_tran;
//###########################################
//# Secondary-FIFOs transaction distribution
//###########################################
always @ (posedge rxi_lclk or posedge reset)
if(reset)
rxi_cx_access <= 1'b0;
else
rxi_cx_access <= tran_assembled;
assign rxi_c0_access = (c0_match | multicast_match) & rxi_cx_access;
assign rxi_c1_access = (c1_match & ~multicast_match) & rxi_cx_access;
assign rxi_c2_access = (c2_match & ~multicast_match) & rxi_cx_access;
assign rxi_c3_access = (c3_match & ~multicast_match) & rxi_cx_access;
//# address preparation for comparison based on the links position (horiz or vert)
// assign comp_addr[5:0] = vertical_k ? {dstaddr[31:29],dstaddr[25:23]} :
// {dstaddr[28:26],dstaddr[22:20]} ;
assign comp_addr[5:0] = vertical_k ? dstaddr[31:26] : dstaddr[25:20];
// assign chip_addr[2:0] = vertical_k ? ext_yid_k[2:0] : ext_xid_k[2:0];
assign chip_addr[5:2] = vertical_k ? ext_yid_k[3:0] : ext_xid_k[3:0];
assign chip_addr[1:0] = 2'b11;
// assign chip_addr_n[3:0] =~chip_addr[3:0];
//# high comparison
// assign {carry_high,comp_high[5:0]} = comp_addr[5:0] + {chip_addr_n[2:0],3'b101};
assign {carry_high,comp_high[5:0]} = {1'b0,comp_addr[5:0]} - {1'b0,chip_addr[5:0]};
//# channels matching
assign c0_match = carry_high; // chip addr is bigger
assign c1_match = (comp_addr[5:0] == {chip_addr[5:2],3'b01});//EQ
assign c2_match = (comp_addr[5:0] == {chip_addr[5:2],3'b10});//EQ
assign c3_match = ~(c0_match | c1_match | c2_match);
//# multicast tran detection
assign multicast_match = write &
(ctrlmode[1:0]==2'b11) & ~(datamode[1:0] == 2'b11);
endmodule // link_rxi_assembler
module link_rxi_buffer (/*AUTOARG*/
// Outputs
rxi_wait, rxi_assembled_tran, rxi_c0_access, rxi_c1_access,
rxi_c2_access, rxi_c3_access,
// Inputs
reset, vertical_k, ext_yid_k, ext_xid_k, rxi_data, rxi_lclk,
rxi_frame, rxi_rd, cfg_extcomp_dis, c0_fifo_full, c1_fifo_full,
c2_fifo_full, c3_fifo_full
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter NC = 32;// Number of cycles for save TXO-RXI "transaction interface"
parameter FAD = 5; // Number of bits to access all the entries (2^FAD + 1) > NC
localparam MD = 1<<FAD;
// #########
// # INPUTS
// #########
input reset; //reset input
input vertical_k; //specifies if block is vertical or horizontal
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [LW-1:0] rxi_data; //Byte word
input rxi_lclk; //receive clock (adjusted to the frame/data)
input rxi_frame; //indicates new transmission
input rxi_rd; // this is read transactions rxi_buffer
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input c0_fifo_full;
input c1_fifo_full;
input c2_fifo_full;
input c3_fifo_full;
// ##########
// # OUTPUTS
// ##########
output rxi_wait; //wait indicator
output [14*LW-1:0] rxi_assembled_tran; // data to be transferred to secondary fifos
output rxi_c0_access; //transfering to c0_fifo
output rxi_c1_access; //transfering to c1_fifo
output rxi_c2_access; //transfering to c2_fifo
output rxi_c3_access; //transfering to c3_fifo
/*AUTOINPUT*/
/*AUTOWIRE*/
// #########
// # Regs
// #########
reg rd_tran;
reg [2*LW:0] fifo_mem[MD-1:0];
reg frame_reg;
reg frame_reg_del;
reg [LW-1:0] data_even_reg;
reg [LW-1:0] data_odd_reg;
reg [FAD:0] wr_binary_pointer;
reg [FAD:0] rd_binary_pointer;
reg fifo_read;
reg rxi_wait;
reg start_tran;
reg fifo_data_val;
reg [2*LW-1:0] fifo_data_reg;
// #########
// # Wires
// #########
wire my_tran; // this transaction is dedicated to current rxi_buffer
wire new_tran; // first cycle of the new transaction
wire [2*LW:0] fifo_data_in; // even and odd bytes combined into short words for fifo
wire [2*LW:0] fifo_data_out;// output of the fifo
wire [FAD:0] wr_binary_next; // next value of the write pointer
wire [FAD:0] rd_binary_next; // next value of the read pointer
wire fifo_write; // write into the fifo
wire [FAD-1:0] wr_addr; // write address of the fifo
wire [FAD-1:0] rd_addr; // read address of the fifo
wire fifo_empty; // indication of the empty fifo
wire stop_fifo_read; //one of the secondary fifos is full (stop reading)
// ####################################################
// # Sample input transaction
// # The positive edge FFs work all the time
// # while the negative edge FFs can be disabled
// # by the state of the detected frame (to save power)
// ####################################################
//# frame
always @ (posedge rxi_lclk or posedge reset)
if(reset)
begin
frame_reg <= 1'b0;
frame_reg_del <= 1'b0;
end
else
begin
frame_reg <= rxi_frame;
frame_reg_del <= frame_reg;
end
//# even bytes
always @ (posedge rxi_lclk)
data_even_reg[LW-1:0] <= rxi_data[LW-1:0];
//# odd bytes
always @ (negedge rxi_lclk)
data_odd_reg[LW-1:0] <= rxi_data[LW-1:0];
//##################################################
//# We should differentiate between read and write
//# transactions since link_rxi_buffer can accept
//# the transactions of one type only.
//# The indication of the type of the transaction
//# is sent in the byte0 of the transaction.
//##################################################
assign my_tran = ~(rd_tran ^ rxi_rd);
always @ (posedge rxi_lclk)
if(~frame_reg) //will stop sampling when byte0 is received
rd_tran <= rxi_data[7];
//# frame rising edge detection
assign new_tran = my_tran & frame_reg & ~frame_reg_del;
//# bytes packaging into short words + new transaction indication
assign fifo_data_in[2*LW:0] = {new_tran,data_even_reg[LW-1:0],data_odd_reg[LW-1:0]};
//###############################################################################
//# Wait indication to the transmitter
//# When one of the secondary fifos becomes full we send wait indication
//# to the transmitter.
//# There is some uncertainty regarding how long it will take for the wait
//# control to stop the transmitter (we have synchronization on the way,
//# which may cause +/-1 cycle of uncertainty).
//# Our main fifo on the input port of the receiver is robust enough
//# (has enough entries) to receive all of the transactions sent during the
//# time of "wait traveling" without loosing any information.
//# But the uncertainty mentioned above forces us to start from empty fifo
//# every time after wait indication is raised in order to ensure that
//# the number of available entries won't be reduced.
//###############################################################################
assign stop_fifo_read = c0_fifo_full | c1_fifo_full | c2_fifo_full | c3_fifo_full;
always @ (posedge rxi_lclk or posedge reset)
if(reset)
rxi_wait <= 1'b0;
else if(stop_fifo_read)
rxi_wait <= 1'b1;
else if(fifo_empty)
rxi_wait <= 1'b0;
//##################################
//# Input FIFO of the receiver
//##################################
always @ (posedge rxi_lclk)
if (fifo_write)
fifo_mem[wr_addr[FAD-1:0]] <= fifo_data_in[2*LW:0];
//# Read from fifo
assign fifo_data_out[2*LW:0] = fifo_mem[rd_addr[FAD-1:0]];
//# Since the size of the FIFO is parametrized I prefer to sample the output
//# data to prevent timing issues for the big number of entries (big mux on read)
//# This shouldn't add any performance loss just latency increase
always @ (posedge rxi_lclk or posedge reset)
if(reset)
start_tran <= 1'b0;
else if(fifo_read)
start_tran <= fifo_data_out[2*LW];
always @ (posedge rxi_lclk)
if(fifo_read)
fifo_data_reg[2*LW-1:0] <= fifo_data_out[2*LW-1:0];
always @ (posedge rxi_lclk or posedge reset)
if(reset)
fifo_data_val <= 1'b0;
else
fifo_data_val <= fifo_read;
//#####################################################################
//# FIFO Write State Machine
//# !!!
//# This FIFO will write the data in every time the FRAME IS HIGH and
//# INDEPENDENT of the read out of the FIFO "frequency"
//# !!!
//# When the data cannot be read out of the FIFO, the indication will
//# be sent to the transmitter to stop sending new transactions and the
//# frame signal will be deasserted.
//# The number of entries in the FIFO sould be big enough to receive
//# all of the transactions sent by the transmitter in that case.
//######################################################################
assign fifo_write = my_tran & frame_reg;
always @(posedge rxi_lclk or posedge reset)
if(reset)
wr_binary_pointer[FAD:0] <= {(FAD+1){1'b0}};
else if(fifo_write)
wr_binary_pointer[FAD:0] <= wr_binary_next[FAD:0];
assign wr_addr[FAD-1:0] = wr_binary_pointer[FAD-1:0];
assign wr_binary_next[FAD:0] = wr_binary_pointer[FAD:0] + {{(FAD){1'b0}},fifo_write};
//#############################
//# FIFO Read State Machine
//#############################
always @(posedge rxi_lclk or posedge reset)
if(reset)
fifo_read <= 1'b0;
else
fifo_read <= ~(fifo_empty | stop_fifo_read);
always @(posedge rxi_lclk or posedge reset)
if(reset)
rd_binary_pointer[FAD:0] <= {(FAD+1){1'b0}};
else if(fifo_read)
rd_binary_pointer[FAD:0] <= rd_binary_next[FAD:0];
assign rd_addr[FAD-1:0] = rd_binary_pointer[FAD-1:0];
assign rd_binary_next[FAD:0] = rd_binary_pointer[FAD:0] + {{(FAD){1'b0}},fifo_read};
assign fifo_empty = (rd_binary_next[FAD:0] == wr_binary_next[FAD:0]);
//########################################
//# Transaction assembly and distribution
//########################################
link_rxi_assembler link_rxi_assembler(/*AUTOINST*/
// Outputs
.rxi_assembled_tran (rxi_assembled_tran[14*LW-1:0]),
.rxi_c0_access (rxi_c0_access),
.rxi_c1_access (rxi_c1_access),
.rxi_c2_access (rxi_c2_access),
.rxi_c3_access (rxi_c3_access),
// Inputs
.reset (reset),
.rxi_lclk (rxi_lclk),
.vertical_k (vertical_k),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.fifo_data_reg (fifo_data_reg[2*LW-1:0]),
.fifo_data_val (fifo_data_val),
.start_tran (start_tran),
.cfg_extcomp_dis (cfg_extcomp_dis));
endmodule // link_rxi_buffer
module link_rxi_channel (/*AUTOARG*/
// Outputs
fifo_full_rlc, rdmesh_tran_out, rdmesh_frame_out,
// Inputs
reset, cclk, cclk_en, rxi_lclk, cfg_extcomp_dis,
rxi_assembled_tran_rlc, fifo_access_rlc, rdmesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
//#########
//# INPUTS
//#########
input reset; //reset input
input cclk; //core clock
input cclk_en; // clock enable
input rxi_lclk;//receiver link clock
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input [14*LW-1:0] rxi_assembled_tran_rlc; // assembled data from the main fifo
input fifo_access_rlc; // fifo is accessed
input rdmesh_wait_in; //wait indication from rdmesh
//##########
//# OUTPUTS
//##########
output fifo_full_rlc;//fifo full push back indicator
//# transaction to rdmesh
output [2*LW-1:0] rdmesh_tran_out; // transaction data
output rdmesh_frame_out; // core frame
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire fifo_empty; // From link_rxi_fifo of link_rxi_fifo.v
wire fifo_read; // From link_rxi_launcher of link_rxi_launcher.v
wire [14*LW-1:0] fifo_tran_out; // From link_rxi_fifo of link_rxi_fifo.v
wire rdmesh_frame; // From link_rxi_launcher of link_rxi_launcher.v
wire [2*LW-1:0] rdmesh_tran; // From link_rxi_launcher of link_rxi_launcher.v
// End of automatics
endmodule // link_rxi_channel
module link_rxi_ctrl(/*AUTOARG*/
// Outputs
lclk,
// Inputs
io_lclk, rxi_cfg_reg
);
parameter DW = `CFG_DW;
//Input clock
input io_lclk; //link clock from IO
input [DW-1:0] rxi_cfg_reg;//used to deskew clock input
//Should we have a monitor pin for locking the timing?
//Delay Control word
//1 for rise
//1 for fall
///Output clocks to reciever block
output lclk; //buffered clock without delay
//Need to insert delay elements here
//How to insert delay with cts?
assign lclk = io_lclk;
endmodule // link_clock
//#############################################
//# This block is a "common" channel for both
//# mesh (multicast) and emesh transactions
//#############################################
module link_rxi_double_channel (/*AUTOARG*/
// Outputs
fifo_full_rlc, emesh_tran_out, emesh_frame_out, mesh_access_out,
mesh_write_out, mesh_dstaddr_out, mesh_srcaddr_out, mesh_data_out,
mesh_datamode_out, mesh_ctrlmode_out,
// Inputs
reset, cclk, cclk_en, ext_yid_k, ext_xid_k, rxi_lclk, who_am_i,
cfg_extcomp_dis, rxi_assembled_tran_rlc, fifo_access_rlc,
emesh_wait_in, mesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
parameter DW = `CFG_DW;//data width
parameter AW = `CFG_AW;//address width
//#########
//# INPUTS
//#########
input reset; //reset input
input cclk; //core clock
input cclk_en; // clock enable
input [3:0] ext_yid_k;//external y-id
input [3:0] ext_xid_k;//external x-id
input rxi_lclk;//receiver link clock
input [3:0] who_am_i;// specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input [14*LW-1:0] rxi_assembled_tran_rlc; // assembled data from the main fifo
input fifo_access_rlc; // fifo is accessed
input emesh_wait_in; //wait indication from emesh
input mesh_wait_in; //wait indication from mesh
//##########
//# OUTPUTS
//##########
output fifo_full_rlc;//fifo full push back indicator
//# transaction to the emesh (transactions coming out off the chip)
output [2*LW-1:0] emesh_tran_out; // transaction data
output emesh_frame_out; // core frame
//# transaction to the mesh
output mesh_access_out; // access control to the mesh
output mesh_write_out; // write control to the mesh
output [AW-1:0] mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] mesh_data_out; // data to the mesh
output [1:0] mesh_datamode_out;// data mode to the mesh
output [3:0] mesh_ctrlmode_out;// ctrl mode to the mesh
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire access; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire [3:0] ctrlmode; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire [DW-1:0] data; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire [1:0] datamode; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire [AW-1:0] dstaddr; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire emesh_fifo_read; // From link_rxi_launcher of link_rxi_launcher.v
wire emesh_frame; // From link_rxi_launcher of link_rxi_launcher.v
wire [2*LW-1:0] emesh_tran; // From link_rxi_launcher of link_rxi_launcher.v
wire emesh_tran_dis; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire fifo_empty; // From link_rxi_fifo of link_rxi_fifo.v
wire [14*LW-1:0] fifo_tran_out; // From link_rxi_fifo of link_rxi_fifo.v
wire mesh_fifo_read; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire [AW-1:0] srcaddr; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
wire write; // From link_rxi_mesh_launcher of link_rxi_mesh_launcher.v
// End of automatics
// #########
// # WIRES
// #########
wire fifo_read;
wire emesh_fifo_empty;
//#########
//# FIFO
//#########
assign fifo_read = mesh_fifo_read;
link_rxi_fifo link_rxi_fifo (/*AUTOINST*/
// Outputs
.fifo_full_rlc (fifo_full_rlc),
.fifo_tran_out (fifo_tran_out[14*LW-1:0]),
.fifo_empty (fifo_empty),
// Inputs
.reset (reset),
.cclk (cclk),
.cclk_en (cclk_en),
.rxi_lclk (rxi_lclk),
.rxi_assembled_tran_rlc(rxi_assembled_tran_rlc[14*LW-1:0]),
.fifo_access_rlc(fifo_access_rlc),
.fifo_read (fifo_read));
//###################################
//# Transaction Launcher to Mesh
//###################################
link_rxi_mesh_launcher link_rxi_mesh_launcher(/*AUTOINST*/
// Outputs
.mesh_fifo_read (mesh_fifo_read),
.emesh_tran_dis (emesh_tran_dis),
.access (access),
.write (write),
.datamode (datamode[1:0]),
.ctrlmode (ctrlmode[3:0]),
.data (data[DW-1:0]),
.dstaddr (dstaddr[AW-1:0]),
.srcaddr (srcaddr[AW-1:0]),
// Inputs
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.fifo_tran_out (fifo_tran_out[14*LW-1:0]),
.fifo_empty (fifo_empty),
.mesh_wait_in (mesh_wait_in));
//##################################
//# Interface with mesh
//# on output transactions only
//# * input from the mesh is driven
//# by a diferent block
//##################################
/* e16_mesh_interface AUTO_TEMPLATE (
.clk (cclk),
.clk_en (cclk_en),
.access_in (1'b0),
.write_in (1'b0),
.datamode_in (2'b00),
.ctrlmode_in (4'b0000),
.data_in ({(DW){1'b0}}),
.dstaddr_in ({(AW){1'b0}}),
.srcaddr_in ({(AW){1'b0}}),
.wait_int (1'b0),
.emesh_core_wait (1'b0),
.emesh_core_clk_en ({(11){1'b1}}),
.emesh_tran_sel (1'b0),
.wait_in (mesh_wait_in),
.\(.*\)_reg (),
.wait_out (),
.\(.*\)_out (mesh_\1_out[]),
);
*/
e16_mesh_interface mesh_interface(/*AUTOINST*/
// Outputs
.wait_out (), // Templated
.access_out (mesh_access_out), // Templated
.write_out (mesh_write_out), // Templated
.datamode_out (mesh_datamode_out[1:0]), // Templated
.ctrlmode_out (mesh_ctrlmode_out[3:0]), // Templated
.data_out (mesh_data_out[DW-1:0]), // Templated
.dstaddr_out (mesh_dstaddr_out[AW-1:0]), // Templated
.srcaddr_out (mesh_srcaddr_out[AW-1:0]), // Templated
.access_reg (), // Templated
.write_reg (), // Templated
.datamode_reg (), // Templated
.ctrlmode_reg (), // Templated
.data_reg (), // Templated
.dstaddr_reg (), // Templated
.srcaddr_reg (), // Templated
// Inputs
.clk (cclk), // Templated
.clk_en (cclk_en), // Templated
.reset (reset),
.wait_in (mesh_wait_in), // Templated
.access_in (1'b0), // Templated
.write_in (1'b0), // Templated
.datamode_in (2'b00), // Templated
.ctrlmode_in (4'b0000), // Templated
.data_in ({(DW){1'b0}}), // Templated
.dstaddr_in ({(AW){1'b0}}), // Templated
.srcaddr_in ({(AW){1'b0}}), // Templated
.wait_int (1'b0), // Templated
.access (access),
.write (write),
.datamode (datamode[1:0]),
.ctrlmode (ctrlmode[3:0]),
.data (data[DW-1:0]),
.dstaddr (dstaddr[AW-1:0]),
.srcaddr (srcaddr[AW-1:0]));
endmodule // link_rxi_double_channel
//##############################################################################
//#
//# This is a FOUR entries (FAD=2) receiver FIFO with the main function of
//# synchronization between RXI link clock domain and core clock domain
//# It seems that for the FIFO to function without "build in" push back
//# we will need at least THREE entries, so choosing FOUR entries puts us
//# in a safer position.
//#
//# * This FIFO will function even with a single entry (with some modifications)
//# but if the number of entries is not sufficient for the synchronization
//# the "build in" push back will be driven on every new write control.
//#
//################################################################################
module link_rxi_fifo (/*AUTOARG*/
// Outputs
fifo_full_rlc, fifo_tran_out, fifo_empty,
// Inputs
reset, cclk, cclk_en, rxi_lclk, rxi_assembled_tran_rlc,
fifo_access_rlc, fifo_read
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
parameter FAD = 2; // Number of bits to access all the entries
localparam MD = 1<<FAD;
//#########
//# INPUTS
//#########
input reset; //reset input
input cclk; //core clock
input cclk_en; // clock enable
input rxi_lclk;//receiver link clock
input [14*LW-1:0] rxi_assembled_tran_rlc; // assembled data from the main fifo
input fifo_access_rlc; // fifo is accessed
//# from the launcher
input fifo_read;
//##########
//# OUTPUTS
//##########
output fifo_full_rlc;//fifo full push back indicator
//# to the launcher
output [14*LW-1:0] fifo_tran_out;
output fifo_empty;
//##########
//# REGS
//##########
reg [14*LW-1:0] fifo_mem[MD-1:0];
reg [FAD:0] wr_binary_pointer_rlc;
reg [FAD:0] wr_gray_pointer_rlc;
reg fifo_full_rlc;
reg [FAD:0] rd_binary_pointer;
reg [FAD:0] rd_gray_pointer;
reg fifo_empty;
//#########
//# WIRES
//#########
wire wr_write_rlc; // FIFO write control
wire [FAD-1:0] wr_addr_rlc;
wire [FAD:0] wr_binary_next_rlc;
wire [FAD:0] wr_gray_next_rlc;
wire fifo_full_next_rlc;
wire [FAD:0] rd_gray_pointer_rlc;
wire [FAD-1:0] rd_addr;
wire [FAD:0] rd_binary_next;
wire [FAD:0] rd_gray_next;
wire fifo_empty_next;
wire [FAD:0] wr_gray_pointer;
/*AUTOWIRE*/
/*AUTOINPUT*/
//##################################################################
//# Write control generation:
//#
//# FIFO is being written according to the state of fifo_access_rlc
//# control driven by main fifo and independent on the current
//# state of the FIFO.
//# We do mask this control with fifo full signal but this mask
//# is really redundant.
//# The reason for that is the following:
//# The FASTEST THROUGHPUT the transaction can be dispatched from
//# the main fifo here is ONE TRANSACTION IN EVERY FOUR CYCLES.
//# FIFO full indication is sent back on the first cycle after
//# receiving the transaction causing the fifo to be full.
//# This indication is sampled two more times in the main fifo
//# and then prevents new transaction to be dispatched.
//# So it takes THREE CYCLES to stop new transaction versus
//# FOUR CYCLES to dispatch new one and therefore we are save.
//####################################################################
assign wr_write_rlc = fifo_access_rlc & ~fifo_full_rlc;
//#################################
//# FIFO data
//#################################
//# Write
always @ (posedge rxi_lclk)
if (wr_write_rlc)
fifo_mem[wr_addr_rlc[FAD-1:0]] <= rxi_assembled_tran_rlc[14*LW-1:0];
//# Read (for dispatch)
assign fifo_tran_out[14*LW-1:0] = fifo_mem[rd_addr[FAD-1:0]];
//#####################################
//# FIFO Write State Machine
//#####################################
//# While for the actual address calculation we use [FAD-1:0] bits only,
//# the bit FAD of the counter is needed in order to distinguish
//# between the fifo entry currently being written and the one
//# written in the previous "round" (FAD is a carry-out bit and is
//# switched every "round")
always @(posedge rxi_lclk or posedge reset)
if(reset)
begin
wr_binary_pointer_rlc[FAD:0] <= {(FAD+1){1'b0}};
wr_gray_pointer_rlc[FAD:0] <= {(FAD+1){1'b0}};
end
else if(wr_write_rlc)
begin
wr_binary_pointer_rlc[FAD:0] <= wr_binary_next_rlc[FAD:0];
wr_gray_pointer_rlc[FAD:0] <= wr_gray_next_rlc[FAD:0];
end
assign wr_addr_rlc[FAD-1:0] = wr_binary_pointer_rlc[FAD-1:0];
assign wr_binary_next_rlc[FAD:0] = wr_binary_pointer_rlc[FAD:0] +
{{(FAD){1'b0}},wr_write_rlc};
//# Gray Pointer Conversion (for more reliable synchronization)!
assign wr_gray_next_rlc[FAD:0] = {1'b0,wr_binary_next_rlc[FAD:1]} ^
wr_binary_next_rlc[FAD:0];
//# FIFO full indication
assign fifo_full_next_rlc =
(wr_gray_next_rlc[FAD-2:0] == rd_gray_pointer_rlc[FAD-2:0]) &
(wr_gray_next_rlc[FAD] ^ rd_gray_pointer_rlc[FAD]) &
(wr_gray_next_rlc[FAD-1] ^ rd_gray_pointer_rlc[FAD-1]);
always @ (posedge rxi_lclk or posedge reset)
if(reset)
fifo_full_rlc <= 1'b0;
else
fifo_full_rlc <= fifo_full_next_rlc;
//#############################
//# FIFO Read State Machine
//#############################
always @(posedge cclk or posedge reset)
if(reset)
begin
rd_binary_pointer[FAD:0] <= {(FAD+1){1'b0}};
rd_gray_pointer[FAD:0] <= {(FAD+1){1'b0}};
end
else if(cclk_en)
if(fifo_read)
begin
rd_binary_pointer[FAD:0] <= rd_binary_next[FAD:0];
rd_gray_pointer[FAD:0] <= rd_gray_next[FAD:0];
end
assign rd_addr[FAD-1:0] = rd_binary_pointer[FAD-1:0];
assign rd_binary_next[FAD:0] = rd_binary_pointer[FAD:0] + {{(FAD){1'b0}},fifo_read};
//# Gray Pointer Conversion (for more reliable synchronization)!
assign rd_gray_next[FAD:0] = {1'b0,rd_binary_next[FAD:1]} ^ rd_binary_next[FAD:0];
//# FIFO empty indication
assign fifo_empty_next = (rd_gray_next[FAD:0]==wr_gray_pointer[FAD:0]);
always @ (posedge cclk or posedge reset)
if(reset)
fifo_empty <= 1'b1;
else if(cclk_en)
fifo_empty <= fifo_empty_next;
//####################################################
//# Synchronization between rd/wr domains
//####################################################
e16_synchronizer #(.DW(FAD+1)) sync_rd2wr (.out (rd_gray_pointer_rlc[FAD:0]),
.in (rd_gray_pointer[FAD:0]),
.clk (rxi_lclk),
.reset (reset));
e16_synchronizer #(.DW(FAD+1)) sync_wr2rd (.out (wr_gray_pointer[FAD:0]),
.in (wr_gray_pointer_rlc[FAD:0]),
.clk (cclk),
.reset (reset));
endmodule // link_rxi_fifo
module link_rxi_launcher (/*AUTOARG*/
// Outputs
fifo_read, emesh_tran, emesh_frame,
// Inputs
reset, cclk, cclk_en, fifo_tran_out, fifo_empty, emesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
//#########
//# INPUTS
//#########
input reset; // reset input
input cclk; // core clock
input cclk_en; // clock enable
//# from the fifo
input [14*LW-1:0] fifo_tran_out; // transaction out of the fifo
input fifo_empty; // fifo is empty
//# from the emesh
input emesh_wait_in; // emesh wait indication
//##########
//# OUTPUTS
//##########
//# to the fifo
output fifo_read; // read next entry
//# to the emesh
output [2*LW-1:0] emesh_tran; // transaction data
output emesh_frame; // emesh frame
/*AUTOINPUT*/
/*AUTOWIRE*/
// #########
// # REGS
// #########
reg [2:0] launch_pointer;
// #########
// # WIRES
// #########
wire last_tran;
wire [2:0] launch_pointer_incr;
wire [6:0] launch_sel;
//################################
//# next transaction read control
//################################
assign fifo_read = last_tran & ~emesh_wait_in;
//############################################
//# transaction launcher state machine
//############################################
assign last_tran = (launch_pointer[2:0] == 3'b110);
assign launch_pointer_incr[2:0] = last_tran ? 3'b000 : (launch_pointer[2:0] + 3'b001);
always @ (posedge cclk or posedge reset)
if(reset)
launch_pointer[2:0] <= 3'b000;
else if(cclk_en)
if (~(fifo_empty | emesh_wait_in))
launch_pointer[2:0] <= launch_pointer_incr[2:0];
assign launch_sel[0] = (launch_pointer[2:0] == 3'b000);
assign launch_sel[1] = (launch_pointer[2:0] == 3'b001);
assign launch_sel[2] = (launch_pointer[2:0] == 3'b010);
assign launch_sel[3] = (launch_pointer[2:0] == 3'b011);
assign launch_sel[4] = (launch_pointer[2:0] == 3'b100);
assign launch_sel[5] = (launch_pointer[2:0] == 3'b101);
assign launch_sel[6] = (launch_pointer[2:0] == 3'b110);
//###########################
//# frame and data selection
//###########################
assign emesh_frame = ~(fifo_empty | last_tran);
e16_mux7 #(2*LW) mux7(// Outputs
.out (emesh_tran[2*LW-1:0]),
// Inputs
.in0 (fifo_tran_out[2*LW-1:0]), .sel0 (launch_sel[0]),
.in1 (fifo_tran_out[4*LW-1:2*LW]), .sel1 (launch_sel[1]),
.in2 (fifo_tran_out[6*LW-1:4*LW]), .sel2 (launch_sel[2]),
.in3 (fifo_tran_out[8*LW-1:6*LW]), .sel3 (launch_sel[3]),
.in4 (fifo_tran_out[10*LW-1:8*LW]), .sel4 (launch_sel[4]),
.in5 (fifo_tran_out[12*LW-1:10*LW]), .sel5 (launch_sel[5]),
.in6 (fifo_tran_out[14*LW-1:12*LW]), .sel6 (launch_sel[6]));
endmodule // link_rxi_launcher
module link_rxi_mesh_launcher (/*AUTOARG*/
// Outputs
mesh_fifo_read, emesh_tran_dis, access, write, datamode, ctrlmode,
data, dstaddr, srcaddr,
// Inputs
ext_yid_k, ext_xid_k, who_am_i, cfg_extcomp_dis, fifo_tran_out,
fifo_empty, mesh_wait_in
);
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
//#########
//# INPUTS
//#########
input [3:0] ext_yid_k;//external y-id
input [3:0] ext_xid_k;//external x-id
input [3:0] who_am_i;// specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
//# from the fifo
input [14*LW-1:0] fifo_tran_out; // transaction out of the fifo
input fifo_empty; // fifo is empty
//# from the mesh
input mesh_wait_in; // wait indication from mesh
//##########
//# OUTPUTS
//##########
//# to the fifo
output mesh_fifo_read; // read next entry
//# to prevent emesh launch
output emesh_tran_dis;
//# to the mesh
output access;
output write;
output [1:0] datamode;
output [3:0] ctrlmode;
output [DW-1:0] data;
output [AW-1:0] dstaddr;
output [AW-1:0] srcaddr;
/*AUTOINPUT*/
/*AUTOWIRE*/
// #########
// # WIRES
// #########
wire [AW-1:0] srcaddr_int;
wire [AW-1:0] srcaddr_multicast;
wire access_int;
wire multicast_match;
wire [1:0] srcaddr_int_ycoord;
wire [1:0] srcaddr_int_xcoord;
wire [1:0] north_srcaddr_int_ycoord;
wire [1:0] north_srcaddr_int_xcoord;
wire [1:0] east_srcaddr_int_ycoord;
wire [1:0] east_srcaddr_int_xcoord;
wire [1:0] south_srcaddr_int_ycoord;
wire [1:0] south_srcaddr_int_xcoord;
wire [1:0] west_srcaddr_int_ycoord;
wire [1:0] west_srcaddr_int_xcoord;
wire [3:0] dst_y_k;
wire [3:0] dst_x_k;
wire west_east_corner_tran;
wire north_south_corner_tran;
wire [3:0] corner_tran;
wire corner_tran_match;
wire mesh_tran_match;
//# If valid mesh transaction is detected we should prevent the launch
//# of this transaction on the emesh
assign emesh_tran_dis = access;
//# Valid mesh (multicast or not) transaction
assign access = ~fifo_empty & access_int &
(corner_tran_match | multicast_match | mesh_tran_match);
//# Read next entry
assign mesh_fifo_read = access & ~mesh_wait_in;
//# Mesh transaction fields extraction
assign ctrlmode[3:0] = fifo_tran_out[2*LW-1:2*LW-4];
assign dstaddr[AW-1:0] = {fifo_tran_out[2*LW-5:0],
fifo_tran_out[4*LW-1:2*LW],
fifo_tran_out[6*LW-1:6*LW-4]};
assign datamode[1:0] = fifo_tran_out[6*LW-5:6*LW-6];
assign write = fifo_tran_out[6*LW-7];
assign access_int = fifo_tran_out[5*LW];
assign data[DW-1:0] = {fifo_tran_out[5*LW-1:4*LW],
fifo_tran_out[8*LW-1:6*LW],
fifo_tran_out[10*LW-1:9*LW]};
assign srcaddr_int[AW-1:0] = {fifo_tran_out[9*LW-1:8*LW],
fifo_tran_out[12*LW-1:10*LW],
fifo_tran_out[14*LW-1:13*LW]};
//# Multicast transaction (there is no multicast transaction when no external compare)
assign multicast_match = write & ~cfg_extcomp_dis &
(ctrlmode[1:0]==2'b11) & ~(datamode[1:0] == 2'b11);
//# We rewrite the internal coordinates of every multicast transaction
//# in the way it will propagate through all the scores in the system
//# The new internal coordinates will be those of the attached to the
//# current link score and are constant and different for every link
//# !!! Since the transaction will propagate in all directions out of the
//# !!! attached score, it will try to get out of the chip on the same
//# !!! link, but it won't happen due to the external coordinate comparison
//# !!! of the link transmitter.
assign north_srcaddr_int_ycoord[1:0] = 2'b00;
assign east_srcaddr_int_ycoord[1:0] = 2'b00;
assign south_srcaddr_int_ycoord[1:0] = 2'b11;
assign west_srcaddr_int_ycoord[1:0] = 2'b00;
assign north_srcaddr_int_xcoord[1:0] = 2'b00;
assign east_srcaddr_int_xcoord[1:0] = 2'b11;
assign south_srcaddr_int_xcoord[1:0] = 2'b00;
assign west_srcaddr_int_xcoord[1:0] = 2'b00;
assign srcaddr_int_ycoord[1:0] = {(2){who_am_i[3]}} & north_srcaddr_int_ycoord[1:0]|
{(2){who_am_i[2]}} & east_srcaddr_int_ycoord[1:0] |
{(2){who_am_i[1]}} & south_srcaddr_int_ycoord[1:0]|
{(2){who_am_i[0]}} & west_srcaddr_int_ycoord[1:0];
assign srcaddr_int_xcoord[1:0] = {(2){who_am_i[3]}} & north_srcaddr_int_xcoord[1:0]|
{(2){who_am_i[2]}} & east_srcaddr_int_xcoord[1:0] |
{(2){who_am_i[1]}} & south_srcaddr_int_xcoord[1:0]|
{(2){who_am_i[0]}} & west_srcaddr_int_xcoord[1:0];
//# Modified source address
//assign srcaddr_multicast[AW-1:0] = {srcaddr_int[31:26],1'b0,srcaddr_int_ycoord[1:0],
// 1'b0,srcaddr_int_xcoord[1:0],
// srcaddr_int[19:0]};
assign srcaddr_multicast[AW-1:0] = {srcaddr_int[31:28],srcaddr_int_ycoord[1:0],
srcaddr_int[25:22],srcaddr_int_xcoord[1:0],
srcaddr_int[19:0]};
assign srcaddr[AW-1:0] = multicast_match ? srcaddr_multicast[AW-1:0] :
srcaddr_int[AW-1:0];
//# Mesh transaction for external corners detection
// assign dst_y_k[2:0] = dstaddr[31:29];
// assign dst_x_k[2:0] = dstaddr[28:26];
assign dst_y_k[3:0] = dstaddr[31:28];
assign dst_x_k[3:0] = dstaddr[25:22];
assign west_east_corner_tran = ((dst_x_k[3:0] == ext_xid_k[3:0]) &
~(dst_y_k[3:0] == ext_yid_k[3:0]));
assign north_south_corner_tran = (~(dst_x_k[3:0] == ext_xid_k[3:0]) &
(dst_y_k[3:0] == ext_yid_k[3:0]));
assign corner_tran[3:0] = {north_south_corner_tran, west_east_corner_tran,
north_south_corner_tran, west_east_corner_tran};
assign corner_tran_match = ~cfg_extcomp_dis & (|(corner_tran[3:0] & who_am_i[3:0]));
//# Regular Mesh transaction
assign mesh_tran_match = cfg_extcomp_dis |
(~multicast_match & ((dst_x_k[3:0] == ext_xid_k[3:0]) &
(dst_y_k[3:0] == ext_yid_k[3:0])));
endmodule // link_rxi_mesh_launcher
//#############################################################
//# This block is a receiver of the read transactions only
//# Read transactions will enter the chip on rdmesh only
//#############################################################
module link_rxi_rd (/*AUTOARG*/
// Outputs
rxi_rd_wait, c0_rdmesh_frame_out, c0_rdmesh_tran_out,
c1_rdmesh_frame_out, c1_rdmesh_tran_out, c2_rdmesh_frame_out,
c2_rdmesh_tran_out, c3_rdmesh_frame_out, c3_rdmesh_tran_out,
// Inputs
reset, ext_yid_k, ext_xid_k, vertical_k, who_am_i, cfg_extcomp_dis,
rxi_data, rxi_lclk, rxi_frame, c0_clk_in, c1_clk_in, c2_clk_in,
c3_clk_in, c0_rdmesh_wait_in, c1_rdmesh_wait_in, c2_rdmesh_wait_in,
c3_rdmesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
// #########
// # Inputs
// #########
input reset; // reset input
input [3:0] ext_yid_k; // external y-id
input [3:0] ext_xid_k; // external x-id
input vertical_k;// specifies if block is vertical or horizontal
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input [LW-1:0] rxi_data; // Byte word
input rxi_lclk; // receive clock (adjusted to the frame/data)
input rxi_frame; // indicates new transmission
// # Sync clocks
input c0_clk_in; // clock of the core
input c1_clk_in; // clock of the core
input c2_clk_in; // clock of the core
input c3_clk_in; // clock of the core
// # Wait indicators
input c0_rdmesh_wait_in; // wait
input c1_rdmesh_wait_in; // wait
input c2_rdmesh_wait_in; // wait
input c3_rdmesh_wait_in; // wait
// ##########
// # Outputs
// ##########
output rxi_rd_wait; //wait indicator for read transactions
// # RDMESH (any read transaction)
output c0_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c0_rdmesh_tran_out; // serialized transaction
output c1_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c1_rdmesh_tran_out; // serialized transaction
output c2_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c2_rdmesh_tran_out; // serialized transaction
output c3_rdmesh_frame_out; // transaction frame
output [2*LW-1:0] c3_rdmesh_tran_out; // serialized transaction
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire c0_fifo_access_rlc; // From link_rxi_buffer of link_rxi_buffer.v
wire c0_fifo_full_rlc; // From c0_link_rxi_channel of link_rxi_channel.v
wire c1_fifo_access_rlc; // From link_rxi_buffer of link_rxi_buffer.v
wire c1_fifo_full_rlc; // From c1_link_rxi_channel of link_rxi_channel.v
wire c2_fifo_access_rlc; // From link_rxi_buffer of link_rxi_buffer.v
wire c2_fifo_full_rlc; // From c2_link_rxi_channel of link_rxi_channel.v
wire c3_fifo_access_rlc; // From link_rxi_buffer of link_rxi_buffer.v
wire c3_fifo_full_rlc; // From c3_link_rxi_channel of link_rxi_channel.v
wire [14*LW-1:0] rxi_assembled_tran_rlc; // From link_rxi_buffer of link_rxi_buffer.v
// End of automatics
// ################################
// # Receiver buffer instantiation
// ################################
/*link_rxi_buffer AUTO_TEMPLATE (.rxi_rd (1'b1),
.rxi_wait (rxi_rd_wait),
.reset (reset),
.vertical_k (vertical_k),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.rxi_\(.*\)_access (\1_fifo_access_rlc),
.\(.*\) (\1_rlc[]),
.cfg_extcomp_dis (cfg_extcomp_dis),
);
*/
link_rxi_buffer link_rxi_buffer(/*AUTOINST*/
// Outputs
.rxi_wait (rxi_rd_wait), // Templated
.rxi_assembled_tran (rxi_assembled_tran_rlc[14*LW-1:0]), // Templated
.rxi_c0_access (c0_fifo_access_rlc), // Templated
.rxi_c1_access (c1_fifo_access_rlc), // Templated
.rxi_c2_access (c2_fifo_access_rlc), // Templated
.rxi_c3_access (c3_fifo_access_rlc), // Templated
// Inputs
.reset (reset), // Templated
.vertical_k (vertical_k), // Templated
.ext_yid_k (ext_yid_k[3:0]), // Templated
.ext_xid_k (ext_xid_k[3:0]), // Templated
.rxi_data (rxi_data[LW-1:0]), // Templated
.rxi_lclk (rxi_lclk), // Templated
.rxi_frame (rxi_frame), // Templated
.rxi_rd (1'b1), // Templated
.cfg_extcomp_dis (cfg_extcomp_dis), // Templated
.c0_fifo_full (c0_fifo_full_rlc), // Templated
.c1_fifo_full (c1_fifo_full_rlc), // Templated
.c2_fifo_full (c2_fifo_full_rlc), // Templated
.c3_fifo_full (c3_fifo_full_rlc)); // Templated
endmodule // link_rxi_rd
module link_rxi_router (/*AUTOARG*/
// Outputs
fifo_read_cvre, read_out, write_out, dst_addr_out, src_addr_out,
data_out, datamode_out, ctrlmode_out,
// Inputs
fifo_data_out_cvre, fifo_empty_cvre, wait_in
);
parameter AW = 32;
parameter MDW = 32;
parameter FW = 112;
parameter XW = 6;
parameter YW = 6;
parameter ZW = 6;
parameter IAW = 20;//internal address width=20 bits=1MB
/********************************************/
/*FIFO Interface */
/********************************************/
input [FW-1:0] fifo_data_out_cvre;
input fifo_empty_cvre;
output fifo_read_cvre; //depends on empty and grants
/********************************************/
/*Transaction */
/********************************************/
//Mesh wait indicators
input wait_in;
output read_out;
output write_out;
output [AW-1:0] dst_addr_out;
output [AW-1:0] src_addr_out;
output [MDW-1:0] data_out;
output [1:0] datamode_out;
output [3:0] ctrlmode_out;
/********************************************/
/*Wires */
/********************************************/
wire mesh_write_cvre;
wire mesh_read_cvre;
wire [1:0] mesh_datamode_cvre;
wire [3:0] mesh_ctrlmode_cvre;
wire [7:0] mesh_reserved_cvre;
wire [MDW-1:0] mesh_data_cvre;
wire [AW-1:0] mesh_src_addr_cvre;
wire [AW-1:0] mesh_dst_addr_cvre;
wire [1:0] compare_addr;
wire request_cvre;
/********************************************/
/*Splitting Vector Into Components */
/********************************************/
assign mesh_write_cvre = fifo_data_out_cvre[0];
assign mesh_read_cvre = fifo_data_out_cvre[1];
assign mesh_datamode_cvre[1:0] = fifo_data_out_cvre[3:2];
assign mesh_ctrlmode_cvre[3:0] = fifo_data_out_cvre[7:4];
assign mesh_reserved_cvre[7:0] = fifo_data_out_cvre[15:8];
assign mesh_data_cvre[MDW-1:0] = fifo_data_out_cvre[47:16];
assign mesh_dst_addr_cvre[AW-1:0]= fifo_data_out_cvre[79:48];
assign mesh_src_addr_cvre[AW-1:0]= fifo_data_out_cvre[111:80];
/********************************************/
/*Address Decoding */
/********************************************/
/********************************************/
/*Address Decoding */
/********************************************/
//Requests
//How to
assign request_cvre = ~fifo_empty_cvre;
/********************************************/
/*Only Doing FIFO read when granted */
/********************************************/
assign fifo_read_cvre = (request_cvre & ~wait_in);
/********************************************/
/*DISTRIBUTING TO ALL AGENTS */
/********************************************/
//turn on directions with read/write
//READ
assign read_out = request_cvre & mesh_read_cvre;
//WRITE
assign write_out = request_cvre & mesh_write_cvre;
//Mesh transaction
assign dst_addr_out[AW-1:0] = mesh_dst_addr_cvre[AW-1:0];
assign src_addr_out[AW-1:0] = mesh_src_addr_cvre[AW-1:0];
assign data_out[MDW-1:0] = mesh_data_cvre[MDW-1:0];
assign datamode_out[1:0] = mesh_datamode_cvre[1:0];
assign ctrlmode_out[3:0] = mesh_ctrlmode_cvre[3:0];
endmodule // link_rxi_router
//#############################################################
//# This block is a receiver of the write transactions only
//# Write transactions will enter the chip on emesh and mesh
//# only but not on the rdmesh
//#############################################################
module link_rxi_wr(/*AUTOARG*/
// Outputs
rxi_wr_wait, c0_emesh_frame_out, c0_emesh_tran_out,
c3_emesh_frame_out, c3_emesh_tran_out, c0_mesh_access_out,
c0_mesh_write_out, c0_mesh_dstaddr_out, c0_mesh_srcaddr_out,
c0_mesh_data_out, c0_mesh_datamode_out, c0_mesh_ctrlmode_out,
c3_mesh_access_out, c3_mesh_write_out, c3_mesh_dstaddr_out,
c3_mesh_srcaddr_out, c3_mesh_data_out, c3_mesh_datamode_out,
c3_mesh_ctrlmode_out,
// Inputs
reset, ext_yid_k, ext_xid_k, vertical_k, who_am_i, cfg_extcomp_dis,
rxi_data, rxi_lclk, rxi_frame, c0_clk_in, c3_clk_in,
c0_emesh_wait_in, c3_emesh_wait_in, c0_mesh_wait_in,
c3_mesh_wait_in
);
parameter LW = `CFG_LW;//lvds tranceiver pairs per side
parameter DW = `CFG_DW;//data width
parameter AW = `CFG_AW;//address width
// #########
// # Inputs
// #########
input reset; // reset input
input [3:0] ext_yid_k; // external y-id
input [3:0] ext_xid_k; // external x-id
input vertical_k;// specifies if block is vertical or horizontal
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input cfg_extcomp_dis;// Disable external coordinates comparison
// Every input transaction is received by the chip
input [LW-1:0] rxi_data; // Byte word
input rxi_lclk; // receive clock (adjusted to the frame/data)
input rxi_frame; // indicates new transmission
// # Sync clocks
input c0_clk_in; // clock of the core
input c3_clk_in; // clock of the core
// # Wait indicators
input c0_emesh_wait_in; // wait
input c3_emesh_wait_in; // wait
input c0_mesh_wait_in; // wait
input c3_mesh_wait_in; // wait
// ##########
// # Outputs
// ##########
output rxi_wr_wait; //wait indicator for write transactions
//# EMESH (write transactions with the off chip destination)
output c0_emesh_frame_out; // transaction frame
output [2*LW-1:0] c0_emesh_tran_out; // serialized transaction
output c3_emesh_frame_out; // transaction frame
output [2*LW-1:0] c3_emesh_tran_out; // serialized transaction
// # MESH (write transactions internal and external corners)
// # core0
output c0_mesh_access_out; // access control to the mesh
output c0_mesh_write_out; // write control to the mesh
output [AW-1:0] c0_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c0_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c0_mesh_data_out; // data to the mesh
output [1:0] c0_mesh_datamode_out;// data mode to the mesh
output [3:0] c0_mesh_ctrlmode_out;// ctrl mode to the mesh
// # core3
output c3_mesh_access_out; // access control to the mesh
output c3_mesh_write_out; // write control to the mesh
output [AW-1:0] c3_mesh_dstaddr_out; // destination address to the mesh
output [AW-1:0] c3_mesh_srcaddr_out; // source address to the mesh
output [DW-1:0] c3_mesh_data_out; // data to the mesh
output [1:0] c3_mesh_datamode_out;// data mode to the mesh
output [3:0] c3_mesh_ctrlmode_out;// ctrl mode to the mesh
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire c0_fifo_access; // From link_rxi_buffer of link_rxi_buffer.v
wire c0_fifo_full_rlc; // From c0_link_rxi_double_channel of link_rxi_double_channel.v
wire c1_fifo_access; // From link_rxi_buffer of link_rxi_buffer.v
wire c2_fifo_access; // From link_rxi_buffer of link_rxi_buffer.v
wire c3_fifo_access; // From link_rxi_buffer of link_rxi_buffer.v
wire c3_fifo_full_rlc; // From c3_link_rxi_double_channel of link_rxi_double_channel.v
wire [14*LW-1:0] rxi_assembled_tran_rlc; // From link_rxi_buffer of link_rxi_buffer.v
// End of automatics
//##########
//# WIRES
//##########
wire c0_fifo_access_rlc;
wire c3_fifo_access_rlc;
// ################################
// # Receiver buffer instantiation
// ################################
/*link_rxi_buffer AUTO_TEMPLATE (.rxi_rd (1'b0),
.rxi_wait (rxi_wr_wait),
.reset (reset),
.vertical_k (vertical_k),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.rxi_data (rxi_data[LW-1:0]),
.rxi_lclk (rxi_lclk),
.rxi_frame (rxi_frame),
.rxi_\(.*\)_access (\1_fifo_access),
.\(.*\) (\1_rlc[]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.c1_fifo_full (1'b0),
.c2_fifo_full (1'b0),
);
*/
link_rxi_buffer link_rxi_buffer(/*AUTOINST*/
// Outputs
.rxi_wait (rxi_wr_wait), // Templated
.rxi_assembled_tran (rxi_assembled_tran_rlc[14*LW-1:0]), // Templated
.rxi_c0_access (c0_fifo_access), // Templated
.rxi_c1_access (c1_fifo_access), // Templated
.rxi_c2_access (c2_fifo_access), // Templated
.rxi_c3_access (c3_fifo_access), // Templated
// Inputs
.reset (reset), // Templated
.vertical_k (vertical_k), // Templated
.ext_yid_k (ext_yid_k[3:0]), // Templated
.ext_xid_k (ext_xid_k[3:0]), // Templated
.rxi_data (rxi_data[LW-1:0]), // Templated
.rxi_lclk (rxi_lclk), // Templated
.rxi_frame (rxi_frame), // Templated
.rxi_rd (1'b0), // Templated
.cfg_extcomp_dis (cfg_extcomp_dis), // Templated
.c0_fifo_full (c0_fifo_full_rlc), // Templated
.c1_fifo_full (1'b0), // Templated
.c2_fifo_full (1'b0), // Templated
.c3_fifo_full (c3_fifo_full_rlc)); // Templated
// ################################################
// # Receiver channels instantiation
// ################################################
//# All the received transactions will be issued on channel0 or channel3 only
assign c0_fifo_access_rlc = c0_fifo_access | c1_fifo_access;
assign c3_fifo_access_rlc = c2_fifo_access | c3_fifo_access;
/*link_rxi_double_channel AUTO_TEMPLATE (
.fifo_full_rlc (@"(substring vl-cell-name 0 2)"_fifo_full_rlc),
.\(.*\)_out (@"(substring vl-cell-name 0 2)"_\1_out[]),
.emesh_wait_in (@"(substring vl-cell-name 0 2)"_emesh_wait_in),
.mesh_\(.*\) (@"(substring vl-cell-name 0 2)"_mesh_\1[]),
.cclk (@"(substring vl-cell-name 0 2)"_clk_in),
.cclk_en (1'b1),
.fifo_access_rlc (@"(substring vl-cell-name 0 2)"_fifo_access_rlc),
.mesh_fifo_access_rlc (mesh_fifo_access_rlc),
);
*/
//# channel 0 (emesh + mesh + mesh for multicast)
link_rxi_double_channel c0_link_rxi_double_channel(/*AUTOINST*/
// Outputs
.fifo_full_rlc (c0_fifo_full_rlc), // Templated
.emesh_tran_out (c0_emesh_tran_out[2*LW-1:0]), // Templated
.emesh_frame_out (c0_emesh_frame_out), // Templated
.mesh_access_out (c0_mesh_access_out), // Templated
.mesh_write_out (c0_mesh_write_out), // Templated
.mesh_dstaddr_out (c0_mesh_dstaddr_out[AW-1:0]), // Templated
.mesh_srcaddr_out (c0_mesh_srcaddr_out[AW-1:0]), // Templated
.mesh_data_out (c0_mesh_data_out[DW-1:0]), // Templated
.mesh_datamode_out(c0_mesh_datamode_out[1:0]), // Templated
.mesh_ctrlmode_out(c0_mesh_ctrlmode_out[3:0]), // Templated
// Inputs
.reset (reset),
.cclk (c0_clk_in), // Templated
.cclk_en (1'b1), // Templated
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.rxi_lclk (rxi_lclk),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.rxi_assembled_tran_rlc(rxi_assembled_tran_rlc[14*LW-1:0]),
.fifo_access_rlc (c0_fifo_access_rlc), // Templated
.emesh_wait_in (c0_emesh_wait_in), // Templated
.mesh_wait_in (c0_mesh_wait_in)); // Templated
//# channel 3 (emesh + mesh)
link_rxi_double_channel c3_link_rxi_double_channel(/*AUTOINST*/
// Outputs
.fifo_full_rlc (c3_fifo_full_rlc), // Templated
.emesh_tran_out (c3_emesh_tran_out[2*LW-1:0]), // Templated
.emesh_frame_out (c3_emesh_frame_out), // Templated
.mesh_access_out (c3_mesh_access_out), // Templated
.mesh_write_out (c3_mesh_write_out), // Templated
.mesh_dstaddr_out (c3_mesh_dstaddr_out[AW-1:0]), // Templated
.mesh_srcaddr_out (c3_mesh_srcaddr_out[AW-1:0]), // Templated
.mesh_data_out (c3_mesh_data_out[DW-1:0]), // Templated
.mesh_datamode_out(c3_mesh_datamode_out[1:0]), // Templated
.mesh_ctrlmode_out(c3_mesh_ctrlmode_out[3:0]), // Templated
// Inputs
.reset (reset),
.cclk (c3_clk_in), // Templated
.cclk_en (1'b1), // Templated
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.rxi_lclk (rxi_lclk),
.who_am_i (who_am_i[3:0]),
.cfg_extcomp_dis (cfg_extcomp_dis),
.rxi_assembled_tran_rlc(rxi_assembled_tran_rlc[14*LW-1:0]),
.fifo_access_rlc (c3_fifo_access_rlc), // Templated
.emesh_wait_in (c3_emesh_wait_in), // Templated
.mesh_wait_in (c3_mesh_wait_in)); // Templated
endmodule // link_rxi_wr
module link_transmitter (/*AUTOARG*/
// Outputs
txo_data, txo_lclk90, txo_frame, c0_emesh_wait_out,
c1_emesh_wait_out, c2_emesh_wait_out, c3_emesh_wait_out,
c0_rdmesh_wait_out, c1_rdmesh_wait_out, c2_rdmesh_wait_out,
c3_rdmesh_wait_out, c0_mesh_wait_out, c3_mesh_wait_out,
// Inputs
c3_emesh_tran_in, c3_emesh_frame_in, c2_emesh_tran_in,
c2_emesh_frame_in, c1_emesh_tran_in, c1_emesh_frame_in,
c0_emesh_tran_in, c0_emesh_frame_in, reset, ext_yid_k, ext_xid_k,
who_am_i, txo_cfg_reg, txo_wr_wait, txo_rd_wait, c0_clk_in,
c1_clk_in, c2_clk_in, c3_clk_in, c0_mesh_access_in,
c0_mesh_write_in, c0_mesh_dstaddr_in, c0_mesh_srcaddr_in,
c0_mesh_data_in, c0_mesh_datamode_in, c0_mesh_ctrlmode_in,
c3_mesh_access_in, c3_mesh_write_in, c3_mesh_dstaddr_in,
c3_mesh_srcaddr_in, c3_mesh_data_in, c3_mesh_datamode_in,
c3_mesh_ctrlmode_in
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
// #########
// # Inputs
// #########
input reset;
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
// # Configuration registers
input [5:0] txo_cfg_reg; //Clock divider configuration on bits 3-0,
//Bursting disable control on bit 4
//Multicast disable control on bit 5
// # from io
input txo_wr_wait; //wait indicator for write transactions
input txo_rd_wait; //wait indicator for read transactions
// # Clocks
input c0_clk_in; // clock of the core
input c1_clk_in; // clock of the core
input c2_clk_in; // clock of the core
input c3_clk_in; // clock of the core
// # MESH
// # core0 (external corners and multicast)
input c0_mesh_access_in; // access control from the mesh
input c0_mesh_write_in; // write control from the mesh
input [AW-1:0] c0_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c0_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c0_mesh_data_in; // data from the mesh
input [1:0] c0_mesh_datamode_in;// data mode from the mesh
input [3:0] c0_mesh_ctrlmode_in;// ctrl mode from the mesh
// # core3 (external corners only)
input c3_mesh_access_in; // access control from the mesh
input c3_mesh_write_in; // write control from the mesh
input [AW-1:0] c3_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c3_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c3_mesh_data_in; // data from the mesh
input [1:0] c3_mesh_datamode_in;// data mode from the mesh
input [3:0] c3_mesh_ctrlmode_in;// ctrl mode from the mesh
// ##############
// # Outputs
// ##############
output [LW-1:0] txo_data; //Byte word
output txo_lclk90; //transmit clock (adjusted to the frame/data)
output txo_frame; //indicates new transmission
output c0_emesh_wait_out; // wait to the emesh
output c1_emesh_wait_out; // wait to the emesh
output c2_emesh_wait_out; // wait to the emesh
output c3_emesh_wait_out; // wait to the emesh
output c0_rdmesh_wait_out; // wait to the rdmesh
output c1_rdmesh_wait_out; // wait to the rdmesh
output c2_rdmesh_wait_out; // wait to the rdmesh
output c3_rdmesh_wait_out; // wait to the rdmesh
output c0_mesh_wait_out; // wait to the mesh
output c3_mesh_wait_out; // wait to the mesh
// ##########
// # WIRES
// ##########
wire txo_lclk; //transmit clock to be used internally
wire txo_lclk90;//transmit clock (adjusted to the frame/data)
/*AUTOINPUT*/
// Beginning of automatic inputs (from unused autoinst inputs)
input c0_emesh_frame_in; // To link_txo_wr of link_txo_wr.v
input [2*LW-1:0] c0_emesh_tran_in; // To link_txo_wr of link_txo_wr.v
input c1_emesh_frame_in; // To link_txo_wr of link_txo_wr.v
input [2*LW-1:0] c1_emesh_tran_in; // To link_txo_wr of link_txo_wr.v
input c2_emesh_frame_in; // To link_txo_wr of link_txo_wr.v
input [2*LW-1:0] c2_emesh_tran_in; // To link_txo_wr of link_txo_wr.v
input c3_emesh_frame_in; // To link_txo_wr of link_txo_wr.v
input [2*LW-1:0] c3_emesh_tran_in; // To link_txo_wr of link_txo_wr.v
// End of automatics
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [LW-1:0] txo_wr_data_even; // From link_txo_wr of link_txo_wr.v
wire [LW-1:0] txo_wr_data_odd; // From link_txo_wr of link_txo_wr.v
wire txo_wr_frame; // From link_txo_wr of link_txo_wr.v
wire txo_wr_launch_req_tlc; // From link_txo_wr of link_txo_wr.v
wire txo_wr_rotate_dis; // From link_txo_wr of link_txo_wr.v
// End of automatics
// ##############################
// # Clock divider instantiation
// ##############################
//# Since the logic of the fifo of the transmitter's channel
//# assumes txo_lck and cclk to be asynchronous clocks, we don't
//# mind to have txo_lclk be generated out of any of the clk_in
//# clocks even though they are inverted relative to each other.
//# c1_clk_in is selected because of the physical implementation
//# considerations.
e16_clock_divider clock_divider (.clk_out (txo_lclk),
.clk_out90 (txo_lclk90),
.clk_in (c1_clk_in),
.reset (reset),
.div_cfg (4'b0)
);
//########################
//# Transmitter interface
//########################
link_txo_interface link_txo_interface(
// Outputs
.txo_data (txo_data[LW-1:0]),
.txo_frame (txo_frame),
.txo_wr_wait_int (txo_wr_wait_int),
.txo_rd_wait_int (txo_rd_wait_int),
// Inputs
.txo_lclk (txo_lclk),
.reset (reset),
.txo_wr_data_even (txo_wr_data_even[LW-1:0]),
.txo_wr_data_odd (txo_wr_data_odd[LW-1:0]),
.txo_wr_frame (txo_wr_frame),
.txo_wr_launch_req_tlc (txo_wr_launch_req_tlc),
.txo_wr_rotate_dis (txo_wr_rotate_dis),
.txo_rd_data_even (8'd0),
.txo_rd_data_odd (8'd0),
.txo_rd_frame (1'd0),
.txo_rd_launch_req_tlc (1'd0),
.txo_rd_rotate_dis (1'd0)
);
//#################################
//# Write Transactions Transmitter
//#################################
link_txo_wr link_txo_wr(.cfg_burst_dis (txo_cfg_reg[4]),
.cfg_multicast_dis (txo_cfg_reg[5]),
.txo_wr_wait_int (txo_wr_wait_int),
/*AUTOINST*/
// Outputs
.txo_wr_data_even (txo_wr_data_even[LW-1:0]),
.txo_wr_data_odd (txo_wr_data_odd[LW-1:0]),
.txo_wr_frame (txo_wr_frame),
.txo_wr_launch_req_tlc(txo_wr_launch_req_tlc),
.txo_wr_rotate_dis (txo_wr_rotate_dis),
.c0_emesh_wait_out (c0_emesh_wait_out),
.c1_emesh_wait_out (c1_emesh_wait_out),
.c2_emesh_wait_out (c2_emesh_wait_out),
.c3_emesh_wait_out (c3_emesh_wait_out),
.c0_mesh_wait_out (c0_mesh_wait_out),
.c3_mesh_wait_out (c3_mesh_wait_out),
// Inputs
.txo_lclk (txo_lclk),
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.who_am_i (who_am_i[3:0]),
.txo_wr_wait (txo_wr_wait),
.c0_clk_in (c0_clk_in),
.c1_clk_in (c1_clk_in),
.c2_clk_in (c2_clk_in),
.c3_clk_in (c3_clk_in),
.c0_emesh_tran_in (c0_emesh_tran_in[2*LW-1:0]),
.c0_emesh_frame_in (c0_emesh_frame_in),
.c1_emesh_tran_in (c1_emesh_tran_in[2*LW-1:0]),
.c1_emesh_frame_in (c1_emesh_frame_in),
.c2_emesh_tran_in (c2_emesh_tran_in[2*LW-1:0]),
.c2_emesh_frame_in (c2_emesh_frame_in),
.c3_emesh_tran_in (c3_emesh_tran_in[2*LW-1:0]),
.c3_emesh_frame_in (c3_emesh_frame_in),
.c0_mesh_access_in (c0_mesh_access_in),
.c0_mesh_write_in (c0_mesh_write_in),
.c0_mesh_dstaddr_in (c0_mesh_dstaddr_in[AW-1:0]),
.c0_mesh_srcaddr_in (c0_mesh_srcaddr_in[AW-1:0]),
.c0_mesh_data_in (c0_mesh_data_in[DW-1:0]),
.c0_mesh_datamode_in (c0_mesh_datamode_in[1:0]),
.c0_mesh_ctrlmode_in (c0_mesh_ctrlmode_in[3:0]),
.c3_mesh_access_in (c3_mesh_access_in),
.c3_mesh_write_in (c3_mesh_write_in),
.c3_mesh_dstaddr_in (c3_mesh_dstaddr_in[AW-1:0]),
.c3_mesh_srcaddr_in (c3_mesh_srcaddr_in[AW-1:0]),
.c3_mesh_data_in (c3_mesh_data_in[DW-1:0]),
.c3_mesh_datamode_in (c3_mesh_datamode_in[1:0]),
.c3_mesh_ctrlmode_in (c3_mesh_ctrlmode_in[3:0]));
endmodule // link_transmitter
module link_txo_arbiter(/*AUTOARG*/
// Outputs
txo_launch_req_tlc, txo_rotate_dis_tlc, c0_txo_launch_ack_tlc,
c1_txo_launch_ack_tlc, c2_txo_launch_ack_tlc,
c3_txo_launch_ack_tlc,
// Inputs
txo_lclk, reset, txo_wait, txo_wait_int, c0_txo_launch_req_tlc,
c0_txo_rotate_dis, c1_txo_launch_req_tlc, c1_txo_rotate_dis,
c2_txo_launch_req_tlc, c2_txo_rotate_dis, c3_txo_launch_req_tlc,
c3_txo_rotate_dis
);
// ##########
// # Inputs
// ##########
input txo_lclk;
input reset;
input txo_wait; // Wait from the receiver (we have to finish current transmission)
input txo_wait_int; // Wait from the txo_interface (have to stall immediately)
//Channel 0
input c0_txo_launch_req_tlc; // Launch request
input c0_txo_rotate_dis; // Arbiter's rotate disable
//Channel 1
input c1_txo_launch_req_tlc; // Launch request
input c1_txo_rotate_dis; // Arbiter's rotate disable
//Channel 2
input c2_txo_launch_req_tlc; // Launch request
input c2_txo_rotate_dis; // Arbiter's rotate disable
//Channel 3
input c3_txo_launch_req_tlc; // Launch request
input c3_txo_rotate_dis; // Arbiter's rotate disable
// ##########
// # Outputs
// ##########
// to the txo_interface
output txo_launch_req_tlc;
output txo_rotate_dis_tlc;
// to the channels
output c0_txo_launch_ack_tlc;
output c1_txo_launch_ack_tlc;
output c2_txo_launch_ack_tlc;
output c3_txo_launch_ack_tlc;
/*AUTOINPUT*/
/*AUTOWIRE*/
// #######
// # REGS
// #######
reg [3:0] grants_reg;
// ############
// # WIRES
// ############
wire [3:0] txo_rotate_dis;
wire en_arbitration;
wire en_rotate;
wire [3:0] grants; //one-hot grants signals
wire [3:0] requests_unmasked; //unmasked (original) requests
wire [3:0] requests; //requests
wire txo_wait_tlc;
//############################
//# txo_wait synchronization
//############################
e16_synchronizer #(.DW(1)) synchronizer(.out (txo_wait_tlc),
.in (txo_wait),
.clk (txo_lclk),
.reset (reset));
//#############################################################
//# creating requests information for the additional
//# arbitration which is performed in the txo_interface
//#############################################################
assign txo_launch_req_tlc = c0_txo_launch_req_tlc | c1_txo_launch_req_tlc |
c2_txo_launch_req_tlc | c3_txo_launch_req_tlc;
assign txo_rotate_dis_tlc = c0_txo_rotate_dis | c1_txo_rotate_dis |
c2_txo_rotate_dis | c3_txo_rotate_dis;
//###########################################
//# Rotation mechanism and requests creation
//###########################################
always @ (posedge txo_lclk or posedge reset)
if(reset)
grants_reg[3:0] <= 4'b0000;
else
grants_reg[3:0] <= grants[3:0];
assign txo_rotate_dis[3:0] = {c3_txo_rotate_dis,
c2_txo_rotate_dis,
c1_txo_rotate_dis,
c0_txo_rotate_dis};
assign en_rotate = ~(|(grants_reg[3:0] & txo_rotate_dis[3:0]));
assign en_arbitration = ~txo_wait_tlc | (|(txo_rotate_dis[3:0]));
assign requests_unmasked[3:0] = {c3_txo_launch_req_tlc,
c2_txo_launch_req_tlc,
c1_txo_launch_req_tlc,
c0_txo_launch_req_tlc};
assign requests[3:0] = {(4){en_arbitration}} &
requests_unmasked[3:0] & (grants_reg[3:0] | {(4){en_rotate}});
//############
//# Grants
//############
assign c3_txo_launch_ack_tlc = grants[3] & ~txo_wait_int;
assign c2_txo_launch_ack_tlc = grants[2] & ~txo_wait_int;
assign c1_txo_launch_ack_tlc = grants[1] & ~txo_wait_int;
assign c0_txo_launch_ack_tlc = grants[0] & ~txo_wait_int;
//######################################
//# Round-Robin Arbiter Instantiation
//######################################
/*e16_arbiter_roundrobin AUTO_TEMPLATE (.clk (txo_lclk),
.clk_en (1'b1),
.grants (grants[3:0]),
.requests (requests[3:0]),
);
*/
e16_arbiter_roundrobin #(.ARW(4)) arbiter_roundrobin(/*AUTOINST*/
// Outputs
.grants (grants[3:0]), // Templated
// Inputs
.clk (txo_lclk), // Templated
.clk_en (1'b1), // Templated
.reset (reset),
.en_rotate (en_rotate),
.requests (requests[3:0])); // Templated
endmodule // link_txo_arbiter
module link_txo_buffer(/*AUTOARG*/
// Outputs
txo_data_even, txo_data_odd, txo_frame,
// Inputs
c0_tran_frame_tlc, c0_tran_byte_even_tlc, c0_tran_byte_odd_tlc,
c1_tran_frame_tlc, c1_tran_byte_even_tlc, c1_tran_byte_odd_tlc,
c2_tran_frame_tlc, c2_tran_byte_even_tlc, c2_tran_byte_odd_tlc,
c3_tran_frame_tlc, c3_tran_byte_even_tlc, c3_tran_byte_odd_tlc
);
parameter LW = `CFG_LW;
// #########
// # Inputs
// #########
//# from channel 0
input c0_tran_frame_tlc; // Frame of the transaction
input [LW-1:0] c0_tran_byte_even_tlc; // Even byte of the transaction
input [LW-1:0] c0_tran_byte_odd_tlc; // Odd byte of the transaction
//# from channel 1
input c1_tran_frame_tlc; // Frame of the transaction
input [LW-1:0] c1_tran_byte_even_tlc; // Even byte of the transaction
input [LW-1:0] c1_tran_byte_odd_tlc; // Odd byte of the transaction
//# from channel 2
input c2_tran_frame_tlc; // Frame of the transaction
input [LW-1:0] c2_tran_byte_even_tlc; // Even byte of the transaction
input [LW-1:0] c2_tran_byte_odd_tlc; // Odd byte of the transaction
//# from channel 3
input c3_tran_frame_tlc; // Frame of the transaction
input [LW-1:0] c3_tran_byte_even_tlc; // Even byte of the transaction
input [LW-1:0] c3_tran_byte_odd_tlc; // Odd byte of the transaction
// ##########
// # Outputs
// ##########
output [LW-1:0] txo_data_even; //Even byte word
output [LW-1:0] txo_data_odd; //Odd byte word
output txo_frame; //indicates new transmission
/*AUTOINPUT*/
/*AUTOWIRE*/
// ##########
// # Regs
// ##########
// ##########
// # Wires
// ##########
wire txo_frame; // selected frame of the transmission
wire [LW-1:0] txo_data_even; // selected even bytes of the transmission
wire [LW-1:0] txo_data_odd; // selected odd bytes of the transmission
//###########################################
//# Transaction mux
//# The "and" part of the "and-or" mux is
//# implemented in the link channels blocks
//# therefore here we are good with "or" only
//###########################################
assign txo_frame = c0_tran_frame_tlc;
assign txo_data_even[LW-1:0] = c0_tran_byte_even_tlc[LW-1:0];
assign txo_data_odd[LW-1:0] = c0_tran_byte_odd_tlc[LW-1:0];
endmodule // link_txo_buffer
//#########################################################
//# This block is a single channel of the link transmitter
//# mechanism.
//#
//# The input transaction of this block is of the fixed size,
//# while the output transaction has an option
//# of the bursting where data of the new transaction
//# is sent without the address. In such a case the
//# address of the transaction will be determined in
//# the receiver according to the address of the
//# previous transaction.
//#
//# TXO-RXI TRANSMISSION PROTOCOL
//# ###############################
//# ---- ---- ---- ---- ---- --
//# LCLK _| |____| |____| |____| |____| |____|
//#
//# -------------------------------------
//# FRAME ______/
//# ----- ----- ----- ----- -----
//# DATA XXXXXXX 0 X 1 X 2 X 3 X 4 X .....
//# ----- ----- ----- ----- -----
//#
//# The byte sampled on the first rising edge of the LCLK following
//# the "low-to-high" change of the FRAME signal (byte0) will determine
//# the type of the transmitted data according to the following
//# encoding scheme:
//#
//# byte0 | transaction type
//# ----------------- | ----------------
//# 8'b??_??_?0_<cid> | New transaction with incremental bursting address
//# 8'b??_??_?1_<cid> | New transaction with the same bursting address
//#
//# cid[1:0] - channel id (for debugging usage only for now)
//#
//# New transaction structure:
//# -------------------------
//# byte1 -> ctrlmode[3:0],dstaddr[31:28]
//# byte2 -> dstaddr[27:20]
//# byte3 -> dstaddr[19:12]
//# byte4 -> dstaddr[11:4]
//# byte5 -> dstaddr[3:0],datamode[1:0],write,access
//# byte6 -> data[31:24] (or srcaddr[31:24] if read transaction)
//# byte7 -> data[23:16] (or srcaddr[23:16] if read transaction)
//# byte8 -> data[15:8] (or srcaddr[15:8] if read transaction)
//# *byte9 -> data[7:0] (or srcaddr[7:0] if read transaction)
//# byte10 -> data[63:56]
//# byte11 -> data[55:48]
//# byte12 -> data[47:40]
//# byte13 -> data[39:32]
//# **byte14 -> data[31:24]
//# ...
//# ...
//# ...
//#
//# * byte9 is the last byte of 32 bit write or read transaction
//#
//# ** if 64 bit write transaction, data of byte14 is the first data byte of
//# bursting transaction
//#
//# -- The data is transmitted MSB first but in 32bits resolution. If we want
//# to transmit 64 bits it will be [31:0] (msb first) and then [63:32] (msb first)
//#
//# !!!
//# !!! According to the above scheme, any new transaction (burst or not)
//# !!! will take at least four cycles to be transmitted.
//# !!! There are some internal mechanisms in the transmitter-receiver logic
//# !!! which are implemented considering this assumption true.
//# !!! Any change to this assumption (transaction takes at least four cycles)
//# !!! should be carefully reviewed with its implications on the internal
//# !!! implementation
//# !!!
//#
//#####################################################################
module link_txo_channel (/*AUTOARG*/
// Outputs
emesh_wait_out, txo_launch_req_tlc, txo_rotate_dis, tran_frame_tlc,
tran_byte_even_tlc, tran_byte_odd_tlc,
// Inputs
cclk, cclk_en, txo_lclk, reset, txo_rd, txo_cid, cfg_burst_dis,
emesh_tran_in, emesh_frame_in, txo_launch_ack_tlc
);
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter FW = `CFG_NW*`CFG_LW;
parameter FAD = 5; // Number of bits to access all the entries (2^FAD + 1) > AE*PE
//##########
//# INPUTS
//##########
input cclk; // clock of the score the emesh comes from
input cclk_en; // clock enable
input txo_lclk; // clock of the link transmitter
input reset;
input txo_rd; // this is read transactions channel
input [1:0] txo_cid; // transmitter channel ID
input cfg_burst_dis; // control register bursting disable
//# from the EMESH
input [2*LW-1:0] emesh_tran_in; // serialized transaction
input emesh_frame_in; // transaction frame
//# from the arbiter
input txo_launch_ack_tlc;
//###########
//# OUTPUTS
//###########
//# to emesh
output emesh_wait_out; // wait to the emesh
//# to the arbiter
output txo_launch_req_tlc; // Launch request
output txo_rotate_dis; // Arbiter's rotate disable
//# to the output mux/buffer
output tran_frame_tlc; // Frame of the transaction
output [LW-1:0] tran_byte_even_tlc; // Even byte of the transaction
output [LW-1:0] tran_byte_odd_tlc; // Odd byte of the transaction
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire check_next_dstaddr_tlc; // From link_txo_launcher of link_txo_launcher.v
wire [2*LW-1:0] fifo_out_tlc; // From link_txo_fifo of link_txo_fifo.v
wire frame_in; // From emesh_interface of emesh_interface.v
wire next_access_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [3:0] next_ctrlmode_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [1:0] next_datamode_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [AW-1:0] next_dstaddr_tlc; // From link_txo_fifo of link_txo_fifo.v
wire next_write_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [FAD:0] rd_read_tlc; // From link_txo_launcher of link_txo_launcher.v
wire [2*LW-1:0] tran_in; // From emesh_interface of emesh_interface.v
wire tran_written_tlc; // From link_txo_fifo of link_txo_fifo.v
wire wr_fifo_full; // From link_txo_fifo of link_txo_fifo.v
// End of automatics
endmodule // link_txo_channel
//#############################################################################
//# This block is a custom fifo for the link single channel
//# transmitter.
//# The fifo has a following structure:
//# - 4 "architectural" entries to contain 4 full-size transactions.
//# Every architectural entry has 7 "sub-entries" of 16bit each
//# 112 bits in total (104 bits of actual transaction + 8 bits of zerros)
//# - 28 "physical" entries in total (4*7)
//#
//# The fifo is written in the "regular" manner - i.e. whenever there is an
//# empty "physical" entry to write in.
//# The fifo is read "freely" from within every "architectural" entry
//# (7 "physical" entries in a raw) once the "architectural" entry is written
//# in full.
//#
//# For this purpose, the "fifo write" domain indicates to the "fifo-read"
//# domain every "architectural" entry being written,
//# While the "fifo read" domain indicates to the "fifo-write" domain
//# every "physical" entry being read.
//#############################################################################
module link_txo_fifo (/*AUTOARG*/
// Outputs
wr_fifo_full, fifo_out_tlc, tran_written_tlc, next_ctrlmode_tlc,
next_dstaddr_tlc, next_datamode_tlc, next_write_tlc,
next_access_tlc,
// Inputs
reset, cclk, cclk_en, txo_lclk, tran_in, frame_in, rd_read_tlc,
check_next_dstaddr_tlc
);
parameter AW = `CFG_AW ;//address width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter AE = 4; // Number of "architectural" entries
parameter PE = 7; // Number of "physical" entries in the "architectural" one
parameter FAD = 5; // Number of bits to access all the entries (2^FAD + 1) > AE*PE
localparam MD = 1<<FAD;
// #########
// # Inputs
// #########
input reset;
input cclk; // core clock
input cclk_en; // core clock enable
input txo_lclk; // link transmitter clock
//# from the emesh/mesh selection logic
input [2*LW-1:0] tran_in; // serialized transaction
input frame_in; // transaction frame
//# from the control
input [FAD:0] rd_read_tlc; // Read containing potential jump for bursting
input check_next_dstaddr_tlc; // Next transaction dstaddr can be checked
// ##########
// # Outputs
// ##########
//# to the emesh/mesh selection logic
output wr_fifo_full;
//# to the control
output [2*LW-1:0] fifo_out_tlc;
output tran_written_tlc;
output [3:0] next_ctrlmode_tlc;
output [AW-1:0] next_dstaddr_tlc;
output [1:0] next_datamode_tlc;
output next_write_tlc;
output next_access_tlc;
/*AUTOINPUT*/
/*AUTOWIRE*/
// ##########
// # REGS
// #########
reg [LW-1:0] even_byte;
reg [2*LW-1:0] fifo_mem[MD-1:0];
reg [FAD:0] rd_gray_pointer_tlc;
reg [FAD:0] rd_binary_pointer_tlc;
reg [FAD:0] rd_addr_traninfo0_tlc;
reg frame_del;
reg [FAD:0] wr_binary_pointer;
reg wr_fifo_full;
// #########
// # WIRES
// #########
wire [FAD-1:0] rd_addr_tlc;
wire [FAD:0] rd_binary_next_tlc;
wire [FAD:0] rd_gray_next_tlc;
wire [FAD:0] rd_addr_traninfo0_next_tlc;
wire [FAD-1:0] rd_addr_traninfo1_tlc;
wire [FAD-1:0] rd_addr_traninfo2_tlc;
wire [2*LW-1:0] traninfo0_tlc;
wire [2*LW-1:0] traninfo1_tlc;
wire [2*LW-1:0] traninfo2_tlc;
wire [FAD-1:0] wr_addr;
wire wr_write;
wire tran_written;
wire [FAD:0] rd_gray_pointer;
wire wr_fifo_full_next;
wire [FAD:0] wr_gray_next;
wire [FAD:0] wr_binary_next;
//###########################
//# Write control generation
//###########################
always @ (posedge cclk or posedge reset)
if(reset)
frame_del <= 1'b0;
else if(cclk_en)
if(!wr_fifo_full)
frame_del <= frame_in;
assign wr_write = (frame_in | frame_del) & ~wr_fifo_full;
//###################################
//# Full transaction write completed
//###################################
assign tran_written = ~frame_in & frame_del & ~wr_fifo_full;
//#################################
//# FIFO data
//#################################
//# Write
//# two bytes of the tran short word should enter different fifo entries
//# in order to get 32 bit of data, dstaddr and srcaddr each "sitting" in two
//# entries only.
//# In this case byte0 of the first entry of the transaction
//# ({byte0,ctrlmode[3:0],dstaddr[31:28]}) will be a "zevel" but we don't care
//# since this byte is replaced later anyway.
always @ (posedge cclk)
if (cclk_en)
if(!wr_fifo_full)
even_byte[LW-1:0] <= tran_in[LW-1:0];
always @ (posedge cclk)
if (cclk_en)
if (wr_write)
fifo_mem[wr_addr[FAD-1:0]] <= {even_byte[LW-1:0],tran_in[2*LW-1:LW]};
//# Read (for dispatch)
assign fifo_out_tlc[2*LW-1:0] = fifo_mem[rd_addr_tlc[FAD-1:0]];
//# Read (first short word of the next transaction to dispatch)
assign traninfo0_tlc[2*LW-1:0] = fifo_mem[rd_addr_traninfo0_tlc[FAD-1:0]];
//# Read (second short word of the next transaction to dispatch)
assign traninfo1_tlc[2*LW-1:0] = fifo_mem[rd_addr_traninfo1_tlc[FAD-1:0]];
//# Read (third short word of the next transaction to dispatch)
assign traninfo2_tlc[2*LW-1:0] = fifo_mem[rd_addr_traninfo2_tlc[FAD-1:0]];
assign next_ctrlmode_tlc[3:0] = traninfo0_tlc[LW-1:LW-4];
assign next_dstaddr_tlc[AW-1:0] = {traninfo0_tlc[3:0],
traninfo1_tlc[2*LW-1:0],
traninfo2_tlc[2*LW-1:4]};
assign next_datamode_tlc[1:0] = traninfo2_tlc[3:2];
assign next_write_tlc = traninfo2_tlc[1];
assign next_access_tlc = traninfo2_tlc[0];
//#####################################
//# FIFO Write State Machine
//#####################################
//# While for the actual address calculation we use [FAD-1:0] bits only,
//# the bit FAD of the counter is needed in order to distinguish
//# between the fifo entry currently being written and the one
//# written in the previous "round" (FAD is a carry-out bit and is
//# switched every "round")
always @(posedge cclk or posedge reset)
if(reset)
wr_binary_pointer[FAD:0] <= {(FAD+1){1'b0}};
else if(cclk_en)
if(wr_write)
wr_binary_pointer[FAD:0] <= wr_binary_next[FAD:0];
assign wr_addr[FAD-1:0] = wr_binary_pointer[FAD-1:0];
assign wr_binary_next[FAD:0] = wr_binary_pointer[FAD:0] + {{(FAD){1'b0}},wr_write};
//# Gray Pointer Conversion (for more reliable synchronization)!
assign wr_gray_next[FAD:0] = {1'b0,wr_binary_next[FAD:1]} ^ wr_binary_next[FAD:0];
//# FIFO full indication
assign wr_fifo_full_next = (wr_gray_next[FAD-2:0] == rd_gray_pointer[FAD-2:0]) &
(wr_gray_next[FAD] ^ rd_gray_pointer[FAD]) &
(wr_gray_next[FAD-1] ^ rd_gray_pointer[FAD-1]);
always @ (posedge cclk or posedge reset)
if(reset)
wr_fifo_full <= 1'b0;
else if(cclk_en)
wr_fifo_full <=wr_fifo_full_next;
//#############################
//# FIFO Read State Machine
//#############################
always @(posedge txo_lclk or posedge reset)
if(reset)
begin
rd_binary_pointer_tlc[FAD:0] <= {(FAD+1){1'b0}};
rd_gray_pointer_tlc[FAD:0] <= {(FAD+1){1'b0}};
end
else if(|(rd_read_tlc[FAD:0]))
begin rd_binary_pointer_tlc[FAD:0] <= rd_binary_next_tlc[FAD:0];
rd_gray_pointer_tlc[FAD:0] <= rd_gray_next_tlc[FAD:0];
end
assign rd_addr_tlc[FAD-1:0] = rd_binary_pointer_tlc[FAD-1:0];
assign rd_binary_next_tlc[FAD:0] = rd_binary_pointer_tlc[FAD:0] + rd_read_tlc[FAD:0];
//# Gray Pointer Conversion (for more reliable synchronization)!
assign rd_gray_next_tlc[FAD:0] = {1'b0,rd_binary_next_tlc[FAD:1]} ^
rd_binary_next_tlc[FAD:0];
//#
//# address and controls of the next transaction to be dispatch
//# * the size is actually FAD-1:0 but since FAD=3 causes syntax
//# error for (FAD-3){1'b0} expression, we use a biger range
//# FAD:0 and (FAD-2){1'b0}
//assign rd_addr_traninfo0_next_tlc[FAD-1:0] = rd_addr_traninfo0_tlc[FAD-1:0] +
// {{(FAD-3){1'b0}},3'b111};
assign rd_addr_traninfo0_next_tlc[FAD:0] = rd_addr_traninfo0_tlc[FAD:0] +
{{(FAD-2){1'b0}},3'b111};
always @(posedge txo_lclk or posedge reset)
if(reset)
rd_addr_traninfo0_tlc[FAD:0] <= {(FAD){1'b0}};
else if(check_next_dstaddr_tlc)
rd_addr_traninfo0_tlc[FAD-1:0] <= rd_addr_traninfo0_next_tlc[FAD-1:0];
assign rd_addr_traninfo1_tlc[FAD-1:0] = rd_addr_traninfo0_tlc[FAD-1:0] +
{{(FAD-2){1'b0}},2'b01};
assign rd_addr_traninfo2_tlc[FAD-1:0] = rd_addr_traninfo0_tlc[FAD-1:0] +
{{(FAD-2){1'b0}},2'b10};
//####################################################
//# Synchronization between rd/wr domains
//####################################################
e16_pulse2pulse pulse_wr2rd (.out (tran_written_tlc),
.outclk (txo_lclk),
.in (tran_written),
.inclk (cclk),
.reset (reset));
e16_synchronizer #(.DW(FAD+1)) sync_rd2wr (.out (rd_gray_pointer[FAD:0]),
.in (rd_gray_pointer_tlc[FAD:0]),
.clk (cclk),
.reset (reset));
endmodule // link_txo_fifo
module link_txo_interface (/*AUTOARG*/
// Outputs
txo_data, txo_frame, txo_wr_wait_int, txo_rd_wait_int,
// Inputs
txo_lclk, reset, txo_wr_data_even, txo_wr_data_odd, txo_wr_frame,
txo_wr_launch_req_tlc, txo_wr_rotate_dis, txo_rd_data_even,
txo_rd_data_odd, txo_rd_frame, txo_rd_launch_req_tlc,
txo_rd_rotate_dis
);
parameter LW = `CFG_LW;
//#########
//# Inputs
//#########
input txo_lclk;
input reset;
//# write transactions
input [LW-1:0] txo_wr_data_even; //Even byte word
input [LW-1:0] txo_wr_data_odd; //Odd byte word
input txo_wr_frame; //indicates new transmission
input txo_wr_launch_req_tlc;
input txo_wr_rotate_dis;
//# read transactions
input [LW-1:0] txo_rd_data_even; //Even byte word
input [LW-1:0] txo_rd_data_odd; //Odd byte word
input txo_rd_frame; //indicates new transmission
input txo_rd_launch_req_tlc;
input txo_rd_rotate_dis;
//############
//# Outputs
//############
output [LW-1:0] txo_data; //Byte word
output txo_frame; //indicates new transmission
output txo_wr_wait_int; // Wait to txo_wr (have to stall immediately)
output txo_rd_wait_int; // Wait to txo_rd (have to stall immediately)
/*AUTOINPUT*/
/*AUTOWIRE*/
//##########
//# REGS
//##########
reg [LW-1:0] data_even_lsl;// Even bytes of the transmission
reg [LW-1:0] data_even_lsh;// Even bytes of the transmission
reg [LW-1:0] data_odd_lsl; // Odd bytes of the transmission
reg txo_frame; //indicates transmission of new package
//###########
//# WIRES
//###########
wire txo_frame_in; // selected frame of the transmission
wire [LW-1:0] data_even_in; // selected even bytes of the transmission
wire [LW-1:0] data_odd_in; // selected odd bytes of the transmission
wire [LW-1:0] txo_data; // ddr data
//###########################
//# Priority arbitration
//###########################
assign txo_wr_wait_int = txo_rd_rotate_dis;
assign txo_rd_wait_int = txo_wr_launch_req_tlc & ~txo_rd_rotate_dis;
//###########################################
//# Transaction mux
//# The "and" part of the "and-or" mux is
//# implemented in the link channels blocks
//# therefore here we are good with "or" only
//###########################################
assign txo_frame_in = txo_wr_frame | txo_rd_frame;
assign data_even_in[LW-1:0] = txo_wr_data_even[LW-1:0] |
txo_rd_data_even[LW-1:0];
assign data_odd_in[LW-1:0] = txo_wr_data_odd[LW-1:0] |
txo_rd_data_odd[LW-1:0];
// ################################
// # Transaction output
// ################################
always @ (posedge txo_lclk or posedge reset)
if (reset)
begin
txo_frame <= 1'b0;
data_even_lsl[LW-1:0] <= {(LW){1'b0}};
data_odd_lsl[LW-1:0] <= {(LW){1'b0}};
end
else
begin
txo_frame <= txo_frame_in;
data_even_lsl[LW-1:0] <= data_even_in[LW-1:0];
data_odd_lsl[LW-1:0] <= data_odd_in[LW-1:0];
end
// # Creating data that is stable high
always @ (negedge txo_lclk or posedge reset)
if (reset)
data_even_lsh[LW-1:0] <= {(LW){1'b0}};
else
data_even_lsh[LW-1:0] <= data_even_lsl[LW-1:0];
// #################################
// # Dual data rate implementation
// #################################
assign txo_data[LW-1:0] = txo_lclk ? data_even_lsh[LW-1:0]://stable high data
data_odd_lsl[LW-1:0]; //stable low data
endmodule // link_txo_interface
module link_txo_launcher (/*AUTOARG*/
// Outputs
rd_read, check_next_dstaddr, txo_launch_req, txo_rotate_dis,
tran_frame, tran_byte_even, tran_byte_odd,
// Inputs
reset, txo_lclk, txo_rd, txo_cid, cfg_burst_dis, fifo_out,
tran_written, next_ctrlmode, next_dstaddr, next_datamode,
next_write, next_access, txo_launch_ack
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter AW = `CFG_AW ;//address width
parameter AE = 4; // Number of "architectural" entries
parameter PE = 7; // Number of "physical" entries in the "architectural" one
parameter FAD = 5; // Number of bits to access all the entries (2^FAD + 1) > AE*PE
//##########
//# INPUTS
//##########
input reset;
input txo_lclk; // link transmitter clock
input txo_rd; // this is read transactions channel
input [1:0] txo_cid; // transmitter channel ID
//# from configuration register
input cfg_burst_dis; // control register bursting disable
//# from the fifo
input [2*LW-1:0] fifo_out;
input tran_written;
input [3:0] next_ctrlmode;
input [AW-1:0] next_dstaddr;
input [1:0] next_datamode;
input next_write;
input next_access;
//# from the arbiter
input txo_launch_ack;
//############
//# OUTPUTS
//############
//# to the fifo
output [FAD:0] rd_read; // Read containing potential jump for bursting
output check_next_dstaddr; // Next transaction dstaddr can be checked
//# to the arbiter
output txo_launch_req; // Launch request
output txo_rotate_dis; // Arbiter's rotate disable
//# to the output mux/buffer
output tran_frame; // Frame of the transaction
output [LW-1:0] tran_byte_even; // Even byte of the transaction
output [LW-1:0] tran_byte_odd; // Odd byte of the transaction
/*AUTOINPUT*/
/*AUTOWIRE*/
//#############
//# REGS
//#############
reg [AE+1:0] fifo_trans;
reg [3:0] ref_ctrlmode;
reg [AW-1:0] ref_dstaddr;
reg [1:0] ref_datamode;
reg ref_write;
reg ref_access;
reg byte0_inc0;
reg txo_launch_init_req;
reg txo_launch_ack_del1;
reg txo_launch_ack_del2;
reg tran_frame;
reg [LW-1:0] byte_odd_del;
reg [LW-1:0] tran_byte_even;
reg [LW-1:0] tran_byte_odd;
reg [2:0] txo_launch_cnt;
reg burst_req;
reg [1:0] burst_backup_cnt;
//#############
//# WIRES
//#############
wire start_new_read;
wire [AW-1:0] ref_dstaddr_inc8; //Refernce address incremented by 8
wire next_inc8_match; // Next address match (incremented by 8)
wire next_inc0_match; // Next address match (un-incremented)
wire [7:0] ref_ctrl; // Control type of reference transaction
wire [7:0] next_ctrl;// Control type of next transaction
wire type_match; // Reference and next transactions are of the same type
wire [7:0] tran_byte0; // Byte0 of the transaction
wire burst_tran; // Burst transaction
wire [2:0] txo_launch_cnt_inc; // Incremented value of the counter
wire [2:0] txo_launch_cnt_next;// Next value of the counter
wire txo_launch_cnt_max; // The counter reached its maximum value
wire tran_read; // Transaction is read (last cycle of the transmission)
wire jump_4entries; // Jump forward four entries
wire jump_3entries; // Jump forward three entries
wire jump_3entries_write; // jump over srcaddr part of the tran on write
wire jump_3entries_read; // jump over data part of the transaction on read
wire jump_1entry; // single entry "jump"
wire [2:0] jump_value; // value of the jump for read pointer
wire txo_op_ack; // "operation" acknowledge
wire txo_op_ack_first; // first "operation" acknowledge cycle
wire [LW-1:0] byte_even_mux;
wire [LW-1:0] byte_odd_mux;
wire [LW-1:0] byte_even;
wire [LW-1:0] byte_odd;
wire make_gap; // make gap in the transaction frame
wire single_write; // single write transaction
wire double_write; // double write transaction
wire burst_req_denied; // request of burst transaction is not acknowledged
wire burst_backup_inc; // burst transaction backup counter increment
wire [1:0] burst_backup_inc_cnt; // Incremented burst backup counter
wire [1:0] burst_backup_next_cnt; // Next burst backup counter value
wire freeze_fifo; // FIFO and main counter advance should stoped
wire sel_ref_byte0; // select byte0 from the reference information of the transaction
wire sel_ref_byte1; // select byte1 from the reference information of the transaction
wire sel_ref_byte2; // select byte2 from the reference information of the transaction
wire sel_ref_byte3; // select byte3 from the reference information of the transaction
wire sel_ref_byte4; // select byte4 from the reference information of the transaction
wire sel_ref_byte5; // select byte5 from the reference information of the transaction
//####################################################
//# Interface to the arbiter
//#
//#####################################################
//# When the acknowledge is received on the last cycle of the transaction
//# and if the next transaction is not a burst transaction then we should
//# create an "artificial gap" in the frame signal.
//# If burst request was denied we should de-assert frame signal
assign make_gap = tran_read & ~burst_tran;
always @ (posedge txo_lclk or posedge reset)
if(reset)
begin
txo_launch_ack_del1 <= 1'b0;
txo_launch_ack_del2 <= 1'b0;
end
else
begin
txo_launch_ack_del1 <= txo_launch_ack & ~make_gap;
txo_launch_ack_del2 <= txo_launch_ack_del1 & ~burst_req_denied;
end
assign txo_op_ack = txo_launch_ack & txo_launch_ack_del1;
assign txo_op_ack_first = txo_launch_ack_del1 & ~txo_launch_ack_del2;
//# Request and rotate disable
//# On the first cycle of the acknowledge the launch count is not incremented
//# yet, therefore we have to force request and rotate disable "artificially"
always @ (posedge txo_lclk or posedge reset)
if (reset)
txo_launch_init_req <= 1'b0;
else if(start_new_read)
txo_launch_init_req <= 1'b1;
else if(txo_launch_ack)
txo_launch_init_req <= 1'b0;
assign txo_launch_req = txo_launch_init_req |
txo_op_ack_first | (|(txo_launch_cnt[2:0]));
assign txo_rotate_dis = ~txo_launch_init_req &
(txo_op_ack_first | (|(txo_launch_cnt[2:0])));
//#######################################
//# Architectural entries state tracking
//# (written/read transactions tracking)
//#######################################
always @ (posedge txo_lclk or posedge reset)
if(reset)
fifo_trans[AE+1:0] <= {{(AE+1){1'b0}},1'b1};
else if(tran_written & ~tran_read)
fifo_trans[AE+1:0] <= {fifo_trans[AE:0],1'b0};
else if(tran_read & ~tran_written)
fifo_trans[AE+1:0] <= {1'b0,fifo_trans[AE+1:1]};
//# we start new read if:
//# 1. there is an indication of the first written transaction
//# 2. transaction is read and the new one is written at the same cycle
//# 3. transaction is read but there are more already written indicated by fifo_trans
assign start_new_read = (fifo_trans[0] & tran_written) |
(tran_read & tran_written) |
((|(fifo_trans[AE+1:2])) & tran_read );
assign check_next_dstaddr = start_new_read;
//#####################
//# Bursting logic
//#####################
//# keeping track of the address increment mode of burst transaction
always @ (posedge txo_lclk or posedge reset)
if(reset)
byte0_inc0 <= 1'b0;
else if(start_new_read)
byte0_inc0 <= next_inc0_match;
//# reference destination address and controls
always @(posedge txo_lclk)
if(start_new_read)
begin
ref_ctrlmode[3:0] <= next_ctrlmode[3:0];
ref_dstaddr[AW-1:0] <= next_dstaddr[AW-1:0];
ref_datamode[1:0] <= next_datamode[1:0];
ref_write <= next_write;
ref_access <= next_access;
end
//# transaction type (double write should be known in advance for burst determination)
// assign single_write = ref_access & ref_write & ~(&(ref_datamode[1:0]));
assign single_write = 1'b0; // No special treatment for single write
assign double_write = next_access & next_write & (&(next_datamode[1:0]));
//# compare address
assign ref_dstaddr_inc8[AW-1:0] = ref_dstaddr[AW-1:0]+{{(AW-4){1'b0}},4'b1000};
assign next_inc8_match = (ref_dstaddr_inc8[AW-1:0] == next_dstaddr[AW-1:0]);
assign next_inc0_match = (ref_dstaddr[AW-1:0] == next_dstaddr[AW-1:0]);
assign ref_ctrl[7:0] = {ref_ctrlmode[3:0], ref_datamode[1:0], ref_write, ref_access};
assign next_ctrl[7:0] = {next_ctrlmode[3:0],next_datamode[1:0],next_write,next_access};
assign type_match = (ref_ctrl[7:0] == next_ctrl[7:0]);
//# burst mode determination
assign burst_tran = ~cfg_burst_dis & // bursting is enabled by user
start_new_read & // valid cycle
tran_read & // only continuous burst is supported
type_match & // type match
double_write & // double write transaction
((next_inc8_match & ~byte0_inc0) | // address match
(next_inc0_match & byte0_inc0));
always @ (posedge txo_lclk or posedge reset)
if (reset)
burst_req <= 1'b0;
else
burst_req <= burst_tran;
//####################################################################################
//# Composing byte0 of the transaction
//#
//# Byte0 has the following encoding scheme:
//#
//# 8'b1?_??_??_<cid> | New READ transaction
//# 8'b0?_??_?0_<cid> | New WRITE transaction with incremental bursting address
//# 8'b0?_??_?1_<cid> | New WRITE transaction with the same bursting address
//#
//# cid[1:0] - channel id (for debugging usage only in the current version of design)
//####################################################################################
assign tran_byte0[7:0] = {txo_rd,4'b0000, byte0_inc0, txo_cid[1:0]};
//###################################################################
//# Order of the transaction fields in the fifo
//# -------------------------------------------
//# Entry "n+6" srcaddr[15:0]
//# Entry "n+5" srcaddr[31:16],
//# Entry "n+4" data[15:0],
//# Entry "n+3" data[31:16],
//# Entry "n+2" dstaddr[11:0],datamode[1:0],write,access,
//# Entry "n+1" dstaddr[27:12],
//# Entry "n" "zevel",ctrlmode[3:0],dstaddr[31:28],
//# --------------------------------------------
//####################################################################
//# 4 entries jump on burst transaction (counter comparison is redundant but used
//# here to underline the mutex between different jumps)
assign jump_4entries = burst_tran & (txo_launch_cnt[2:0] == 3'b110);
//# 3 entries jump on single write or read
assign jump_3entries = jump_3entries_write |
jump_3entries_read;
//# single write will jump 3 entries to the end of the transaction
assign jump_3entries_write = single_write & (txo_launch_cnt[2:0] == 3'b100);
//# read transaction will jump 3 entries over the data part of that transaction
//assign jump_3entries_read = ~ref_write & (txo_launch_cnt[2:0] == 3'b010);
//# read jump over data feature is disabled because of the test-and-set instr.
assign jump_3entries_read = 1'b0;
//# single jump when acknowledged and no other jumps and no freeze control
assign jump_1entry = ~(jump_4entries | jump_3entries | freeze_fifo) & txo_op_ack;
//###########################################################
//# Counter/FIFO Read Pointer increment prevention mechanism
//# when bursting is not acknowledged.
//# When burst_backup_cnt[1:0] is not zero, the counter and
//# FIFO read pointers won't advance and the data out
//# will be selected from the reference controls and address
//###########################################################
assign burst_req_denied = burst_req & ~txo_op_ack;
assign burst_backup_inc = freeze_fifo & txo_op_ack;
assign burst_backup_inc_cnt[1:0] = burst_backup_cnt[1:0] + 2'b01;
assign burst_backup_next_cnt[1:0] = burst_req_denied ? 2'b01 :
burst_backup_inc ? burst_backup_inc_cnt[1:0] :
burst_backup_cnt[1:0];
always @ (posedge txo_lclk or posedge reset)
if(reset)
burst_backup_cnt[1:0] <= 2'b00;
else
burst_backup_cnt[1:0] <= burst_backup_next_cnt[1:0];
assign freeze_fifo = |(burst_backup_cnt[1:0]);
//###################################################################
//# Launch Counter vs. FIFO Read Pointer:
//# FIFO Read Pointer is incremented in the range 0-6
//# relative to any particular entry pointed out in a particular
//# cycle.
//# Launch Counter on the other hand is incremented in the same
//# range of 0-6 but relative to a specific counter state.
//# For example, FIFO Read Pointer can have a jump of 4 from any
//# entry, while Launch Counter will have a jump of 4 only if
//# the current state of the counter is 3'b110 (+ some conditions)
//#
//# This difference in behavior is caused by the fact that
//# for every transaction in the counter we have to go through all
//# the eight existing states of the counter, while it will take
//# only six entriest of the FIFO.
//###################################################################
//# FIFO Read Pointer Jump Value
assign jump_value[2:0] = ({(3){jump_4entries}} & 3'b100) |
({(3){jump_3entries}} & 3'b011) |
({(3){jump_1entry}} & 3'b001);
assign rd_read[FAD:0] = {{(FAD-2){1'b0}},jump_value[2:0]};
//# Counter Next Cycle Value
assign txo_launch_cnt_max = (txo_launch_cnt[2:0] == 3'b110);
assign txo_launch_cnt_inc[2:0] = txo_launch_cnt[2:0] + {2'b00,jump_1entry};
assign txo_launch_cnt_next[2:0] = jump_4entries ? 3'b011 :
(jump_3entries_write | txo_launch_cnt_max) ? 3'b000 :
jump_3entries_read ? 3'b101 : txo_launch_cnt_inc[2:0];
//# Launch counter
always @ (posedge txo_lclk or posedge reset)
if (reset)
txo_launch_cnt[2:0] <= 3'b000;
else if(txo_op_ack)
txo_launch_cnt[2:0] <= txo_launch_cnt_next[2:0];
//#############################################
//# Completion of the transaction transmission
//#############################################
assign tran_read = (~single_write & (txo_launch_cnt[2:0] == 3'b110)) |
( single_write & (txo_launch_cnt[2:0] == 3'b100));
//##################################################
//# Even/Odd bytes construction + tran out sampling
//##################################################
assign sel_ref_byte0 = txo_op_ack_first;
assign sel_ref_byte2 = (burst_backup_cnt[1:0] == 2'b10);
assign sel_ref_byte4 = (burst_backup_cnt[1:0] == 2'b11);
assign sel_ref_byte1 = (burst_backup_cnt[1:0] == 2'b01);
assign sel_ref_byte3 = (burst_backup_cnt[1:0] == 2'b10);
assign sel_ref_byte5 = (burst_backup_cnt[1:0] == 2'b11);
assign byte_even_mux[LW-1:0] = sel_ref_byte0 ? tran_byte0[7:0] :
sel_ref_byte2 ? ref_dstaddr[27:20] :
sel_ref_byte4 ? ref_dstaddr[11:4] :
fifo_out[2*LW-1:LW];
assign byte_odd_mux[LW-1:0] = sel_ref_byte1 ? {ref_ctrlmode[3:0],ref_dstaddr[31:28]} :
sel_ref_byte3 ? ref_dstaddr[19:12] :
sel_ref_byte5 ? {ref_dstaddr[3:0],ref_datamode[1:0],ref_write,ref_access} :
fifo_out[LW-1:0];
assign byte_even[LW-1:0] = {(LW){txo_op_ack}} & byte_even_mux[LW-1:0];
assign byte_odd[LW-1:0] = {(LW){txo_op_ack}} & byte_odd_mux[LW-1:0];
always @ (posedge txo_lclk or posedge reset)
if(reset)
tran_frame <= 1'b0;
else
tran_frame <= txo_launch_ack_del2;
always @ (posedge txo_lclk)
begin
byte_odd_del[LW-1:0] <= byte_odd[LW-1:0];
tran_byte_odd[LW-1:0] <= byte_odd_del[LW-1:0];
tran_byte_even[LW-1:0] <= byte_even[LW-1:0];
end
//###################
//# ERROR CHECKERS
//###################
// synthesis translate_off
always @*
if(~(|(fifo_trans[AE+1:0])) & $time>0)
$display("ERROR>>link launcher mechanism is broken in cell %m");
always @*
if(((jump_4entries & (jump_3entries_read | jump_3entries_write | jump_1entry))|
(jump_3entries_read & ( jump_3entries_write | jump_1entry))|
(jump_3entries_write & ( jump_1entry)))
& $time>0)
$display("ERROR>>detected more than one jump for launcher mechanism in cell %m");
// synthesis translate_on
endmodule // link_txo_launcher
module link_txo_mesh_channel (/*AUTOARG*/
// Outputs
emesh_wait_out, mesh_wait_out, txo_launch_req_tlc,
txo_rotate_dis_tlc, tran_frame_tlc, tran_byte_even_tlc,
tran_byte_odd_tlc,
// Inputs
cclk, cclk_en, txo_lclk, reset, ext_yid_k, ext_xid_k, who_am_i,
txo_rd, txo_cid, cfg_multicast_dis, cfg_burst_dis, emesh_tran_in,
emesh_frame_in, mesh_access_in, mesh_write_in, mesh_dstaddr_in,
mesh_srcaddr_in, mesh_data_in, mesh_datamode_in, mesh_ctrlmode_in,
txo_launch_ack_tlc
);
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter FW = `CFG_NW*`CFG_LW;
parameter FAD = 5; // Number of bits to access all the entries (2^FAD + 1) > AE*PE
//##########
//# INPUTS
//##########
input cclk; // clock of the score the emesh comes from
input cclk_en; // clock enable
input txo_lclk; // clock of the link transmitter
input reset;
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input txo_rd; // this is read transactions channel
input [1:0] txo_cid; // transmitter channel ID
input cfg_multicast_dis; // control register multicast disable
input cfg_burst_dis; // control register bursting disable
//# from the EMESH
input [2*LW-1:0] emesh_tran_in; // serialized transaction
input emesh_frame_in; // transaction frame
//# from the MESH
input mesh_access_in; // access control from the mesh
input mesh_write_in; // write control from the mesh
input [AW-1:0] mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] mesh_data_in; // data from the mesh
input [1:0] mesh_datamode_in;// data mode from the mesh
input [3:0] mesh_ctrlmode_in;// ctrl mode from the mesh
//# from the arbiter
input txo_launch_ack_tlc;
//###########
//# OUTPUTS
//###########
//# to emesh
output emesh_wait_out; // wait to the emesh
//# to mesh
output mesh_wait_out; // wait to the mesh
//# to the arbiter
output txo_launch_req_tlc; // Launch request
output txo_rotate_dis_tlc; // Arbiter's rotate disable
//# to the output mux/buffer
output tran_frame_tlc; // Frame of the transaction
output [LW-1:0] tran_byte_even_tlc; // Even byte of the transaction
output [LW-1:0] tran_byte_odd_tlc; // Odd byte of the transaction
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire access_reg; // From mesh_interface of e16_mesh_interface.v
wire check_next_dstaddr_tlc; // From link_txo_launcher of link_txo_launcher.v
wire [3:0] ctrlmode_reg; // From mesh_interface of e16_mesh_interface.v
wire [DW-1:0] data_reg; // From mesh_interface of e16_mesh_interface.v
wire [1:0] datamode_reg; // From mesh_interface of e16_mesh_interface.v
wire [AW-1:0] dstaddr_reg; // From mesh_interface of e16_mesh_interface.v
wire [2*LW-1:0] fifo_out_tlc; // From link_txo_fifo of link_txo_fifo.v
wire mesh_frame; // From link_txo_mesh_launcher of link_txo_mesh_launcher.v
wire mesh_req; // From link_txo_mesh_launcher of link_txo_mesh_launcher.v
wire mesh_rotate_dis; // From link_txo_mesh_launcher of link_txo_mesh_launcher.v
wire [2*LW-1:0] mesh_tran; // From link_txo_mesh_launcher of link_txo_mesh_launcher.v
wire mesh_wait_int; // From link_txo_mesh_launcher of link_txo_mesh_launcher.v
wire next_access_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [3:0] next_ctrlmode_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [1:0] next_datamode_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [AW-1:0] next_dstaddr_tlc; // From link_txo_fifo of link_txo_fifo.v
wire next_write_tlc; // From link_txo_fifo of link_txo_fifo.v
wire [FAD:0] rd_read_tlc; // From link_txo_launcher of link_txo_launcher.v
wire [AW-1:0] srcaddr_reg; // From mesh_interface of e16_mesh_interface.v
wire tran_written_tlc; // From link_txo_fifo of link_txo_fifo.v
wire wr_fifo_full; // From link_txo_fifo of link_txo_fifo.v
wire write_reg; // From mesh_interface of e16_mesh_interface.v
// End of automatics
//#######################
//# Transaction Launcher
//#######################
/* link_txo_launcher AUTO_TEMPLATE (
.txo_rotate_dis (txo_rotate_dis_tlc),
.reset (reset),
.txo_lclk (txo_lclk),
.txo_rd (txo_rd),
.txo_cid (txo_cid[1:0]),
.cfg_burst_dis (cfg_burst_dis),
.\(.*\) (\1_tlc[]),
);
*/
link_txo_launcher #(.FAD(FAD)) link_txo_launcher(/*AUTOINST*/
// Outputs
.rd_read (rd_read_tlc[FAD:0]), // Templated
.check_next_dstaddr (check_next_dstaddr_tlc), // Templated
.txo_launch_req (txo_launch_req_tlc), // Templated
.txo_rotate_dis (txo_rotate_dis_tlc), // Templated
.tran_frame (tran_frame_tlc), // Templated
.tran_byte_even (tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd (tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.reset (reset), // Templated
.txo_lclk (txo_lclk), // Templated
.txo_rd (txo_rd), // Templated
.txo_cid (txo_cid[1:0]), // Templated
.cfg_burst_dis (cfg_burst_dis), // Templated
.fifo_out (fifo_out_tlc[2*LW-1:0]), // Templated
.tran_written (tran_written_tlc), // Templated
.next_ctrlmode (next_ctrlmode_tlc[3:0]), // Templated
.next_dstaddr (next_dstaddr_tlc[AW-1:0]), // Templated
.next_datamode (next_datamode_tlc[1:0]), // Templated
.next_write (next_write_tlc), // Templated
.next_access (next_access_tlc), // Templated
.txo_launch_ack (txo_launch_ack_tlc)); // Templated
//########
//# FIFO
//########
link_txo_fifo #(.FAD(FAD)) link_txo_fifo(.tran_in (mesh_tran[2*LW-1:0]),
.frame_in (mesh_frame),
/*AUTOINST*/
// Outputs
.wr_fifo_full (wr_fifo_full),
.fifo_out_tlc (fifo_out_tlc[2*LW-1:0]),
.tran_written_tlc (tran_written_tlc),
.next_ctrlmode_tlc (next_ctrlmode_tlc[3:0]),
.next_dstaddr_tlc (next_dstaddr_tlc[AW-1:0]),
.next_datamode_tlc (next_datamode_tlc[1:0]),
.next_write_tlc (next_write_tlc),
.next_access_tlc (next_access_tlc),
// Inputs
.reset (reset),
.cclk (cclk),
.cclk_en (cclk_en),
.txo_lclk (txo_lclk),
.rd_read_tlc (rd_read_tlc[FAD:0]),
.check_next_dstaddr_tlc(check_next_dstaddr_tlc));
//##################################
//# Interface with mesh
//# on input transactions only
//# * output to the mesh is driven
//# by a diferent block
//##################################
/*e16_mesh_interface AUTO_TEMPLATE (
.clk (cclk),
.clk_en (cclk_en),
.wait_int (mesh_wait_int),
.wait_out (mesh_wait_out),
.\(.*\)_out (),
.wait_in (1'b0),
.\(.*\)_in (mesh_\1_in[]),
.access (1'b0),
.write (1'b0),
.datamode (2'b00),
.ctrlmode (4'b0000),
.data ({(DW){1'b0}}),
.dstaddr ({(AW){1'b0}}),
.srcaddr ({(AW){1'b0}}),
);
*/
e16_mesh_interface mesh_interface(/*AUTOINST*/
// Outputs
.wait_out (mesh_wait_out), // Templated
.access_out (), // Templated
.write_out (), // Templated
.datamode_out (), // Templated
.ctrlmode_out (), // Templated
.data_out (), // Templated
.dstaddr_out (), // Templated
.srcaddr_out (), // Templated
.access_reg (access_reg),
.write_reg (write_reg),
.datamode_reg (datamode_reg[1:0]),
.ctrlmode_reg (ctrlmode_reg[3:0]),
.data_reg (data_reg[DW-1:0]),
.dstaddr_reg (dstaddr_reg[AW-1:0]),
.srcaddr_reg (srcaddr_reg[AW-1:0]),
// Inputs
.clk (cclk), // Templated
.clk_en (cclk_en), // Templated
.reset (reset),
.wait_in (1'b0), // Templated
.access_in (mesh_access_in), // Templated
.write_in (mesh_write_in), // Templated
.datamode_in (mesh_datamode_in[1:0]), // Templated
.ctrlmode_in (mesh_ctrlmode_in[3:0]), // Templated
.data_in (mesh_data_in[DW-1:0]), // Templated
.dstaddr_in (mesh_dstaddr_in[AW-1:0]), // Templated
.srcaddr_in (mesh_srcaddr_in[AW-1:0]), // Templated
.wait_int (mesh_wait_int), // Templated
.access (1'b0), // Templated
.write (1'b0), // Templated
.datamode (2'b00), // Templated
.ctrlmode (4'b0000), // Templated
.data ({(DW){1'b0}}), // Templated
.dstaddr ({(AW){1'b0}}), // Templated
.srcaddr ({(AW){1'b0}})); // Templated
//#################################
//# MESH Transaction Launcher
//#################################
link_txo_mesh_launcher link_txo_mesh_launcher(.mesh_grant (~wr_fifo_full),
/*AUTOINST*/
// Outputs
.mesh_wait_int (mesh_wait_int),
.mesh_req (mesh_req),
.mesh_rotate_dis (mesh_rotate_dis),
.mesh_tran (mesh_tran[2*LW-1:0]),
.mesh_frame (mesh_frame),
// Inputs
.cclk (cclk),
.cclk_en (cclk_en),
.reset (reset),
.ext_yid_k (ext_yid_k[3:0]),
.ext_xid_k (ext_xid_k[3:0]),
.who_am_i (who_am_i[3:0]),
.cfg_multicast_dis (cfg_multicast_dis),
.access_reg (access_reg),
.write_reg (write_reg),
.datamode_reg (datamode_reg[1:0]),
.ctrlmode_reg (ctrlmode_reg[3:0]),
.data_reg (data_reg[DW-1:0]),
.dstaddr_reg (dstaddr_reg[AW-1:0]),
.srcaddr_reg (srcaddr_reg[AW-1:0]));
endmodule // link_txo_mesh_channel
module link_txo_mesh_launcher(/*AUTOARG*/
// Outputs
mesh_wait_int, mesh_req, mesh_rotate_dis, mesh_tran, mesh_frame,
// Inputs
cclk, cclk_en, reset, ext_yid_k, ext_xid_k, who_am_i,
cfg_multicast_dis, access_reg, write_reg, datamode_reg,
ctrlmode_reg, data_reg, dstaddr_reg, srcaddr_reg, mesh_grant
);
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
//##########
//# INPUTS
//##########
input cclk; // clock of the score the emesh comes from
input cclk_en; // clock enable
input reset;
input [3:0] ext_yid_k; // external y-id
input [3:0] ext_xid_k; // external x-id
input [3:0] who_am_i; // specifies what link is that (north,east,south,west)
input cfg_multicast_dis; // control register multicast disable
//# input transaction (after mesh interface)
input access_reg;
input write_reg;
input [1:0] datamode_reg;
input [3:0] ctrlmode_reg;
input [DW-1:0] data_reg;
input [AW-1:0] dstaddr_reg;
input [AW-1:0] srcaddr_reg;
//# from the mesh/emesh arbiter
input mesh_grant;
//############
//# OUTPUTS
//############
//# to the mesh interface
output mesh_wait_int; // Wait indication
//# to the arbiter
output mesh_req; // Launch request to the arbiter
output mesh_rotate_dis; // Arbiter's rotate disable
//# to the output mux/buffer
output [2*LW-1:0] mesh_tran; // transaction data
output mesh_frame; // mesh frame
/*AUTOINPUT*/
/*AUTOWIRE*/
//#############
//# REGS
//#############
reg [2:0] mesh_pointer;
//#############
//# WIRES
//#############
wire multicast_tran_valid; // Valid multicast transaction
wire multicast_tran; // transaction is of the multicast type
wire [3:0] ycoord_k_n; // inverted external y coordinates
wire [3:0] xcoord_k_n; // inverted external x coordinates
wire [3:0] addr_y; // external y coordinates of the source address
wire [3:0] addr_x; // external x coordinates of the source address
wire ext_yzero;
wire ext_xzero;
wire [4:0] ext_xdiff;
wire [4:0] ext_ydiff;
wire ext_xcarry;
wire ext_ycarry;
wire ext_xgt;
wire ext_xlt;
wire ext_ygt;
wire ext_ylt;
wire route_east;
wire route_west;
wire route_north;
wire route_south;
wire route_east_normal;
wire route_west_normal;
wire route_north_normal;
wire route_south_normal;
wire route_east_multicast;
wire route_west_multicast;
wire route_north_multicast;
wire route_south_multicast;
wire [3:0] route_sides; // where to route {north,east,south,west}
wire route_out; // Route out of this link was detected
wire mesh_ack;
wire mesh_ack_n;
wire mesh_last_tran;
wire [2:0] mesh_pointer_incr;
wire [6:0] launcher_sel;
wire [14*LW-1:0] mesh_tran_in;
//###########################################
//# Valid MESH-to-LINK transaction detection
//###########################################
//# Multicast transaction detection
assign multicast_tran = write_reg &
(ctrlmode_reg[1:0]==2'b11) & ~(datamode_reg[1:0] == 2'b11);
//# External source or destination address of the transaction for the comparison
// assign addr_y[2:0] = multicast_tran ? srcaddr_reg[31:29] : dstaddr_reg[31:29];
// assign addr_x[2:0] = multicast_tran ? srcaddr_reg[28:26] : dstaddr_reg[28:26];
assign addr_y[3:0] = multicast_tran ? srcaddr_reg[31:28] : dstaddr_reg[31:28];
assign addr_x[3:0] = multicast_tran ? srcaddr_reg[25:22] : dstaddr_reg[25:22];
//# External address based router
assign ycoord_k_n[3:0] = ~ext_yid_k[3:0];
assign xcoord_k_n[3:0] = ~ext_xid_k[3:0];
//# External address comparison
assign ext_yzero = addr_y[3:0]==ext_yid_k[3:0];
assign ext_xzero = addr_x[3:0]==ext_xid_k[3:0];
assign ext_ydiff[4:0] = addr_y[3:0] + ycoord_k_n[3:0] + 1'b1 ;
assign ext_xdiff[4:0] = addr_x[3:0] + xcoord_k_n[3:0] + 1'b1 ;
assign ext_xcarry = ext_xdiff[4]; //result is positive or zero
assign ext_ycarry = ext_ydiff[4]; //result is positive or zero
assign ext_xgt = ext_xcarry & ~ext_xzero;// src/dst X-address is greater than
assign ext_xlt = ~ext_xcarry; // src/dst X-address is less than
assign ext_ygt = ext_ycarry & ~ext_yzero;// src/dst Y-address is greater than
assign ext_ylt = ~ext_ycarry; // src/dst Y-address is less than
//# NON-MULTICAST ROUTING
assign route_east_normal = ext_xgt;
assign route_west_normal = ext_xlt;
assign route_south_normal = ext_ygt & ext_xzero;
assign route_north_normal = ext_ylt & ext_xzero;
//# MULTICAST ROUTING
assign route_east_multicast = (ext_xlt | ext_xzero) & ext_yzero;
assign route_west_multicast = (ext_xgt | ext_xzero) & ext_yzero;
assign route_south_multicast = ext_ylt | ext_yzero;
assign route_north_multicast = ext_ygt | ext_yzero;
//# normal-multicast selection
assign route_east = multicast_tran ? route_east_multicast : route_east_normal;
assign route_west = multicast_tran ? route_west_multicast : route_west_normal;
assign route_south = multicast_tran ? route_south_multicast : route_south_normal;
assign route_north = multicast_tran ? route_north_multicast : route_north_normal;
assign route_sides[3:0] = 4'b1111;//{route_north,route_east,route_south,route_west};
assign route_out = |(who_am_i[3:0] & route_sides[3:0]);
//# Request
assign mesh_req = access_reg & route_out & ((multicast_tran & ~cfg_multicast_dis) |
~multicast_tran);
//# Wait
assign mesh_ack_n = mesh_req & ~mesh_grant;
assign mesh_ack = mesh_req & mesh_grant;
assign mesh_wait_int = mesh_req & ~mesh_last_tran | mesh_ack_n;
//############################################
//# Transaction launcher state machine
//############################################
assign mesh_last_tran = mesh_pointer[2] & mesh_pointer[1] & ~mesh_pointer[0];
assign mesh_pointer_incr[2:0] = mesh_last_tran ? 3'b000 :
(mesh_pointer[2:0] + 3'b001);
always @ (posedge cclk or posedge reset)
if(reset)
mesh_pointer[2:0] <= 3'b000;
else if(cclk_en)
if (mesh_ack)
mesh_pointer[2:0] <= mesh_pointer_incr[2:0];
assign launcher_sel[0] = (mesh_pointer[2:0] == 3'b000);
assign launcher_sel[1] = (mesh_pointer[2:0] == 3'b001);
assign launcher_sel[2] = (mesh_pointer[2:0] == 3'b010);
assign launcher_sel[3] = (mesh_pointer[2:0] == 3'b011);
assign launcher_sel[4] = (mesh_pointer[2:0] == 3'b100);
assign launcher_sel[5] = (mesh_pointer[2:0] == 3'b101);
assign launcher_sel[6] = (mesh_pointer[2:0] == 3'b110);
assign mesh_frame = mesh_req & ~mesh_last_tran;
assign mesh_rotate_dis = |(mesh_pointer[2:0]);
//#############################
//# mesh transaction 7:1 mux
//#############################
//# We are launching in the following order (MSBs first):
assign mesh_tran_in[14*LW-1:0]={
srcaddr_reg[7:0],{(LW){1'b0}},
srcaddr_reg[23:8],
data_reg[7:0],srcaddr_reg[31:24],
data_reg[23:8],
dstaddr_reg[3:0],datamode_reg[1:0],write_reg,access_reg,data_reg[31:24],
dstaddr_reg[19:4],
ctrlmode_reg[3:0],dstaddr_reg[31:20]
};
e16_mux7 #(2*LW) mux7(// Outputs
.out (mesh_tran[2*LW-1:0]),
// Inputs
.in0 (mesh_tran_in[2*LW-1:0]), .sel0 (launcher_sel[0]),
.in1 (mesh_tran_in[4*LW-1:2*LW]), .sel1 (launcher_sel[1]),
.in2 (mesh_tran_in[6*LW-1:4*LW]), .sel2 (launcher_sel[2]),
.in3 (mesh_tran_in[8*LW-1:6*LW]), .sel3 (launcher_sel[3]),
.in4 (mesh_tran_in[10*LW-1:8*LW]), .sel4 (launcher_sel[4]),
.in5 (mesh_tran_in[12*LW-1:10*LW]), .sel5 (launcher_sel[5]),
.in6 (mesh_tran_in[14*LW-1:12*LW]), .sel6 (launcher_sel[6]));
endmodule // link_txo_mesh_launcher
//#############################################################
//# This block is a transmitter of the read transactions only
//# Read transactions can be sent out off the chip from
//# rdmesh only
//#############################################################
module link_txo_rd (/*AUTOARG*/
// Outputs
txo_rd_data_even, txo_rd_data_odd, txo_rd_frame,
txo_rd_launch_req_tlc, txo_rd_rotate_dis, c0_rdmesh_wait_out,
c1_rdmesh_wait_out, c2_rdmesh_wait_out, c3_rdmesh_wait_out,
// Inputs
txo_lclk, reset, txo_rd_wait, txo_rd_wait_int, c0_clk_in,
c1_clk_in, c2_clk_in, c3_clk_in, c0_rdmesh_tran_in,
c0_rdmesh_frame_in, c1_rdmesh_tran_in, c1_rdmesh_frame_in,
c2_rdmesh_tran_in, c2_rdmesh_frame_in, c3_rdmesh_tran_in,
c3_rdmesh_frame_in
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
// #########
// # Inputs
// #########
input txo_lclk; //transmit clock to be used internally
input reset;
// # from io
input txo_rd_wait; // Wait from the receiver
input txo_rd_wait_int; //wait indicator for read transactions
// # Clocks
input c0_clk_in; //clock of the core
input c1_clk_in; //clock of the core
input c2_clk_in; //clock of the core
input c3_clk_in; //clock of the core
// # RDMESH
input [2*LW-1:0] c0_rdmesh_tran_in; // serialized transaction
input c0_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c1_rdmesh_tran_in; // serialized transaction
input c1_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c2_rdmesh_tran_in; // serialized transaction
input c2_rdmesh_frame_in; // transaction frame
input [2*LW-1:0] c3_rdmesh_tran_in; // serialized transaction
input c3_rdmesh_frame_in; // transaction frame
// ##############
// # Outputs
// ##############
// to the txo_interface
output [LW-1:0] txo_rd_data_even; //Even byte word
output [LW-1:0] txo_rd_data_odd; //Odd byte word
output txo_rd_frame; //indicates new transmission
output txo_rd_launch_req_tlc;
output txo_rd_rotate_dis;
output c0_rdmesh_wait_out; // wait to the rdmesh
output c1_rdmesh_wait_out; // wait to the rdmesh
output c2_rdmesh_wait_out; // wait to the rdmesh
output c3_rdmesh_wait_out; // wait to the rdmesh
/*AUTOINPUT*/
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [LW-1:0] c0_tran_byte_even_tlc; // From c0_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c0_tran_byte_odd_tlc; // From c0_link_txo_channel of link_txo_channel.v
wire c0_tran_frame_tlc; // From c0_link_txo_channel of link_txo_channel.v
wire c0_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c0_txo_launch_req_tlc; // From c0_link_txo_channel of link_txo_channel.v
wire c0_txo_rotate_dis; // From c0_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c1_tran_byte_even_tlc; // From c1_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c1_tran_byte_odd_tlc; // From c1_link_txo_channel of link_txo_channel.v
wire c1_tran_frame_tlc; // From c1_link_txo_channel of link_txo_channel.v
wire c1_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c1_txo_launch_req_tlc; // From c1_link_txo_channel of link_txo_channel.v
wire c1_txo_rotate_dis; // From c1_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c2_tran_byte_even_tlc; // From c2_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c2_tran_byte_odd_tlc; // From c2_link_txo_channel of link_txo_channel.v
wire c2_tran_frame_tlc; // From c2_link_txo_channel of link_txo_channel.v
wire c2_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c2_txo_launch_req_tlc; // From c2_link_txo_channel of link_txo_channel.v
wire c2_txo_rotate_dis; // From c2_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c3_tran_byte_even_tlc; // From c3_link_txo_channel of link_txo_channel.v
wire [LW-1:0] c3_tran_byte_odd_tlc; // From c3_link_txo_channel of link_txo_channel.v
wire c3_tran_frame_tlc; // From c3_link_txo_channel of link_txo_channel.v
wire c3_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c3_txo_launch_req_tlc; // From c3_link_txo_channel of link_txo_channel.v
wire c3_txo_rotate_dis; // From c3_link_txo_channel of link_txo_channel.v
// End of automatics
// ##########
// # WIRES
// ##########
wire [1:0] c0_txo_cid;//channel 0 ID
wire [1:0] c1_txo_cid;//channel 1 ID
wire [1:0] c2_txo_cid;//channel 2 ID
wire [1:0] c3_txo_cid;//channel 3 ID
// ################################
// # Transmit buffer instantiation
// ################################
/*link_txo_buffer AUTO_TEMPLATE(
.txo_data_even (txo_rd_data_even[]),
.txo_data_odd (txo_rd_data_odd[]),
.txo_frame (txo_rd_frame),
);
*/
link_txo_buffer link_txo_buffer(/*AUTOINST*/
// Outputs
.txo_data_even (txo_rd_data_even[LW-1:0]), // Templated
.txo_data_odd (txo_rd_data_odd[LW-1:0]), // Templated
.txo_frame (txo_rd_frame), // Templated
// Inputs
.c0_tran_frame_tlc (c0_tran_frame_tlc),
.c0_tran_byte_even_tlc(c0_tran_byte_even_tlc[LW-1:0]),
.c0_tran_byte_odd_tlc(c0_tran_byte_odd_tlc[LW-1:0]),
.c1_tran_frame_tlc (c1_tran_frame_tlc),
.c1_tran_byte_even_tlc(c1_tran_byte_even_tlc[LW-1:0]),
.c1_tran_byte_odd_tlc(c1_tran_byte_odd_tlc[LW-1:0]),
.c2_tran_frame_tlc (c2_tran_frame_tlc),
.c2_tran_byte_even_tlc(c2_tran_byte_even_tlc[LW-1:0]),
.c2_tran_byte_odd_tlc(c2_tran_byte_odd_tlc[LW-1:0]),
.c3_tran_frame_tlc (c3_tran_frame_tlc),
.c3_tran_byte_even_tlc(c3_tran_byte_even_tlc[LW-1:0]),
.c3_tran_byte_odd_tlc(c3_tran_byte_odd_tlc[LW-1:0]));
// #########################
// # Arbiter instantiation
// #########################
/*link_txo_arbiter AUTO_TEMPLATE(
.txo_wait (txo_rd_wait),
.txo_wait_int (txo_rd_wait_int),
.txo_launch_req_tlc (txo_rd_launch_req_tlc),
.txo_rotate_dis_tlc (txo_rd_rotate_dis),
);
*/
link_txo_arbiter link_txo_arbiter (/*AUTOINST*/
// Outputs
.txo_launch_req_tlc(txo_rd_launch_req_tlc), // Templated
.txo_rotate_dis_tlc(txo_rd_rotate_dis), // Templated
.c0_txo_launch_ack_tlc(c0_txo_launch_ack_tlc),
.c1_txo_launch_ack_tlc(c1_txo_launch_ack_tlc),
.c2_txo_launch_ack_tlc(c2_txo_launch_ack_tlc),
.c3_txo_launch_ack_tlc(c3_txo_launch_ack_tlc),
// Inputs
.txo_lclk (txo_lclk),
.reset (reset),
.txo_wait (txo_rd_wait), // Templated
.txo_wait_int (txo_rd_wait_int), // Templated
.c0_txo_launch_req_tlc(c0_txo_launch_req_tlc),
.c0_txo_rotate_dis(c0_txo_rotate_dis),
.c1_txo_launch_req_tlc(c1_txo_launch_req_tlc),
.c1_txo_rotate_dis(c1_txo_rotate_dis),
.c2_txo_launch_req_tlc(c2_txo_launch_req_tlc),
.c2_txo_rotate_dis(c2_txo_rotate_dis),
.c3_txo_launch_req_tlc(c3_txo_launch_req_tlc),
.c3_txo_rotate_dis(c3_txo_rotate_dis));
// #########################
// # Channels instantiation
// #########################
/*link_txo_channel AUTO_TEMPLATE (
.cclk (@"(substring vl-cell-name 0 2)"_clk_in),
.cclk_en (1'b1),
.txo_rd (1'b1),
.txo_lclk (txo_lclk),
.reset (reset),
.cfg_burst_dis (1'b1),
.emesh_\(.*\) (@"(substring vl-cell-name 0 2)"_rdmesh_\1[]),
.\(.*\) (@"(substring vl-cell-name 0 2)"_\1[]),
);
*/
//# channel 0
link_txo_channel #(.FAD(3)) c0_link_txo_channel (/*AUTOINST*/
// Outputs
.emesh_wait_out (c0_rdmesh_wait_out), // Templated
.txo_launch_req_tlc (c0_txo_launch_req_tlc), // Templated
.txo_rotate_dis (c0_txo_rotate_dis), // Templated
.tran_frame_tlc (c0_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c0_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c0_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c0_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.txo_rd (1'b1), // Templated
.txo_cid (c0_txo_cid[1:0]), // Templated
.cfg_burst_dis (1'b1), // Templated
.emesh_tran_in (c0_rdmesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c0_rdmesh_frame_in), // Templated
.txo_launch_ack_tlc (c0_txo_launch_ack_tlc)); // Templated
//# channel 1
link_txo_channel #(.FAD(3)) c1_link_txo_channel (/*AUTOINST*/
// Outputs
.emesh_wait_out (c1_rdmesh_wait_out), // Templated
.txo_launch_req_tlc (c1_txo_launch_req_tlc), // Templated
.txo_rotate_dis (c1_txo_rotate_dis), // Templated
.tran_frame_tlc (c1_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c1_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c1_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c1_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.txo_rd (1'b1), // Templated
.txo_cid (c1_txo_cid[1:0]), // Templated
.cfg_burst_dis (1'b1), // Templated
.emesh_tran_in (c1_rdmesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c1_rdmesh_frame_in), // Templated
.txo_launch_ack_tlc (c1_txo_launch_ack_tlc)); // Templated
//# channel 2
link_txo_channel #(.FAD(3)) c2_link_txo_channel (/*AUTOINST*/
// Outputs
.emesh_wait_out (c2_rdmesh_wait_out), // Templated
.txo_launch_req_tlc (c2_txo_launch_req_tlc), // Templated
.txo_rotate_dis (c2_txo_rotate_dis), // Templated
.tran_frame_tlc (c2_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c2_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c2_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c2_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.txo_rd (1'b1), // Templated
.txo_cid (c2_txo_cid[1:0]), // Templated
.cfg_burst_dis (1'b1), // Templated
.emesh_tran_in (c2_rdmesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c2_rdmesh_frame_in), // Templated
.txo_launch_ack_tlc (c2_txo_launch_ack_tlc)); // Templated
//# channel 3
link_txo_channel #(.FAD(3)) c3_link_txo_channel (/*AUTOINST*/
// Outputs
.emesh_wait_out (c3_rdmesh_wait_out), // Templated
.txo_launch_req_tlc (c3_txo_launch_req_tlc), // Templated
.txo_rotate_dis (c3_txo_rotate_dis), // Templated
.tran_frame_tlc (c3_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c3_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c3_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c3_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.txo_rd (1'b1), // Templated
.txo_cid (c3_txo_cid[1:0]), // Templated
.cfg_burst_dis (1'b1), // Templated
.emesh_tran_in (c3_rdmesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c3_rdmesh_frame_in), // Templated
.txo_launch_ack_tlc (c3_txo_launch_ack_tlc)); // Templated
endmodule // link_txo_rd
//#############################################################
//# This block is a transmitter of the write transactions only
//# Write transactions can be sent out off the chip from
//# emesh and mesh but not from rdmesh
//#############################################################
module link_txo_wr (/*AUTOARG*/
// Outputs
txo_wr_data_even, txo_wr_data_odd, txo_wr_frame,
txo_wr_launch_req_tlc, txo_wr_rotate_dis, c0_emesh_wait_out,
c1_emesh_wait_out, c2_emesh_wait_out, c3_emesh_wait_out,
c0_mesh_wait_out, c3_mesh_wait_out,
// Inputs
c2_tran_frame_tlc, c2_tran_byte_odd_tlc, c2_tran_byte_even_tlc,
c1_tran_frame_tlc, c1_tran_byte_odd_tlc, c1_tran_byte_even_tlc,
txo_lclk, reset, ext_yid_k, ext_xid_k, who_am_i, cfg_burst_dis,
cfg_multicast_dis, txo_wr_wait, txo_wr_wait_int, c0_clk_in,
c1_clk_in, c2_clk_in, c3_clk_in, c0_emesh_tran_in,
c0_emesh_frame_in, c1_emesh_tran_in, c1_emesh_frame_in,
c2_emesh_tran_in, c2_emesh_frame_in, c3_emesh_tran_in,
c3_emesh_frame_in, c0_mesh_access_in, c0_mesh_write_in,
c0_mesh_dstaddr_in, c0_mesh_srcaddr_in, c0_mesh_data_in,
c0_mesh_datamode_in, c0_mesh_ctrlmode_in, c3_mesh_access_in,
c3_mesh_write_in, c3_mesh_dstaddr_in, c3_mesh_srcaddr_in,
c3_mesh_data_in, c3_mesh_datamode_in, c3_mesh_ctrlmode_in
);
parameter LW = `CFG_LW ;//lvds tranceiver pairs per side
parameter AW = `CFG_AW ;//address width
parameter DW = `CFG_DW ;//data width
// #########
// # Inputs
// #########
input txo_lclk; //transmit clock to be used internally
input reset;
input [3:0] ext_yid_k; //external y-id
input [3:0] ext_xid_k; //external x-id
input [3:0] who_am_i; //specifies what link is that (north,east,south,west)
input cfg_burst_dis; //control register bursting disable
input cfg_multicast_dis;//control register multicast disable
// # from io
input txo_wr_wait; // Wait from the receiver
input txo_wr_wait_int; // Wait from the txo_interface (have to stall immediately)
// # Clocks
input c0_clk_in; //clock of the core
input c1_clk_in; //clock of the core
input c2_clk_in; //clock of the core
input c3_clk_in; //clock of the core
// # EMESH
input [2*LW-1:0] c0_emesh_tran_in; // serialized transaction
input c0_emesh_frame_in; // transaction frame
input [2*LW-1:0] c1_emesh_tran_in; // serialized transaction
input c1_emesh_frame_in; // transaction frame
input [2*LW-1:0] c2_emesh_tran_in; // serialized transaction
input c2_emesh_frame_in; // transaction frame
input [2*LW-1:0] c3_emesh_tran_in; // serialized transaction
input c3_emesh_frame_in; // transaction frame
// # MESH
// # core0 (external corners and multicast)
input c0_mesh_access_in; // access control from the mesh
input c0_mesh_write_in; // write control from the mesh
input [AW-1:0] c0_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c0_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c0_mesh_data_in; // data from the mesh
input [1:0] c0_mesh_datamode_in;// data mode from the mesh
input [3:0] c0_mesh_ctrlmode_in;// ctrl mode from the mesh
// # core3 (external corners only)
input c3_mesh_access_in; // access control from the mesh
input c3_mesh_write_in; // write control from the mesh
input [AW-1:0] c3_mesh_dstaddr_in; // destination address from the mesh
input [AW-1:0] c3_mesh_srcaddr_in; // source address from the mesh
input [DW-1:0] c3_mesh_data_in; // data from the mesh
input [1:0] c3_mesh_datamode_in;// data mode from the mesh
input [3:0] c3_mesh_ctrlmode_in;// ctrl mode from the mesh
// ##############
// # Outputs
// ##############
// to the txo_interface
output [LW-1:0] txo_wr_data_even; //Even byte word
output [LW-1:0] txo_wr_data_odd; //Odd byte word
output txo_wr_frame; //indicates new transmission
output txo_wr_launch_req_tlc;
output txo_wr_rotate_dis;
output c0_emesh_wait_out; //wait to the emesh
output c1_emesh_wait_out; //wait to the emesh
output c2_emesh_wait_out; //wait to the emesh
output c3_emesh_wait_out; //wait to the emesh
output c0_mesh_wait_out; //wait to the mesh
output c3_mesh_wait_out; //wait to the mesh
/*AUTOINPUT*/
// Beginning of automatic inputs (from unused autoinst inputs)
input [LW-1:0] c1_tran_byte_even_tlc; // To link_txo_buffer of link_txo_buffer.v
input [LW-1:0] c1_tran_byte_odd_tlc; // To link_txo_buffer of link_txo_buffer.v
input c1_tran_frame_tlc; // To link_txo_buffer of link_txo_buffer.v
input [LW-1:0] c2_tran_byte_even_tlc; // To link_txo_buffer of link_txo_buffer.v
input [LW-1:0] c2_tran_byte_odd_tlc; // To link_txo_buffer of link_txo_buffer.v
input c2_tran_frame_tlc; // To link_txo_buffer of link_txo_buffer.v
// End of automatics
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [LW-1:0] c0_tran_byte_even_tlc; // From c0_link_txo_mesh_channel of link_txo_mesh_channel.v
wire [LW-1:0] c0_tran_byte_odd_tlc; // From c0_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c0_tran_frame_tlc; // From c0_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c0_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c0_txo_launch_req_tlc; // From c0_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c0_txo_rotate_dis; // From c0_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c1_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c2_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire [LW-1:0] c3_tran_byte_even_tlc; // From c3_link_txo_mesh_channel of link_txo_mesh_channel.v
wire [LW-1:0] c3_tran_byte_odd_tlc; // From c3_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c3_tran_frame_tlc; // From c3_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c3_txo_launch_ack_tlc; // From link_txo_arbiter of link_txo_arbiter.v
wire c3_txo_launch_req_tlc; // From c3_link_txo_mesh_channel of link_txo_mesh_channel.v
wire c3_txo_rotate_dis; // From c3_link_txo_mesh_channel of link_txo_mesh_channel.v
// End of automatics
// ##########
// # WIRES
// ##########
wire [1:0] c0_txo_cid;//channel 0 ID
wire [1:0] c1_txo_cid;//channel 1 ID
wire [1:0] c2_txo_cid;//channel 2 ID
wire [1:0] c3_txo_cid;//channel 3 ID
// #####################################
// # Transmitter channels instantiation
// #####################################
assign c0_txo_cid[1:0] = 2'b00;
assign c1_txo_cid[1:0] = 2'b01;
assign c2_txo_cid[1:0] = 2'b10;
assign c3_txo_cid[1:0] = 2'b11;
// ################################
// # Transmit buffer instantiation
// ################################
/*link_txo_buffer AUTO_TEMPLATE(
.txo_data_even (txo_wr_data_even[]),
.txo_data_odd (txo_wr_data_odd[]),
.txo_frame (txo_wr_frame),
);
*/
link_txo_buffer link_txo_buffer(/*AUTOINST*/
// Outputs
.txo_data_even (txo_wr_data_even[LW-1:0]), // Templated
.txo_data_odd (txo_wr_data_odd[LW-1:0]), // Templated
.txo_frame (txo_wr_frame), // Templated
// Inputs
.c0_tran_frame_tlc (c0_tran_frame_tlc),
.c0_tran_byte_even_tlc(c0_tran_byte_even_tlc[LW-1:0]),
.c0_tran_byte_odd_tlc(c0_tran_byte_odd_tlc[LW-1:0]),
.c1_tran_frame_tlc (c1_tran_frame_tlc),
.c1_tran_byte_even_tlc(c1_tran_byte_even_tlc[LW-1:0]),
.c1_tran_byte_odd_tlc(c1_tran_byte_odd_tlc[LW-1:0]),
.c2_tran_frame_tlc (c2_tran_frame_tlc),
.c2_tran_byte_even_tlc(c2_tran_byte_even_tlc[LW-1:0]),
.c2_tran_byte_odd_tlc(c2_tran_byte_odd_tlc[LW-1:0]),
.c3_tran_frame_tlc (c3_tran_frame_tlc),
.c3_tran_byte_even_tlc(c3_tran_byte_even_tlc[LW-1:0]),
.c3_tran_byte_odd_tlc(c3_tran_byte_odd_tlc[LW-1:0]));
// #########################
// # Arbiter instantiation
// #########################
/*link_txo_arbiter AUTO_TEMPLATE(
.txo_wait (txo_wr_wait),
.txo_wait_int (txo_wr_wait_int),
.txo_launch_req_tlc (txo_wr_launch_req_tlc),
.txo_rotate_dis_tlc (txo_wr_rotate_dis),
);
*/
link_txo_arbiter link_txo_arbiter (.c1_txo_launch_req_tlc(1'b0),
.c1_txo_rotate_dis(1'b0),
.c2_txo_launch_req_tlc(1'b0),
.c2_txo_rotate_dis(1'b0),
.c3_txo_launch_req_tlc(1'b0),
.c3_txo_rotate_dis(1'b0),
/*AUTOINST*/
// Outputs
.txo_launch_req_tlc(txo_wr_launch_req_tlc), // Templated
.txo_rotate_dis_tlc(txo_wr_rotate_dis), // Templated
.c0_txo_launch_ack_tlc(c0_txo_launch_ack_tlc),
.c1_txo_launch_ack_tlc(c1_txo_launch_ack_tlc),
.c2_txo_launch_ack_tlc(c2_txo_launch_ack_tlc),
.c3_txo_launch_ack_tlc(c3_txo_launch_ack_tlc),
// Inputs
.txo_lclk (txo_lclk),
.reset (reset),
.txo_wait (txo_wr_wait), // Templated
.txo_wait_int (txo_wr_wait_int), // Templated
.c0_txo_launch_req_tlc(c0_txo_launch_req_tlc),
.c0_txo_rotate_dis(c0_txo_rotate_dis));
// #########################
// # Channels instantiation
// #########################
/*link_txo_mesh_channel AUTO_TEMPLATE (
.cclk (@"(substring vl-cell-name 0 2)"_clk_in),
.cclk_en (1'b1),
.txo_rd (1'b0),
.txo_lclk (txo_lclk),
.reset (reset),
.cfg_burst_dis (cfg_burst_dis),
.txo_rotate_dis_tlc (@"(substring vl-cell-name 0 2)"_txo_rotate_dis),
.emesh_\(.*\) (@"(substring vl-cell-name 0 2)"_emesh_\1[]),
.\(.*\) (@"(substring vl-cell-name 0 2)"_\1[]),
.ext_yid_k (ext_yid_k[]),
.ext_xid_k (ext_xid_k[]),
.who_am_i (who_am_i[]),
);
*/
//# channel 0 (emesh + mesh for external corners + mesh for multicast)
link_txo_mesh_channel c0_link_txo_mesh_channel(.cfg_multicast_dis (cfg_multicast_dis),
/*AUTOINST*/
// Outputs
.emesh_wait_out (c0_emesh_wait_out), // Templated
.mesh_wait_out (c0_mesh_wait_out), // Templated
.txo_launch_req_tlc (c0_txo_launch_req_tlc), // Templated
.txo_rotate_dis_tlc (c0_txo_rotate_dis), // Templated
.tran_frame_tlc (c0_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c0_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c0_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c0_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.ext_yid_k (ext_yid_k[3:0]), // Templated
.ext_xid_k (ext_xid_k[3:0]), // Templated
.who_am_i (who_am_i[3:0]), // Templated
.txo_rd (1'b0), // Templated
.txo_cid (c0_txo_cid[1:0]), // Templated
.cfg_burst_dis (cfg_burst_dis), // Templated
.emesh_tran_in (c0_emesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c0_emesh_frame_in), // Templated
.mesh_access_in (c0_mesh_access_in), // Templated
.mesh_write_in (c0_mesh_write_in), // Templated
.mesh_dstaddr_in (c0_mesh_dstaddr_in[AW-1:0]), // Templated
.mesh_srcaddr_in (c0_mesh_srcaddr_in[AW-1:0]), // Templated
.mesh_data_in (c0_mesh_data_in[DW-1:0]), // Templated
.mesh_datamode_in (c0_mesh_datamode_in[1:0]), // Templated
.mesh_ctrlmode_in (c0_mesh_ctrlmode_in[3:0]), // Templated
.txo_launch_ack_tlc (c0_txo_launch_ack_tlc)); // Templated
//# channel 3 (emesh + mesh for external corners)
link_txo_mesh_channel c3_link_txo_mesh_channel(.cfg_multicast_dis (1'b1),
/*AUTOINST*/
// Outputs
.emesh_wait_out (c3_emesh_wait_out), // Templated
.mesh_wait_out (c3_mesh_wait_out), // Templated
.txo_launch_req_tlc (c3_txo_launch_req_tlc), // Templated
.txo_rotate_dis_tlc (c3_txo_rotate_dis), // Templated
.tran_frame_tlc (c3_tran_frame_tlc), // Templated
.tran_byte_even_tlc (c3_tran_byte_even_tlc[LW-1:0]), // Templated
.tran_byte_odd_tlc (c3_tran_byte_odd_tlc[LW-1:0]), // Templated
// Inputs
.cclk (c3_clk_in), // Templated
.cclk_en (1'b1), // Templated
.txo_lclk (txo_lclk), // Templated
.reset (reset), // Templated
.ext_yid_k (ext_yid_k[3:0]), // Templated
.ext_xid_k (ext_xid_k[3:0]), // Templated
.who_am_i (who_am_i[3:0]), // Templated
.txo_rd (1'b0), // Templated
.txo_cid (c3_txo_cid[1:0]), // Templated
.cfg_burst_dis (cfg_burst_dis), // Templated
.emesh_tran_in (c3_emesh_tran_in[2*LW-1:0]), // Templated
.emesh_frame_in (c3_emesh_frame_in), // Templated
.mesh_access_in (c3_mesh_access_in), // Templated
.mesh_write_in (c3_mesh_write_in), // Templated
.mesh_dstaddr_in (c3_mesh_dstaddr_in[AW-1:0]), // Templated
.mesh_srcaddr_in (c3_mesh_srcaddr_in[AW-1:0]), // Templated
.mesh_data_in (c3_mesh_data_in[DW-1:0]), // Templated
.mesh_datamode_in (c3_mesh_datamode_in[1:0]), // Templated
.mesh_ctrlmode_in (c3_mesh_ctrlmode_in[3:0]), // Templated
.txo_launch_ack_tlc (c3_txo_launch_ack_tlc)); // Templated
endmodule // link_txo_wr
module _MAGMA_CELL_FF_ (DATA, CLOCK, CLEAR, PRESET, SLAVE_CLOCK, OUT);
input DATA;
input CLOCK;
input CLEAR;
input PRESET;
input SLAVE_CLOCK;
output OUT;
reg OUT;
// synopsys one_hot "PRESET, CLEAR"
always @(posedge CLOCK or posedge PRESET or posedge CLEAR)
if (CLEAR)
OUT <= 1'b0;
else
if (PRESET)
OUT <= 1'b1;
else
OUT <= DATA;
endmodule
// Entity:dffnq Model:DFFNQX3A12TR Library:cmos10sf_5_20_02_scadv12
module DFFNQX3A12TR (CKN, D, Q);
input CKN, D;
output Q;
supply0 N7;
_MAGMA_CELL_FF_ C1 (.DATA(D), .CLOCK(CKN__br_in_not), .CLEAR(N7), .PRESET(N7), .SLAVE_CLOCK(N7), .OUT(Q));
not (CKN__br_in_not, CKN);
endmodule // DFFNQX3A12TR
module DFFQX4A12TR (CK, D, Q);
input CK, D;
output Q;
supply0 N6;
_MAGMA_CELL_FF_ C1 (.DATA(D), .CLOCK(CK), .CLEAR(N6), .PRESET(N6), .SLAVE_CLOCK(N6), .OUT(Q));
endmodule
module MX2X4A12TR (A, B, S0, Y);
input A, B, S0;
output Y;
wire N3, N6;
and C1 (N3, S0, B);
and C3 (N6, S0__br_in_not, A);
not (S0__br_in_not, S0);
or C4 (Y, N3, N6);
endmodule
/*
Copyright (C) 2014 Adapteva, Inc.
Contributed by Roman Trogan <roman@adapteva.com>
Contributed by Andreas Olofsson <andreas@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.This program is distributed in the hope
that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy
of the GNU General Public License along with this program (see the file
COPYING). If not, see <http://www.gnu.org/licenses/>.
*/