1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-17 20:02:53 +08:00
oh/elink/hdl/erx_io.v
2015-04-23 18:57:55 -04:00

284 lines
10 KiB
Verilog

module erx_io (/*AUTOARG*/
// Outputs
rxo_wr_wait_p, rxo_wr_wait_n, rxo_rd_wait_p, rxo_rd_wait_n,
rx_lclk_div4, rx_frame_par, rx_data_par, ecfg_rx_datain,
// Inputs
reset, rxi_lclk_p, rxi_lclk_n, rxi_frame_p, rxi_frame_n,
rxi_data_p, rxi_data_n, rx_wr_wait, rx_rd_wait
);
parameter IOSTANDARD = "LVDS_25";
//###########
//# reset
//###########
input reset; // Reset (from ecfg)
//###########
//# eLink pins
//###########
input rxi_lclk_p, rxi_lclk_n; //link rx clock input
input rxi_frame_p, rxi_frame_n; //link rx frame signal
input [7:0] rxi_data_p, rxi_data_n; //link rx data
output rxo_wr_wait_p,rxo_wr_wait_n; //link rx write pushback output
output rxo_rd_wait_p,rxo_rd_wait_n; //link rx read pushback output
//#############
//# Fabric interface, 1/8 bit rate of eLink
//#############
output rx_lclk_div4; // Parallel clock output (slow)
output [7:0] rx_frame_par;
output [63:0] rx_data_par;
input rx_wr_wait;
input rx_rd_wait;
//#############
//# Direct sampling mode
//##############
output [8:0] ecfg_rx_datain; //gpio data in (data in and frame)
//############
//# WIRES
//############
wire [7:0] rx_data; // High-speed serial data
wire rx_frame; // serial frame
wire rx_lclk; // Single-ended clock
wire rx_lclk_s; // Serial clock after BUFIO
//################################
//# Input Buffers Instantiation
//################################
IBUFDS
#(.DIFF_TERM ("TRUE"),
.IOSTANDARD (IOSTANDARD))
ibufds_rxdata[7:0]
(.I (rxi_data_p[7:0]),
.IB (rxi_data_n[7:0]),
.O (rx_data[7:0]));
IBUFDS
#(.DIFF_TERM ("TRUE"),
.IOSTANDARD (IOSTANDARD))
ibufds_rx_frame
(.I (rxi_frame_p),
.IB (rxi_frame_n),
.O (rx_frame));
//#####################
//# Clock Buffers
//#####################
IBUFGDS
#(.DIFF_TERM ("TRUE"),
.IOSTANDARD (IOSTANDARD))
ibufds_rxlclk
(.I (rxi_lclk_p),
.IB (rxi_lclk_n),
.O (rx_lclk));
BUFIO bufio_rxlclk
(.I (rx_lclk),
.O (rx_lclk_s));
// BUFR generates the slow clock
BUFR
#(.SIM_DEVICE("7SERIES"),
.BUFR_DIVIDE("4"))
clkout_bufr
(.O (rx_lclk_div4),
.CE(1'b1),
.CLR(reset),
.I (rx_lclk));
//#############################
//# Deserializer instantiations
//#############################
genvar i;
generate for(i=0; i<8; i=i+1)
begin : gen_serdes
ISERDESE2
#(
.DATA_RATE("DDR"), // DDR, SDR
.DATA_WIDTH(8), // Parallel data width (2-8,10,14)
.DYN_CLKDIV_INV_EN("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
.DYN_CLK_INV_EN("FALSE"), // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
// INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
.INIT_Q1(1'b0),
.INIT_Q2(1'b0),
.INIT_Q3(1'b0),
.INIT_Q4(1'b0),
.INTERFACE_TYPE("NETWORKING"),
// MEMORY, MEMORY_DDR3, MEMORY_QDR, NETWORKING, OVERSAMPLE
.IOBDELAY("NONE"), // NONE, BOTH, IBUF, IFD
.NUM_CE(2), // Number of clock enables (1,2)
.OFB_USED("FALSE"), // Select OFB path (FALSE, TRUE)
.SERDES_MODE("MASTER"), // MASTER, SLAVE
// SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
.SRVAL_Q1(1'b0),
.SRVAL_Q2(1'b0),
.SRVAL_Q3(1'b0),
.SRVAL_Q4(1'b0)
)
ISERDESE2_rxdata
(
.O(), // 1-bit output: Combinatorial output
// Q1 - Q8: 1-bit (each) output: Registered data outputs
.Q1(rx_data_par[i]), // Last data in?
.Q2(rx_data_par[i+8]),
.Q3(rx_data_par[i+16]),
.Q4(rx_data_par[i+24]),
.Q5(rx_data_par[i+32]),
.Q6(rx_data_par[i+40]),
.Q7(rx_data_par[i+48]),
.Q8(rx_data_par[i+56]), // First data in?
// SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports
.SHIFTOUT1(),
.SHIFTOUT2(),
.BITSLIP(1'b0), // 1-bit input: The BITSLIP pin performs a Bitslip operation
// synchronous to CLKDIV when asserted (active High). Subsequently, the data
// seen on the Q1 to Q8 output ports will shift, as in a barrel-shifter
// operation, one position every time Bitslip is invoked. DDR operation is
// different from SDR.
// CE1, CE2: 1-bit (each) input: Data register clock enable inputs
.CE1(1'b1),
.CE2(1'b1),
.CLKDIVP(1'b0), // 1-bit input: TBD
// Clocks: 1-bit (each) input: ISERDESE2 clock input ports
.CLK(rx_lclk_s), // 1-bit input: High-speed clock
.CLKB(~rx_lclk_s), // 1-bit input: High-speed secondary clock
.CLKDIV(rx_lclk_div4), // 1-bit input: Divided clock
.OCLK(1'b0), // 1-bit input: High speed output clock used when INTERFACE_TYPE="MEMORY"
// Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
.DYNCLKDIVSEL(1'b0), // 1-bit input: Dynamic CLKDIV inversion
.DYNCLKSEL(1'b0), // 1-bit input: Dynamic CLK/CLKB inversion
// Input Data: 1-bit (each) input: ISERDESE2 data input ports
.D(rx_data[i]), // 1-bit input: Data input
.DDLY(1'b0), // 1-bit input: Serial data from IDELAYE2
.OFB(1'b0), // 1-bit input: Data feedback from OSERDESE2
.OCLKB(1'b0), // 1-bit input: High speed negative edge output clock
.RST(reset), // 1-bit input: Active high asynchronous reset
// SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
.SHIFTIN1(1'b0),
.SHIFTIN2(1'b0)
);
end // block: gen_serdes
endgenerate
ISERDESE2
#(
.DATA_RATE("DDR"), // DDR, SDR
.DATA_WIDTH(8), // Parallel data width (2-8,10,14)
.DYN_CLKDIV_INV_EN("FALSE"), // Enable DYNCLKDIVINVSEL inversion (FALSE, TRUE)
.DYN_CLK_INV_EN("FALSE"), // Enable DYNCLKINVSEL inversion (FALSE, TRUE)
// INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)
.INIT_Q1(1'b0),
.INIT_Q2(1'b0),
.INIT_Q3(1'b0),
.INIT_Q4(1'b0),
.INTERFACE_TYPE("NETWORKING"),
// MEMORY, MEMORY_DDR3, MEMORY_QDR, NETWORKING, OVERSAMPLE
.IOBDELAY("NONE"), // NONE, BOTH, IBUF, IFD
.NUM_CE(2), // Number of clock enables (1,2)
.OFB_USED("FALSE"), // Select OFB path (FALSE, TRUE)
.SERDES_MODE("MASTER"), // MASTER, SLAVE
// SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)
.SRVAL_Q1(1'b0),
.SRVAL_Q2(1'b0),
.SRVAL_Q3(1'b0),
.SRVAL_Q4(1'b0)
)
ISERDESE2_rx_frame
(
.O(), // 1-bit output: Combinatorial output
// Q1 - Q8: 1-bit (each) output: Registered data outputs
.Q1(rx_frame_par[0]),
.Q2(rx_frame_par[1]),
.Q3(rx_frame_par[2]),
.Q4(rx_frame_par[3]),
.Q5(rx_frame_par[4]),
.Q6(rx_frame_par[5]),
.Q7(rx_frame_par[6]),
.Q8(rx_frame_par[7]),
// SHIFTOUT1, SHIFTOUT2: 1-bit (each) output: Data width expansion output ports
.SHIFTOUT1(),
.SHIFTOUT2(),
.BITSLIP(1'b0), // 1-bit input: The BITSLIP pin performs a Bitslip operation
// synchronous to CLKDIV when asserted (active High). Subsequently, the data
// seen on the Q1 to Q8 output ports will shift, as in a barrel-shifter
// operation, one position every time Bitslip is invoked. DDR operation is
// different from SDR.
// CE1, CE2: 1-bit (each) input: Data register clock enable inputs
.CE1(1'b1),
.CE2(1'b1),
.CLKDIVP(1'b0), // 1-bit input: TBD
// Clocks: 1-bit (each) input: ISERDESE2 clock input ports
.CLK(rx_lclk_s), // 1-bit input: High-speed clock
.CLKB(~rx_lclk_s), // 1-bit input: High-speed secondary clock
.CLKDIV(rx_lclk_div4), // 1-bit input: Divided clock
.OCLK(1'b0), // 1-bit input: High speed output clock used when INTERFACE_TYPE="MEMORY"
// Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock polarity
.DYNCLKDIVSEL(1'b0), // 1-bit input: Dynamic CLKDIV inversion
.DYNCLKSEL(1'b0), // 1-bit input: Dynamic CLK/CLKB inversion
// Input Data: 1-bit (each) input: ISERDESE2 data input ports
.D(rx_frame), // 1-bit input: Data input
.DDLY(1'b0), // 1-bit input: Serial data from IDELAYE2
.OFB(1'b0), // 1-bit input: Data feedback from OSERDESE2
.OCLKB(1'b0), // 1-bit input: High speed negative edge output clock
.RST(reset), // 1-bit input: Active high asynchronous reset
// SHIFTIN1, SHIFTIN2: 1-bit (each) input: Data width expansion input ports
.SHIFTIN1(1'b0),
.SHIFTIN2(1'b0)
);
//#############
//# Wait signals (asynchronous)
//#############
OBUFDS
#(
.IOSTANDARD(IOSTANDARD),
.SLEW("SLOW")
) OBUFDS_RXWRWAIT
(
.O(rxo_wr_wait_p),
.OB(rxo_wr_wait_n),
.I(rx_wr_wait)
);
OBUFDS
#(
.IOSTANDARD(IOSTANDARD),
.SLEW("SLOW")
) OBUFDS_RXRDWAIT
(
.O(rxo_rd_wait_p),
.OB(rxo_rd_wait_n),
.I(rx_rd_wait)
);
endmodule // erx_io
/*
File: e_rx_io.v
This file is part of the Parallella Project .
Copyright (C) 2014 Adapteva, Inc.
Contributed by Fred Huettig <fred@adapteva.com>
Contributed by Andreas Olofsson <fred@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program (see the file COPYING). If not, see
<http://www.gnu.org/licenses/>.
*/