1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-30 02:32:53 +08:00
oh/elink/hdl/ecfg.v

358 lines
13 KiB
Verilog

/*
Copyright (C) 2013 Adapteva, Inc.
Contributed by Andreas Olofsson <andreas@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.This program is distributed in the hope
that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy
of the GNU General Public License along with this program (see the file
COPYING). If not, see <http://www.gnu.org/licenses/>.
*/
/*
########################################################################
EPIPHANY CONFIGURATION REGISTER
########################################################################
-------------------------------------------------------------
ESYSRESET ***Elink reset***
[0] 0 - elink active
1 - elink in reset
-------------------------------------------------------------
ESYSCFGTX ***Elink transmitter configuration***
[0] 0 - link TX disable
1 - link TX enable
[1] 0 - normal pass through transaction mode
1 - mmu mode
[3:2] 00 - normal mode
01 - gpio mode
10 - auto-increment 64-bit address/data pairs
11 - reserved
[7:4] Transmit control mode for eMesh
[11:8] 0000 - No division, full speed
0001 - Divide by 2
Others - Reserved
-------------------------------------------------------------
ESYSCFGRX ***Elink receiver configuration***
[0] 0 - link RX disable
1 - link RX enable
[1] 0 - normal transaction mode
1 - mmu mode
[3:2] 00 - normal mode
01 - GPIO mode (drive rd wait pins from registers)
10 - loopback mode (loops TX-->RX)
11 - reserved
[4] 0 - set monitor to count traffic
1 - set monitor to count congestion
-------------------------------------------------------------
ESYSCFGCLK ***Epiphany clock frequency setting***
[3:0] Output divider
0000 - Clock turned off
0001 - CLKIN/64
0010 - CLKIN/32
0011 - CLKIN/16
0100 - CLKIN/8
0101 - CLKIN/4
0110 - CLKIN/2
0111 - CLKIN/1 (full speed)
1XXX - RESERVED
[7:4] PLL settings (TBD)
-------------------------------------------------------------
ESYSCOREID ***CORE ID***
[5:0] Column ID-->default at powerup/reset
[11:6] Row ID
-------------------------------------------------------------
ESYSVERSION ***Version number (read only)***
[7:0] Revision #, incremented in each change (match git?)
[15:8] Type (features included in FPGA load, same board)
[23:16] Board platform #
[31:24] Generation # (needed??)
-------------------------------------------------------------
ESYSDATAIN ***Data on elink input pins
[7:0] rx_data[7:0]
[8] tx_frame
[9] tx_wait_rd
[10] tx_wait_wr
-------------------------------------------------------------
ESYSDATAOUT ***Data on eLink output pins
[7:0] tx_data[7:0]
[8] tx_frame
[9] rx_wait_rd
[10] rx_wait_wr
-------------------------------------------------------------
ESYSDEBUG ***Various debug signals from elink
[31:0] (design specific, generic inferface for now)
included:
-all wait signals, (4)
-fifo fulls,
-fifo emptys
-axi access, ready signals for master/slave
-frame signals (in and out)
########################################################################
*/
// These are WORD addresses (bits 11:2)
`define E_REG_SYSRESET 10'h010
`define E_REG_SYSCFGTX 10'h011
`define E_REG_SYSCFGRX 10'h012
`define E_REG_SYSCFGCLK 10'h013
`define E_REG_SYSCOREID 10'h014
`define E_REG_SYSVERSION 10'h015
`define E_REG_SYSDATAIN 10'h016
`define E_REG_SYSDATAOUT 10'h017
`define E_REG_SYSDEBUG 10'h018
module ecfg (/*AUTOARG*/
// Outputs
mi_dout, ecfg_reset, ecfg_tx_enable, ecfg_tx_mmu_mode,
ecfg_tx_gpio_mode, ecfg_tx_tp_mode, ecfg_tx_ctrl_mode,
ecfg_tx_clkdiv, ecfg_rx_enable, ecfg_rx_mmu_mode,
ecfg_rx_gpio_mode, ecfg_cclk_en, ecfg_cclk_div, ecfg_cclk_pllcfg,
ecfg_coreid, ecfg_dataout,
// Inputs
mi_clk, mi_en, mi_we, mi_addr, mi_din, hw_reset, ecfg_datain,
ecfg_debug_signals
);
//Register file parameters
/*
#####################################################################
COMPILE TIME PARAMETERS
######################################################################
*/
parameter COREID = 12'h808;
parameter VERSION = 32'h00_00_00_00; // FPGA (gen:plat:type:rev)
parameter IDW = 12; // Elink ID (row,column coordinate)
parameter RFAW = 12; // Register file address width
// NB: The BRAM interface seems to provide BYTE addresses!
/******************************/
/*HARDWARE RESET (POR/BUTTON) */
/******************************/
input hw_reset;
/*****************************/
/*SIMPLE MEMORY INTERFACE */
/*****************************/
input mi_clk;
input mi_en;
input mi_we; //Single we, must write full words!
input [RFAW-1:0] mi_addr;
input [31:0] mi_din;
output [31:0] mi_dout;
/*****************************/
/*ELINK CONTROL SIGNALS */
/*****************************/
//RESET
output ecfg_reset;
//tx
output ecfg_tx_enable; //enable signal for TX
output ecfg_tx_mmu_mode; //enables MMU on transmit path
output ecfg_tx_gpio_mode; //forces TX output pins to constants
output ecfg_tx_tp_mode; //auto-generates TX transactions
output [3:0] ecfg_tx_ctrl_mode; //value for emesh ctrlmode tag
output [3:0] ecfg_tx_clkdiv; //transmit clock divider
//rx
output ecfg_rx_enable; //enable signal for rx
output ecfg_rx_mmu_mode; //enables MMU on rx path
output ecfg_rx_gpio_mode; //forces rx wait pins to constants
//cclk
output ecfg_cclk_en; //cclk enable
output [3:0] ecfg_cclk_div; //cclk divider setting
output [3:0] ecfg_cclk_pllcfg; //pll configuration
//coreid
output [11:0] ecfg_coreid; //core-id of fpga elink
//gpio
input [10:0] ecfg_datain; // data from elink inputs
output [10:0] ecfg_dataout; //data for elink outputs {rd_wait,wr_wait,frame,data[7:0]}
//debug
input [31:0] ecfg_debug_signals;//various signals for debugging the elink hardware
/*------------------------BODY CODE---------------------------------------*/
//registers
reg [11:0] ecfg_cfgtx_reg;
reg [4:0] ecfg_cfgrx_reg;
reg [7:0] ecfg_cfgclk_reg;
reg [11:0] ecfg_coreid_reg;
reg ecfg_reset_reg;
reg [11:0] ecfg_datain_reg;
reg [11:0] ecfg_dataout_reg;
reg [31:0] mi_dout;
//wires
wire ecfg_read;
wire ecfg_write;
wire ecfg_reset_match;
wire ecfg_cfgtx_match;
wire ecfg_cfgrx_match;
wire ecfg_cfgclk_match;
wire ecfg_coreid_match;
wire ecfg_datain_match;
wire ecfg_dataout_match;
wire ecfg_match;
wire ecfg_regmux;
wire [31:0] ecfg_reg_mux;
wire ecfg_cfgtx_write;
wire ecfg_cfgrx_write;
wire ecfg_cfgclk_write;
wire ecfg_coreid_write;
wire ecfg_dataout_write;
wire ecfg_rx_monitor_mode;
wire ecfg_reset_write;
/*****************************/
/*ADDRESS DECODE LOGIC */
/*****************************/
//read/write decode
assign ecfg_write = mi_en & mi_we;
assign ecfg_read = mi_en & ~mi_we;
//address match signals
assign ecfg_reset_match = mi_addr[RFAW-1:2]==`E_REG_SYSRESET;
assign ecfg_cfgtx_match = mi_addr[RFAW-1:2]==`E_REG_SYSCFGTX;
assign ecfg_cfgrx_match = mi_addr[RFAW-1:2]==`E_REG_SYSCFGRX;
assign ecfg_cfgclk_match = mi_addr[RFAW-1:2]==`E_REG_SYSCFGCLK;
assign ecfg_coreid_match = mi_addr[RFAW-1:2]==`E_REG_SYSCOREID;
assign ecfg_version_match = mi_addr[RFAW-1:2]==`E_REG_SYSVERSION;
assign ecfg_datain_match = mi_addr[RFAW-1:2]==`E_REG_SYSDATAIN;
assign ecfg_dataout_match = mi_addr[RFAW-1:2]==`E_REG_SYSDATAOUT;
assign ecfg_match = ecfg_reset_match |
ecfg_cfgtx_match |
ecfg_cfgrx_match |
ecfg_cfgclk_match |
ecfg_coreid_match |
ecfg_version_match |
ecfg_datain_match |
ecfg_dataout_match;
//Write enables
assign ecfg_reset_write = ecfg_reset_match & ecfg_write;
assign ecfg_cfgtx_write = ecfg_cfgtx_match & ecfg_write;
assign ecfg_cfgrx_write = ecfg_cfgrx_match & ecfg_write;
assign ecfg_cfgclk_write = ecfg_cfgclk_match & ecfg_write;
assign ecfg_coreid_write = ecfg_coreid_match & ecfg_write;
assign ecfg_dataout_write = ecfg_dataout_match & ecfg_write;
//###########################
//# ESYSCFGTX
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_cfgtx_reg[11:0] <= 12'b0;
else if (ecfg_cfgtx_write)
ecfg_cfgtx_reg[11:0] <= mi_din[11:0];
assign ecfg_tx_enable = ecfg_cfgtx_reg[0];
assign ecfg_tx_mmu_mode = ecfg_cfgtx_reg[1];
assign ecfg_tx_gpio_mode = ecfg_cfgtx_reg[3:2]==2'b01;
assign ecfg_tx_tp_mode = ecfg_cfgtx_reg[3:2]==2'b10;
assign ecfg_tx_ctrl_mode[3:0] = ecfg_cfgtx_reg[7:4];
assign ecfg_tx_clkdiv[3:0] = ecfg_cfgtx_reg[11:8];
//###########################
//# ESYSCFGRX
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_cfgrx_reg[4:0] <= 5'b0;
else if (ecfg_cfgrx_write)
ecfg_cfgrx_reg[4:0] <= mi_din[4:0];
assign ecfg_rx_enable = ecfg_cfgrx_reg[0];
assign ecfg_rx_mmu_mode = ecfg_cfgrx_reg[1];
assign ecfg_rx_gpio_mode = ecfg_cfgrx_reg[3:2]==2'b01;
assign ecfg_rx_loopback_mode = ecfg_cfgrx_reg[3:2]==2'b10;
assign ecfg_rx_monitor_mode = ecfg_cfgrx_reg[4];
//###########################
//# ESYSCFGCLK
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_cfgclk_reg[7:0] <= 8'b0;
else if (ecfg_cfgclk_write)
ecfg_cfgclk_reg[7:0] <= mi_din[7:0];
assign ecfg_cclk_en = ~(ecfg_cfgclk_reg[3:0]==4'b0000);
assign ecfg_cclk_div[3:0] = ecfg_cfgclk_reg[3:0];
assign ecfg_cclk_pllcfg[3:0] = ecfg_cfgclk_reg[7:4];
//###########################
//# ESYSCOREID
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_coreid_reg[IDW-1:0] <= PARAM_COREID;
else if (ecfg_coreid_write)
ecfg_coreid_reg[IDW-1:0] <= mi_din[IDW-1:0];
assign ecfg_coreid[IDW-1:0] = ecfg_coreid_reg[IDW-1:0];
//###########################
//# ESYSDATAIN
//###########################
always @ (posedge mi_clk)
ecfg_datain_reg <= ecfg_datain;
//###########################
//# ESYSDATAOUT
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_dataout_reg <= 'd0;
else if (ecfg_dataout_write)
ecfg_dataout_reg <= mi_din[10:0];
assign ecfg_dataout[10:0] = ecfg_dataout_reg[10:0];
//###########################
//# ESYSRESET
//###########################
always @ (posedge mi_clk)
if(hw_reset)
ecfg_reset_reg <= 1'b0;
else if (ecfg_reset_write)
ecfg_reset_reg <= mi_din[0];
assign ecfg_reset = ecfg_reset_reg | hw_reset;
//###############################
//# DATA READBACK MUX
//###############################
//Pipelineing readback
always @ (posedge mi_clk)
if(ecfg_read)
case(mi_addr[RFAW-1:2])
`E_REG_SYSRESET: mi_dout[31:0] <= {31'b0, ecfg_reset_reg};
`E_REG_SYSCFGTX: mi_dout[31:0] <= {20'b0, ecfg_cfgtx_reg[11:0]};
`E_REG_SYSCFGRX: mi_dout[31:0] <= {27'b0, ecfg_cfgrx_reg[4:0]};
`E_REG_SYSCFGCLK: mi_dout[31:0] <= {24'b0, ecfg_cfgclk_reg[7:0]};
`E_REG_SYSCOREID: mi_dout[31:0] <= {{(32-IDW){1'b0}}, ecfg_coreid_reg[IDW-1:0]};
`E_REG_SYSVERSION: mi_dout[31:0] <= VERSION;
`E_REG_SYSDATAIN: mi_dout[31:0] <= {20'b0, ecfg_datain_reg[11:0]};
`E_REG_SYSDATAOUT: mi_dout[31:0] <= {20'b0, ecfg_dataout_reg[11:0]};
`E_REG_SYSDEBUG: mi_dout[31:0] <= ecfg_debug_signals[31:0];
default: mi_dout[31:0] <= 32'd0;
endcase
endmodule // e_cfg