// ---------------------------------------------------------------------- // Copyright (c) 2016, The Regents of the University of California All // rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // * Neither the name of The Regents of the University of California // nor the names of its contributors may be used to endorse or // promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE // UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH // DAMAGE. // ---------------------------------------------------------------------- //---------------------------------------------------------------------------- // Filename: tx_port_buffer_128.v // Version: 1.00.a // Verilog Standard: Verilog-2001 // Description: Wraps a FIFO for saving channel data and provides a // registered read output. Retains unread words from reads that are a length // which is not a multiple of the data bus width (C_FIFO_DATA_WIDTH). Data is // available 5 cycles after RD_EN is asserted (not 1, like a traditional FIFO). // Author: Matt Jacobsen // History: @mattj: Version 2.0 //----------------------------------------------------------------------------- `timescale 1ns/1ns module tx_port_buffer_128 #( parameter C_FIFO_DATA_WIDTH = 9'd128, parameter C_FIFO_DEPTH = 512, // Local parameters parameter C_FIFO_DEPTH_WIDTH = clog2((2**clog2(C_FIFO_DEPTH))+1), parameter C_RD_EN_HIST = 2, parameter C_FIFO_RD_EN_HIST = 2, parameter C_CONSUME_HIST = 3, parameter C_COUNT_HIST = 3, parameter C_LEN_LAST_HIST = 1 ) ( input RST, input CLK, input LEN_VALID, // Transfer length is valid input [1:0] LEN_LSB, // LSBs of transfer length input LEN_LAST, // Last transfer in transaction input [C_FIFO_DATA_WIDTH-1:0] WR_DATA, // Input data input WR_EN, // Input data write enable output [C_FIFO_DEPTH_WIDTH-1:0] WR_COUNT, // Input data write count output [C_FIFO_DATA_WIDTH-1:0] RD_DATA, // Output data input RD_EN // Output data read enable ); `include "functions.vh" reg [1:0] rRdPtr=0, _rRdPtr=0; reg [1:0] rWrPtr=0, _rWrPtr=0; reg [3:0] rLenLSB0=0, _rLenLSB0=0; reg [3:0] rLenLSB1=0, _rLenLSB1=0; reg [3:0] rLenLast=0, _rLenLast=0; reg rLenValid=0, _rLenValid=0; reg rRen=0, _rRen=0; reg [2:0] rCount=0, _rCount=0; reg [(C_COUNT_HIST*3)-1:0] rCountHist={C_COUNT_HIST{3'd0}}, _rCountHist={C_COUNT_HIST{3'd0}}; reg [C_LEN_LAST_HIST-1:0] rLenLastHist={C_LEN_LAST_HIST{1'd0}}, _rLenLastHist={C_LEN_LAST_HIST{1'd0}}; reg [C_RD_EN_HIST-1:0] rRdEnHist={C_RD_EN_HIST{1'd0}}, _rRdEnHist={C_RD_EN_HIST{1'd0}}; reg rFifoRdEn=0, _rFifoRdEn=0; reg [C_FIFO_RD_EN_HIST-1:0] rFifoRdEnHist={C_FIFO_RD_EN_HIST{1'd0}}, _rFifoRdEnHist={C_FIFO_RD_EN_HIST{1'd0}}; reg [(C_CONSUME_HIST*3)-1:0] rConsumedHist={C_CONSUME_HIST{3'd0}}, _rConsumedHist={C_CONSUME_HIST{3'd0}}; reg [C_FIFO_DATA_WIDTH-1:0] rFifoData={C_FIFO_DATA_WIDTH{1'd0}}, _rFifoData={C_FIFO_DATA_WIDTH{1'd0}}; reg [223:0] rData=224'd0, _rData=224'd0; wire [C_FIFO_DATA_WIDTH-1:0] wFifoData; assign RD_DATA = rData[0 +:C_FIFO_DATA_WIDTH]; // Buffer the input signals that come from outside the tx_port. always @ (posedge CLK) begin rLenValid <= #1 (RST ? 1'd0 : _rLenValid); rRen <= #1 (RST ? 1'd0 : _rRen); end always @ (*) begin _rLenValid = LEN_VALID; _rRen = RD_EN; end // FIFO for storing data from the channel. (* RAM_STYLE="BLOCK" *) sync_fifo #(.C_WIDTH(C_FIFO_DATA_WIDTH), .C_DEPTH(C_FIFO_DEPTH), .C_PROVIDE_COUNT(1)) fifo ( .CLK(CLK), .RST(RST), .WR_EN(WR_EN), .WR_DATA(WR_DATA), .FULL(), .COUNT(WR_COUNT), .RD_EN(rFifoRdEn), .RD_DATA(wFifoData), .EMPTY() ); // Manage shifting of data in from the FIFO and shifting of data out once // it is consumed. We'll keep 7 words of output registers to hold an input // packet with up to 3 extra words of unread data. wire [1:0] wLenLSB = {rLenLSB1[rRdPtr], rLenLSB0[rRdPtr]}; wire wLenLast = rLenLast[rRdPtr]; wire wAfterEnd = (!rRen & rRdEnHist[0]); // consumed = 4 if RD+2 // consumed = remainder if EOP on RD+1 (~rRen & rRdEnHist[0]) // consumed = 4 if EOP on RD+3 and LAST on RD+3 wire [2:0] wConsumed = ({(rRdEnHist[0] | (!rRdEnHist[0] & rRdEnHist[1] & rLenLastHist[0])),2'd0}) - ({2{wAfterEnd}} & wLenLSB); always @ (posedge CLK) begin rCount <= #1 (RST ? 2'd0 : _rCount); rCountHist <= #1 _rCountHist; rRdEnHist <= #1 (RST ? {C_RD_EN_HIST{1'd0}} : _rRdEnHist); rFifoRdEn <= #1 (RST ? 1'd0 : _rFifoRdEn); rFifoRdEnHist <= #1 (RST ? {C_FIFO_RD_EN_HIST{1'd0}} : _rFifoRdEnHist); rConsumedHist <= #1 _rConsumedHist; rLenLastHist <= #1 (RST ? {C_LEN_LAST_HIST{1'd0}} : _rLenLastHist); rFifoData <= #1 _rFifoData; rData <= #1 _rData; end always @ (*) begin // Keep track of words in our buffer. Subtract 4 when we reach 4 on RD_EN. // Add wLenLSB when we finish a sequence of RD_EN that read 1, 2, or 3 words. // rCount + remainder _rCount = rCount + ({2{(wAfterEnd & !wLenLast)}} & wLenLSB) - ({(rRen & rCount[2]), 2'd0}) - ({3{(wAfterEnd & wLenLast)}} & rCount); _rCountHist = ((rCountHist<<3) | rCount); // Track read enables in the pipeline. _rRdEnHist = ((rRdEnHist<<1) | rRen); _rFifoRdEnHist = ((rFifoRdEnHist<<1) | rFifoRdEn); // Track delayed length last value _rLenLastHist = ((rLenLastHist<<1) | wLenLast); // Calculate the amount to shift out each RD_EN. This is always 4 unless it's // the last RD_EN in the sequence and the read words length is 1, 2, or 3. _rConsumedHist = ((rConsumedHist<<3) | wConsumed); // Read from the FIFO unless we have 4 words cached. _rFifoRdEn = (!rCount[2] & rRen); // Buffer the FIFO data. _rFifoData = wFifoData; // Shift the buffered FIFO data into and the consumed data out of the output register. if (rFifoRdEnHist[1]) _rData = ((rData>>({rConsumedHist[8:6], 5'd0})) | (rFifoData<<({rCountHist[7:6], 5'd0}))); else _rData = (rData>>({rConsumedHist[8:6], 5'd0})); end // Buffer up to 4 length LSB values for use to detect unread data that was // part of a consumed packet. Should only need 2. This is basically a FIFO. always @ (posedge CLK) begin rRdPtr <= #1 (RST ? 2'd0 : _rRdPtr); rWrPtr <= #1 (RST ? 2'd0 : _rWrPtr); rLenLSB0 <= #1 _rLenLSB0; rLenLSB1 <= #1 _rLenLSB1; rLenLast <= #1 _rLenLast; end always @ (*) begin _rRdPtr = (wAfterEnd ? rRdPtr + 1'd1 : rRdPtr); _rWrPtr = (rLenValid ? rWrPtr + 1'd1 : rWrPtr); _rLenLSB0 = rLenLSB0; _rLenLSB1 = rLenLSB1; if(rLenValid) {_rLenLSB1[rWrPtr], _rLenLSB0[rWrPtr]} = (~LEN_LSB + 1); _rLenLast = rLenLast; if(rLenValid) _rLenLast[rWrPtr] = LEN_LAST; end endmodule