// ---------------------------------------------------------------------- // Copyright (c) 2015, The Regents of the University of California All // rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // * Neither the name of The Regents of the University of California // nor the names of its contributors may be used to endorse or // promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE // UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH // DAMAGE. // ---------------------------------------------------------------------- //---------------------------------------------------------------------------- // Filename: interrupt.v // Version: 1.00.a // Verilog Standard: Verilog-2001 // Description: Manages the interrupt vector and sends interrupts. // Author: Matt Jacobsen // History: @mattj: Version 2.0 //----------------------------------------------------------------------------- `define S_INTR_IDLE 2'd0 `define S_INTR_INTR 2'd1 `define S_INTR_CLR_0 2'd2 `define S_INTR_CLR_1 2'd3 `timescale 1ns/1ns module interrupt #( parameter C_NUM_CHNL = 4'd12 ) ( input CLK, input RST, input [C_NUM_CHNL-1:0] RX_SG_BUF_RECVD, // The scatter gather data for a rx_port transaction has been read input [C_NUM_CHNL-1:0] RX_TXN_DONE, // The rx_port transaction is done input [C_NUM_CHNL-1:0] TX_TXN, // New tx_port transaction input [C_NUM_CHNL-1:0] TX_SG_BUF_RECVD, // The scatter gather data for a tx_port transaction has been read input [C_NUM_CHNL-1:0] TX_TXN_DONE, // The tx_port transaction is done input VECT_0_RST, // Interrupt vector 0 reset input VECT_1_RST, // Interrupt vector 1 reset input [31:0] VECT_RST, // Interrupt vector reset value output [31:0] VECT_0, // Interrupt vector 0 output [31:0] VECT_1, // Interrupt vector 1 input INTR_LEGACY_CLR, // Pulsed high to ack the legacy interrupt and clear it input CONFIG_INTERRUPT_MSIENABLE, // 1 if MSI interrupts are enable, 0 if only legacy are supported input INTR_MSI_RDY, // High when interrupt is able to be sent output INTR_MSI_REQUEST // High to request interrupt, when both INTR_MSI_RDY and INTR_MSI_REQUEST are high, interrupt is sent ); reg [1:0] rState=0; reg [31:0] rVect0=0; reg [31:0] rVect1=0; wire [31:0] wVect0; wire [31:0] wVect1; wire wIntr = (rState == `S_INTR_INTR); wire wIntrDone; assign VECT_0 = rVect0; assign VECT_1 = rVect1; // Align the input signals to the interrupt vector. // VECT_0/VECT_1 are organized from right to left (LSB to MSB) as: // [ 0] TX_TXN for channel 0 in VECT_0, channel 6 in VECT_1 // [ 1] TX_SG_BUF_RECVD for channel 0 in VECT_0, channel 6 in VECT_1 // [ 2] TX_TXN_DONE for channel 0 in VECT_0, channel 6 in VECT_1 // [ 3] RX_SG_BUF_RECVD for channel 0 in VECT_0, channel 6 in VECT_1 // [ 4] RX_TXN_DONE for channel 0 in VECT_0, channel 6 in VECT_1 // ... // [25] TX_TXN for channel 5 in VECT_0, channel 11 in VECT_1 // [26] TX_SG_BUF_RECVD for channel 5 in VECT_0, channel 11 in VECT_1 // [27] TX_TXN_DONE for channel 5 in VECT_0, channel 11 in VECT_1 // [28] RX_SG_BUF_RECVD for channel 5 in VECT_0, channel 11 in VECT_1 // [29] RX_TXN_DONE for channel 5 in VECT_0, channel 11 in VECT_1 // Positions 30 - 31 in both VECT_0 and VECT_1 are zero. genvar i; generate for (i = 0; i < C_NUM_CHNL; i = i + 1) begin: vectMap if (i < 6) begin : vectMap0 assign wVect0[(5*i)+0] = TX_TXN[i]; assign wVect0[(5*i)+1] = TX_SG_BUF_RECVD[i]; assign wVect0[(5*i)+2] = TX_TXN_DONE[i]; assign wVect0[(5*i)+3] = RX_SG_BUF_RECVD[i]; assign wVect0[(5*i)+4] = RX_TXN_DONE[i]; end else begin : vectMap1 assign wVect1[(5*(i-6))+0] = TX_TXN[i]; assign wVect1[(5*(i-6))+1] = TX_SG_BUF_RECVD[i]; assign wVect1[(5*(i-6))+2] = TX_TXN_DONE[i]; assign wVect1[(5*(i-6))+3] = RX_SG_BUF_RECVD[i]; assign wVect1[(5*(i-6))+4] = RX_TXN_DONE[i]; end end for (i = C_NUM_CHNL; i < 12; i = i + 1) begin: vectZero if (i < 6) begin : vectZero0 assign wVect0[(5*i)+0] = 1'b0; assign wVect0[(5*i)+1] = 1'b0; assign wVect0[(5*i)+2] = 1'b0; assign wVect0[(5*i)+3] = 1'b0; assign wVect0[(5*i)+4] = 1'b0; end else begin : vectZero1 assign wVect1[(5*(i-6))+0] = 1'b0; assign wVect1[(5*(i-6))+1] = 1'b0; assign wVect1[(5*(i-6))+2] = 1'b0; assign wVect1[(5*(i-6))+3] = 1'b0; assign wVect1[(5*(i-6))+4] = 1'b0; end end assign wVect0[30] = 1'b0; assign wVect0[31] = 1'b0; assign wVect1[30] = 1'b0; assign wVect1[31] = 1'b0; endgenerate // Interrupt controller interrupt_controller intrCtlr ( .CLK(CLK), .RST(RST), .INTR(wIntr), .INTR_LEGACY_CLR(INTR_LEGACY_CLR), .INTR_DONE(wIntrDone), .CFG_INTERRUPT_ASSERT(), .CONFIG_INTERRUPT_MSIENABLE(CONFIG_INTERRUPT_MSIENABLE), .INTR_MSI_RDY(INTR_MSI_RDY), .INTR_MSI_REQUEST(INTR_MSI_REQUEST) ); // Update the interrupt vector when new signals come in (pulse in) and on reset. always @(posedge CLK) begin if (RST) begin rVect0 <= #1 0; rVect1 <= #1 0; end else begin if (VECT_0_RST) begin rVect0 <= #1 (wVect0 | (rVect0 & ~VECT_RST)); rVect1 <= #1 (wVect1 | rVect1); end else if (VECT_1_RST) begin rVect0 <= #1 (wVect0 | rVect0); rVect1 <= #1 (wVect1 | (rVect1 & ~VECT_RST)); end else begin rVect0 <= #1 (wVect0 | rVect0); rVect1 <= #1 (wVect1 | rVect1); end end end // Fire the interrupt when we have a non-zero vector. always @(posedge CLK) begin if (RST) begin rState <= #1 `S_INTR_IDLE; end else begin case (rState) `S_INTR_IDLE : rState <= #1 ((rVect0 | rVect1) == 0 ? `S_INTR_IDLE : `S_INTR_INTR); `S_INTR_INTR : rState <= #1 (wIntrDone ? `S_INTR_CLR_0 : `S_INTR_INTR); `S_INTR_CLR_0 : rState <= #1 (VECT_0_RST ? (C_NUM_CHNL > 6 ? `S_INTR_CLR_1 : `S_INTR_IDLE) : `S_INTR_CLR_0); `S_INTR_CLR_1 : rState <= #1 (VECT_1_RST ? `S_INTR_IDLE : `S_INTR_CLR_1); endcase end end endmodule