// ---------------------------------------------------------------------- // Copyright (c) 2015, The Regents of the University of California All // rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // * Neither the name of The Regents of the University of California // nor the names of its contributors may be used to endorse or // promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE // UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH // DAMAGE. // ---------------------------------------------------------------------- //---------------------------------------------------------------------------- // Filename: interrupt_controller.v // Version: 1.00.a // Verilog Standard: Verilog-2001 // Description: Signals an interrupt on the Xilnx PCIe Endpoint // interface. Supports single vector MSI or legacy based // interrupts. // When INTR is pulsed high, the interrupt will be issued // as soon as possible. If using legacy interrupts, the // initial interrupt must be cleared by another request // (typically a PIO read or write request to the // endpoint at some predetermined BAR address). Receipt of // the "clear" acknowledgment should cause INTR_LEGACY_CLR // input to pulse high. Thus completing the legacy // interrupt cycle. If using MSI interrupts, no such // acknowldegment is necessary. // Author: Matt Jacobsen // History: @mattj: Version 2.0 //----------------------------------------------------------------------------- `define S_INTRCTLR_IDLE 3'd0 `define S_INTRCLTR_WORKING 3'd1 `define S_INTRCLTR_COMPLETE 3'd2 `define S_INTRCLTR_CLEAR_LEGACY 3'd3 `define S_INTRCLTR_CLEARING_LEGACY 3'd4 `define S_INTRCLTR_DONE 3'd5 `timescale 1ns/1ns module interrupt_controller ( input CLK, // System clock input RST, // Async reset input INTR, // Pulsed high to request an interrupt input INTR_LEGACY_CLR, // Pulsed high to ack the legacy interrupt and clear it output INTR_DONE, // Pulsed high to signal interrupt sent input CONFIG_INTERRUPT_MSIENABLE, // 1 if MSI interrupts are enable, 0 if only legacy are supported output CFG_INTERRUPT_ASSERT, // Legacy interrupt message type input INTR_MSI_RDY, // High when interrupt is able to be sent output INTR_MSI_REQUEST // High to request interrupt, when both INTR_MSI_RDY and INTR_MSI_REQUEST are high, interrupt is sent ); reg [2:0] rState=`S_INTRCTLR_IDLE; reg [2:0] rStateNext=`S_INTRCTLR_IDLE; reg rIntr=0; reg rIntrAssert=0; assign INTR_DONE = (rState == `S_INTRCLTR_DONE); assign INTR_MSI_REQUEST = rIntr; assign CFG_INTERRUPT_ASSERT = rIntrAssert; // Control sending interrupts. always @(*) begin case (rState) `S_INTRCTLR_IDLE : begin if (INTR) begin rIntr = 1; rIntrAssert = !CONFIG_INTERRUPT_MSIENABLE; rStateNext = (INTR_MSI_RDY ? `S_INTRCLTR_COMPLETE : `S_INTRCLTR_WORKING); end else begin rIntr = 0; rIntrAssert = 0; rStateNext = `S_INTRCTLR_IDLE; end end `S_INTRCLTR_WORKING : begin rIntr = 1; rIntrAssert = !CONFIG_INTERRUPT_MSIENABLE; rStateNext = (INTR_MSI_RDY ? `S_INTRCLTR_COMPLETE : `S_INTRCLTR_WORKING); end `S_INTRCLTR_COMPLETE : begin rIntr = 0; rIntrAssert = !CONFIG_INTERRUPT_MSIENABLE; rStateNext = (CONFIG_INTERRUPT_MSIENABLE ? `S_INTRCLTR_DONE : `S_INTRCLTR_CLEAR_LEGACY); end `S_INTRCLTR_CLEAR_LEGACY : begin if (INTR_LEGACY_CLR) begin rIntr = 1; rIntrAssert = 0; rStateNext = (INTR_MSI_RDY ? `S_INTRCLTR_DONE : `S_INTRCLTR_CLEARING_LEGACY); end else begin rIntr = 0; rIntrAssert = 1; rStateNext = `S_INTRCLTR_CLEAR_LEGACY; end end `S_INTRCLTR_CLEARING_LEGACY : begin rIntr = 1; rIntrAssert = 0; rStateNext = (INTR_MSI_RDY ? `S_INTRCLTR_DONE : `S_INTRCLTR_CLEARING_LEGACY); end `S_INTRCLTR_DONE : begin rIntr = 0; rIntrAssert = 0; rStateNext = `S_INTRCTLR_IDLE; end default: begin rIntr = 0; rIntrAssert = 0; rStateNext = `S_INTRCTLR_IDLE; end endcase end // Update the state. always @(posedge CLK) begin if (RST) rState <= #1 `S_INTRCTLR_IDLE; else rState <= #1 rStateNext; end endmodule