1
0
mirror of https://github.com/KastnerRG/riffa.git synced 2025-01-30 23:02:54 +08:00
riffa/fpga/riffa_hdl/tx_port_buffer_128.v
2016-01-15 15:34:33 -08:00

205 lines
7.7 KiB
Verilog

// ----------------------------------------------------------------------
// Copyright (c) 2015, The Regents of the University of California All
// rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// * Neither the name of The Regents of the University of California
// nor the names of its contributors may be used to endorse or
// promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE
// UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
// ----------------------------------------------------------------------
//----------------------------------------------------------------------------
// Filename: tx_port_buffer_128.v
// Version: 1.00.a
// Verilog Standard: Verilog-2001
// Description: Wraps a FIFO for saving channel data and provides a
// registered read output. Retains unread words from reads that are a length
// which is not a multiple of the data bus width (C_FIFO_DATA_WIDTH). Data is
// available 5 cycles after RD_EN is asserted (not 1, like a traditional FIFO).
// Author: Matt Jacobsen
// History: @mattj: Version 2.0
//-----------------------------------------------------------------------------
`timescale 1ns/1ns
module tx_port_buffer_128 #(
parameter C_FIFO_DATA_WIDTH = 9'd128,
parameter C_FIFO_DEPTH = 512,
// Local parameters
parameter C_FIFO_DEPTH_WIDTH = clog2((2**clog2(C_FIFO_DEPTH))+1),
parameter C_RD_EN_HIST = 2,
parameter C_FIFO_RD_EN_HIST = 2,
parameter C_CONSUME_HIST = 3,
parameter C_COUNT_HIST = 3,
parameter C_LEN_LAST_HIST = 1
)
(
input RST,
input CLK,
input LEN_VALID, // Transfer length is valid
input [1:0] LEN_LSB, // LSBs of transfer length
input LEN_LAST, // Last transfer in transaction
input [C_FIFO_DATA_WIDTH-1:0] WR_DATA, // Input data
input WR_EN, // Input data write enable
output [C_FIFO_DEPTH_WIDTH-1:0] WR_COUNT, // Input data write count
output [C_FIFO_DATA_WIDTH-1:0] RD_DATA, // Output data
input RD_EN // Output data read enable
);
`include "functions.vh"
reg [1:0] rRdPtr=0, _rRdPtr=0;
reg [1:0] rWrPtr=0, _rWrPtr=0;
reg [3:0] rLenLSB0=0, _rLenLSB0=0;
reg [3:0] rLenLSB1=0, _rLenLSB1=0;
reg [3:0] rLenLast=0, _rLenLast=0;
reg rLenValid=0, _rLenValid=0;
reg rRen=0, _rRen=0;
reg [2:0] rCount=0, _rCount=0;
reg [(C_COUNT_HIST*3)-1:0] rCountHist={C_COUNT_HIST{3'd0}}, _rCountHist={C_COUNT_HIST{3'd0}};
reg [C_LEN_LAST_HIST-1:0] rLenLastHist={C_LEN_LAST_HIST{1'd0}}, _rLenLastHist={C_LEN_LAST_HIST{1'd0}};
reg [C_RD_EN_HIST-1:0] rRdEnHist={C_RD_EN_HIST{1'd0}}, _rRdEnHist={C_RD_EN_HIST{1'd0}};
reg rFifoRdEn=0, _rFifoRdEn=0;
reg [C_FIFO_RD_EN_HIST-1:0] rFifoRdEnHist={C_FIFO_RD_EN_HIST{1'd0}}, _rFifoRdEnHist={C_FIFO_RD_EN_HIST{1'd0}};
reg [(C_CONSUME_HIST*3)-1:0] rConsumedHist={C_CONSUME_HIST{3'd0}}, _rConsumedHist={C_CONSUME_HIST{3'd0}};
reg [C_FIFO_DATA_WIDTH-1:0] rFifoData={C_FIFO_DATA_WIDTH{1'd0}}, _rFifoData={C_FIFO_DATA_WIDTH{1'd0}};
reg [223:0] rData=224'd0, _rData=224'd0;
wire [C_FIFO_DATA_WIDTH-1:0] wFifoData;
assign RD_DATA = rData[0 +:C_FIFO_DATA_WIDTH];
// Buffer the input signals that come from outside the tx_port.
always @ (posedge CLK) begin
rLenValid <= #1 (RST ? 1'd0 : _rLenValid);
rRen <= #1 (RST ? 1'd0 : _rRen);
end
always @ (*) begin
_rLenValid = LEN_VALID;
_rRen = RD_EN;
end
// FIFO for storing data from the channel.
(* RAM_STYLE="BLOCK" *)
sync_fifo #(.C_WIDTH(C_FIFO_DATA_WIDTH), .C_DEPTH(C_FIFO_DEPTH), .C_PROVIDE_COUNT(1)) fifo (
.CLK(CLK),
.RST(RST),
.WR_EN(WR_EN),
.WR_DATA(WR_DATA),
.FULL(),
.COUNT(WR_COUNT),
.RD_EN(rFifoRdEn),
.RD_DATA(wFifoData),
.EMPTY()
);
// Manage shifting of data in from the FIFO and shifting of data out once
// it is consumed. We'll keep 7 words of output registers to hold an input
// packet with up to 3 extra words of unread data.
wire [1:0] wLenLSB = {rLenLSB1[rRdPtr], rLenLSB0[rRdPtr]};
wire wLenLast = rLenLast[rRdPtr];
wire wAfterEnd = (!rRen & rRdEnHist[0]);
// consumed = 4 if RD+2
// consumed = remainder if EOP on RD+1 (~rRen & rRdEnHist[0])
// consumed = 4 if EOP on RD+3 and LAST on RD+3
wire [2:0] wConsumed = ({(rRdEnHist[0] | (!rRdEnHist[0] & rRdEnHist[1] & rLenLastHist[0])),2'd0}) - ({2{wAfterEnd}} & wLenLSB);
always @ (posedge CLK) begin
rCount <= #1 (RST ? 2'd0 : _rCount);
rCountHist <= #1 _rCountHist;
rRdEnHist <= #1 (RST ? {C_RD_EN_HIST{1'd0}} : _rRdEnHist);
rFifoRdEn <= #1 (RST ? 1'd0 : _rFifoRdEn);
rFifoRdEnHist <= #1 (RST ? {C_FIFO_RD_EN_HIST{1'd0}} : _rFifoRdEnHist);
rConsumedHist <= #1 _rConsumedHist;
rLenLastHist <= #1 (RST ? {C_LEN_LAST_HIST{1'd0}} : _rLenLastHist);
rFifoData <= #1 _rFifoData;
rData <= #1 _rData;
end
always @ (*) begin
// Keep track of words in our buffer. Subtract 4 when we reach 4 on RD_EN.
// Add wLenLSB when we finish a sequence of RD_EN that read 1, 2, or 3 words.
// rCount + remainder
_rCount = rCount + ({2{(wAfterEnd & !wLenLast)}} & wLenLSB) - ({(rRen & rCount[2]), 2'd0}) - ({3{(wAfterEnd & wLenLast)}} & rCount);
_rCountHist = ((rCountHist<<3) | rCount);
// Track read enables in the pipeline.
_rRdEnHist = ((rRdEnHist<<1) | rRen);
_rFifoRdEnHist = ((rFifoRdEnHist<<1) | rFifoRdEn);
// Track delayed length last value
_rLenLastHist = ((rLenLastHist<<1) | wLenLast);
// Calculate the amount to shift out each RD_EN. This is always 4 unless it's
// the last RD_EN in the sequence and the read words length is 1, 2, or 3.
_rConsumedHist = ((rConsumedHist<<3) | wConsumed);
// Read from the FIFO unless we have 4 words cached.
_rFifoRdEn = (!rCount[2] & rRen);
// Buffer the FIFO data.
_rFifoData = wFifoData;
// Shift the buffered FIFO data into and the consumed data out of the output register.
if (rFifoRdEnHist[1])
_rData = ((rData>>({rConsumedHist[8:6], 5'd0})) | (rFifoData<<({rCountHist[7:6], 5'd0})));
else
_rData = (rData>>({rConsumedHist[8:6], 5'd0}));
end
// Buffer up to 4 length LSB values for use to detect unread data that was
// part of a consumed packet. Should only need 2. This is basically a FIFO.
always @ (posedge CLK) begin
rRdPtr <= #1 (RST ? 2'd0 : _rRdPtr);
rWrPtr <= #1 (RST ? 2'd0 : _rWrPtr);
rLenLSB0 <= #1 _rLenLSB0;
rLenLSB1 <= #1 _rLenLSB1;
rLenLast <= #1 _rLenLast;
end
always @ (*) begin
_rRdPtr = (wAfterEnd ? rRdPtr + 1'd1 : rRdPtr);
_rWrPtr = (rLenValid ? rWrPtr + 1'd1 : rWrPtr);
_rLenLSB0 = rLenLSB0;
_rLenLSB1 = rLenLSB1;
if(rLenValid)
{_rLenLSB1[rWrPtr], _rLenLSB0[rWrPtr]} = (~LEN_LSB + 1);
_rLenLast = rLenLast;
if(rLenValid)
_rLenLast[rWrPtr] = LEN_LAST;
end
endmodule