1
0
mirror of https://github.com/KastnerRG/riffa.git synced 2025-01-30 23:02:54 +08:00
riffa/fpga/riffa_hdl/async_fifo.v

312 lines
8.5 KiB
Verilog

// ----------------------------------------------------------------------
// Copyright (c) 2015, The Regents of the University of California All
// rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// * Neither the name of The Regents of the University of California
// nor the names of its contributors may be used to endorse or
// promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE
// UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
// TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
// ----------------------------------------------------------------------
//----------------------------------------------------------------------------
// Filename: async_fifo.v
// Version: 1.00.a
// Verilog Standard: Verilog-2001
// Description: Asynchronous capable parameterized FIFO. As with all
// traditional FIFOs, the RD_DATA will be valid one cycle following a RD_EN
// assertion. RD_EMPTY will remain low until the cycle following the last RD_EN
// assertion. Note, that RD_EMPTY may actually be high on the same cycle that
// RD_DATA contains valid data.
// Author: Matt Jacobsen
// History: @mattj: Version 2.0
// Additional Comments: Based on design by CE Cummings in Simulation and
// Synthesis Techniques for Asynchronous FIFO Design with Asynchronous Pointer
// Comparisons
//-----------------------------------------------------------------------------
`timescale 1ns/1ns
module async_fifo #(
parameter C_WIDTH = 32, // Data bus width
parameter C_DEPTH = 1024, // Depth of the FIFO
// Local parameters
parameter C_REAL_DEPTH = 2**clog2(C_DEPTH),
parameter C_DEPTH_BITS = clog2(C_REAL_DEPTH),
parameter C_DEPTH_P1_BITS = clog2(C_REAL_DEPTH+1)
)
(
input RD_CLK, // Read clock
input RD_RST, // Read synchronous reset
input WR_CLK, // Write clock
input WR_RST, // Write synchronous reset
input [C_WIDTH-1:0] WR_DATA, // Write data input (WR_CLK)
input WR_EN, // Write enable, high active (WR_CLK)
output [C_WIDTH-1:0] RD_DATA, // Read data output (RD_CLK)
input RD_EN, // Read enable, high active (RD_CLK)
output WR_FULL, // Full condition (WR_CLK)
output RD_EMPTY // Empty condition (RD_CLK)
);
`include "functions.vh"
wire wCmpEmpty;
wire wCmpFull;
wire [C_DEPTH_BITS-1:0] wWrPtr;
wire [C_DEPTH_BITS-1:0] wRdPtr;
wire [C_DEPTH_BITS-1:0] wWrPtrP1;
wire [C_DEPTH_BITS-1:0] wRdPtrP1;
// Memory block (synthesis attributes applied to this module will
// determine the memory option).
ram_2clk_1w_1r #(.C_RAM_WIDTH(C_WIDTH), .C_RAM_DEPTH(C_REAL_DEPTH)) mem (
.CLKA(WR_CLK),
.ADDRA(wWrPtr),
.WEA(WR_EN & !WR_FULL),
.DINA(WR_DATA),
.CLKB(RD_CLK),
.ADDRB(wRdPtr),
.DOUTB(RD_DATA)
);
// Compare the pointers.
async_cmp #(.C_DEPTH_BITS(C_DEPTH_BITS)) asyncCompare (
.WR_RST(WR_RST),
.WR_CLK(WR_CLK),
.RD_RST(RD_RST),
.RD_CLK(RD_CLK),
.RD_VALID(RD_EN & !RD_EMPTY),
.WR_VALID(WR_EN & !WR_FULL),
.EMPTY(wCmpEmpty),
.FULL(wCmpFull),
.WR_PTR(wWrPtr),
.WR_PTR_P1(wWrPtrP1),
.RD_PTR(wRdPtr),
.RD_PTR_P1(wRdPtrP1)
);
// Calculate empty
rd_ptr_empty #(.C_DEPTH_BITS(C_DEPTH_BITS)) rdPtrEmpty (
.RD_EMPTY(RD_EMPTY),
.RD_PTR(wRdPtr),
.RD_PTR_P1(wRdPtrP1),
.CMP_EMPTY(wCmpEmpty),
.RD_EN(RD_EN),
.RD_CLK(RD_CLK),
.RD_RST(RD_RST)
);
// Calculate full
wr_ptr_full #(.C_DEPTH_BITS(C_DEPTH_BITS)) wrPtrFull (
.WR_CLK(WR_CLK),
.WR_RST(WR_RST),
.WR_EN(WR_EN),
.WR_FULL(WR_FULL),
.WR_PTR(wWrPtr),
.WR_PTR_P1(wWrPtrP1),
.CMP_FULL(wCmpFull)
);
endmodule
module async_cmp #(
parameter C_DEPTH_BITS = 4,
// Local parameters
parameter N = C_DEPTH_BITS-1
)
(
input WR_RST,
input WR_CLK,
input RD_RST,
input RD_CLK,
input RD_VALID,
input WR_VALID,
output EMPTY,
output FULL,
input [C_DEPTH_BITS-1:0] WR_PTR,
input [C_DEPTH_BITS-1:0] RD_PTR,
input [C_DEPTH_BITS-1:0] WR_PTR_P1,
input [C_DEPTH_BITS-1:0] RD_PTR_P1
);
reg rDir=0;
wire wDirSet = ( (WR_PTR[N]^RD_PTR[N-1]) & ~(WR_PTR[N-1]^RD_PTR[N]));
wire wDirClr = ((~(WR_PTR[N]^RD_PTR[N-1]) & (WR_PTR[N-1]^RD_PTR[N])) | WR_RST);
reg rRdValid=0;
reg rEmpty=1;
reg rFull=0;
wire wATBEmpty = ((WR_PTR == RD_PTR_P1) && (RD_VALID | rRdValid));
wire wATBFull = ((WR_PTR_P1 == RD_PTR) && WR_VALID);
wire wEmpty = ((WR_PTR == RD_PTR) && !rDir);
wire wFull = ((WR_PTR == RD_PTR) && rDir);
assign EMPTY = wATBEmpty || rEmpty;
assign FULL = wATBFull || rFull;
always @(posedge wDirSet or posedge wDirClr)
if (wDirClr)
rDir <= 1'b0;
else
rDir <= 1'b1;
always @(posedge RD_CLK) begin
rEmpty <= (RD_RST ? 1'd1 : wEmpty);
rRdValid <= (RD_RST ? 1'd0 : RD_VALID);
end
always @(posedge WR_CLK) begin
rFull <= (WR_RST ? 1'd0 : wFull);
end
endmodule
module rd_ptr_empty #(
parameter C_DEPTH_BITS = 4
)
(
input RD_CLK,
input RD_RST,
input RD_EN,
output RD_EMPTY,
output [C_DEPTH_BITS-1:0] RD_PTR,
output [C_DEPTH_BITS-1:0] RD_PTR_P1,
input CMP_EMPTY
);
reg rEmpty=1;
reg rEmpty2=1;
reg [C_DEPTH_BITS-1:0] rRdPtr=0;
reg [C_DEPTH_BITS-1:0] rRdPtrP1=0;
reg [C_DEPTH_BITS-1:0] rBin=0;
reg [C_DEPTH_BITS-1:0] rBinP1=1;
wire [C_DEPTH_BITS-1:0] wGrayNext;
wire [C_DEPTH_BITS-1:0] wGrayNextP1;
wire [C_DEPTH_BITS-1:0] wBinNext;
wire [C_DEPTH_BITS-1:0] wBinNextP1;
assign RD_EMPTY = rEmpty;
assign RD_PTR = rRdPtr;
assign RD_PTR_P1 = rRdPtrP1;
// Gray coded pointer
always @(posedge RD_CLK or posedge RD_RST) begin
if (RD_RST) begin
rBin <= #1 0;
rBinP1 <= #1 1;
rRdPtr <= #1 0;
rRdPtrP1 <= #1 0;
end
else begin
rBin <= #1 wBinNext;
rBinP1 <= #1 wBinNextP1;
rRdPtr <= #1 wGrayNext;
rRdPtrP1 <= #1 wGrayNextP1;
end
end
// Increment the binary count if not empty
assign wBinNext = (!rEmpty ? rBin + RD_EN : rBin);
assign wBinNextP1 = (!rEmpty ? rBinP1 + RD_EN : rBinP1);
assign wGrayNext = ((wBinNext>>1) ^ wBinNext); // binary-to-gray conversion
assign wGrayNextP1 = ((wBinNextP1>>1) ^ wBinNextP1); // binary-to-gray conversion
always @(posedge RD_CLK) begin
if (CMP_EMPTY)
{rEmpty, rEmpty2} <= #1 2'b11;
else
{rEmpty, rEmpty2} <= #1 {rEmpty2, CMP_EMPTY};
end
endmodule
module wr_ptr_full #(
parameter C_DEPTH_BITS = 4
)
(
input WR_CLK,
input WR_RST,
input WR_EN,
output WR_FULL,
output [C_DEPTH_BITS-1:0] WR_PTR,
output [C_DEPTH_BITS-1:0] WR_PTR_P1,
input CMP_FULL
);
reg rFull=0;
reg rFull2=0;
reg [C_DEPTH_BITS-1:0] rPtr=0;
reg [C_DEPTH_BITS-1:0] rPtrP1=0;
reg [C_DEPTH_BITS-1:0] rBin=0;
reg [C_DEPTH_BITS-1:0] rBinP1=1;
wire [C_DEPTH_BITS-1:0] wGrayNext;
wire [C_DEPTH_BITS-1:0] wGrayNextP1;
wire [C_DEPTH_BITS-1:0] wBinNext;
wire [C_DEPTH_BITS-1:0] wBinNextP1;
assign WR_FULL = rFull;
assign WR_PTR = rPtr;
assign WR_PTR_P1 = rPtrP1;
// Gray coded pointer
always @(posedge WR_CLK or posedge WR_RST) begin
if (WR_RST) begin
rBin <= #1 0;
rBinP1 <= #1 1;
rPtr <= #1 0;
rPtrP1 <= #1 0;
end
else begin
rBin <= #1 wBinNext;
rBinP1 <= #1 wBinNextP1;
rPtr <= #1 wGrayNext;
rPtrP1 <= #1 wGrayNextP1;
end
end
// Increment the binary count if not full
assign wBinNext = (!rFull ? rBin + WR_EN : rBin);
assign wBinNextP1 = (!rFull ? rBinP1 + WR_EN : rBinP1);
assign wGrayNext = ((wBinNext>>1) ^ wBinNext); // binary-to-gray conversion
assign wGrayNextP1 = ((wBinNextP1>>1) ^ wBinNextP1); // binary-to-gray conversion
always @(posedge WR_CLK) begin
if (WR_RST)
{rFull, rFull2} <= #1 2'b00;
else if (CMP_FULL)
{rFull, rFull2} <= #1 2'b11;
else
{rFull, rFull2} <= #1 {rFull2, CMP_FULL};
end
endmodule