verilog-axi/rtl/axil_crossbar_addr.v

310 lines
11 KiB
Coq
Raw Normal View History

/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 lite crossbar address decode and admission control
*/
module axil_crossbar_addr #
(
// Slave interface index
parameter S = 0,
// Number of AXI inputs (slave interfaces)
parameter S_COUNT = 4,
// Number of AXI outputs (master interfaces)
parameter M_COUNT = 4,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Number of regions per master interface
parameter M_REGIONS = 1,
// Master interface base addresses
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
// set to zero for default addressing based on M_ADDR_WIDTH
parameter M_BASE_ADDR = 0,
// Master interface address widths
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
// Connections between interfaces
// M_COUNT concatenated fields of S_COUNT bits
parameter M_CONNECT = {M_COUNT{{S_COUNT{1'b1}}}},
// Secure master (fail operations based on awprot/arprot)
// M_COUNT bits
parameter M_SECURE = {M_COUNT{1'b0}},
// Enable write command output
parameter WC_OUTPUT = 0
)
(
input wire clk,
input wire rst,
/*
* Address input
*/
input wire [ADDR_WIDTH-1:0] s_axil_aaddr,
input wire [2:0] s_axil_aprot,
input wire s_axil_avalid,
output wire s_axil_aready,
/*
* Address output
*/
output wire [$clog2(M_COUNT)-1:0] m_select,
output wire m_axil_avalid,
input wire m_axil_aready,
/*
* Write command output
*/
output wire [$clog2(M_COUNT)-1:0] m_wc_select,
output wire m_wc_decerr,
output wire m_wc_valid,
input wire m_wc_ready,
/*
* Reply command output
*/
output wire [$clog2(M_COUNT)-1:0] m_rc_select,
output wire m_rc_decerr,
output wire m_rc_valid,
input wire m_rc_ready
);
parameter CL_S_COUNT = $clog2(S_COUNT);
parameter CL_M_COUNT = $clog2(M_COUNT);
// default address computation
function [M_COUNT*M_REGIONS*ADDR_WIDTH-1:0] calcBaseAddrs(input [31:0] dummy);
integer i;
reg [ADDR_WIDTH-1:0] base;
2021-08-26 16:48:31 -07:00
reg [ADDR_WIDTH-1:0] width;
reg [ADDR_WIDTH-1:0] size;
reg [ADDR_WIDTH-1:0] mask;
begin
calcBaseAddrs = {M_COUNT*M_REGIONS*ADDR_WIDTH{1'b0}};
base = 0;
2021-08-26 16:48:31 -07:00
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
width = M_ADDR_WIDTH[i*32 +: 32];
mask = {ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - width);
size = mask + 1;
if (width > 0) begin
if ((base & mask) != 0) begin
base = base + size - (base & mask); // align
end
calcBaseAddrs[i * ADDR_WIDTH +: ADDR_WIDTH] = base;
2021-08-26 16:48:31 -07:00
base = base + size; // increment
end
end
end
endfunction
parameter M_BASE_ADDR_INT = M_BASE_ADDR ? M_BASE_ADDR : calcBaseAddrs(0);
integer i, j;
// check configuration
initial begin
if (M_REGIONS < 1) begin
$error("Error: need at least 1 region (instance %m)");
$finish;
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 12 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
$error("Error: address width out of range (instance %m)");
$finish;
end
end
2021-08-26 16:48:31 -07:00
$display("Addressing configuration for axil_crossbar_addr instance %m");
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32]) begin
2021-08-26 16:48:31 -07:00
$display("%2d (%2d): %x / %02d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH],
M_ADDR_WIDTH[i*32 +: 32],
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]),
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))
);
end
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
if ((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & (2**M_ADDR_WIDTH[i*32 +: 32]-1)) != 0) begin
$display("Region not aligned:");
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH],
M_ADDR_WIDTH[i*32 +: 32],
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]),
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))
);
$error("Error: address range not aligned (instance %m)");
$finish;
end
end
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
for (j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[i*32 +: 32] && M_ADDR_WIDTH[j*32 +: 32]) begin
2021-08-26 16:48:31 -07:00
if (((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32])) <= (M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32]))))
&& ((M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32])) <= (M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))))) begin
$display("Overlapping regions:");
2021-08-26 16:48:31 -07:00
$display("%2d (%2d): %x / %2d -- %x-%x",
i/M_REGIONS, i%M_REGIONS,
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH],
M_ADDR_WIDTH[i*32 +: 32],
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]),
M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))
);
$display("%2d (%2d): %x / %2d -- %x-%x",
j/M_REGIONS, j%M_REGIONS,
M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH],
M_ADDR_WIDTH[j*32 +: 32],
M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32]),
M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32]))
);
$error("Error: address ranges overlap (instance %m)");
$finish;
end
end
end
end
end
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_DECODE = 3'd1;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg s_axil_aready_reg = 0, s_axil_aready_next;
reg [CL_M_COUNT-1:0] m_select_reg = 0, m_select_next;
reg m_axil_avalid_reg = 1'b0, m_axil_avalid_next;
reg m_decerr_reg = 1'b0, m_decerr_next;
reg m_wc_valid_reg = 1'b0, m_wc_valid_next;
reg m_rc_valid_reg = 1'b0, m_rc_valid_next;
assign s_axil_aready = s_axil_aready_reg;
assign m_select = m_select_reg;
assign m_axil_avalid = m_axil_avalid_reg;
assign m_wc_select = m_select_reg;
assign m_wc_decerr = m_decerr_reg;
assign m_wc_valid = m_wc_valid_reg;
assign m_rc_select = m_select_reg;
assign m_rc_decerr = m_decerr_reg;
assign m_rc_valid = m_rc_valid_reg;
reg match;
always @* begin
state_next = STATE_IDLE;
match = 1'b0;
s_axil_aready_next = 1'b0;
m_select_next = m_select_reg;
m_axil_avalid_next = m_axil_avalid_reg && !m_axil_aready;
m_decerr_next = m_decerr_reg;
m_wc_valid_next = m_wc_valid_reg && !m_wc_ready;
m_rc_valid_next = m_rc_valid_reg && !m_rc_ready;
case (state_reg)
STATE_IDLE: begin
// idle state, store values
s_axil_aready_next = 1'b0;
if (s_axil_avalid && !s_axil_aready) begin
match = 1'b0;
for (i = 0; i < M_COUNT; i = i + 1) begin
for (j = 0; j < M_REGIONS; j = j + 1) begin
if (M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32] && (!M_SECURE[i] || !s_axil_aprot[1]) && (M_CONNECT & (1 << (S+i*S_COUNT))) && (s_axil_aaddr >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32]) == (M_BASE_ADDR_INT[(i*M_REGIONS+j)*ADDR_WIDTH +: ADDR_WIDTH] >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32])) begin
m_select_next = i;
match = 1'b1;
end
end
end
if (match) begin
// address decode successful
m_axil_avalid_next = 1'b1;
m_decerr_next = 1'b0;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end else begin
// decode error
m_axil_avalid_next = 1'b0;
m_decerr_next = 1'b1;
m_wc_valid_next = WC_OUTPUT;
m_rc_valid_next = 1'b1;
state_next = STATE_DECODE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_DECODE: begin
if (!m_axil_avalid_next && (!m_wc_valid_next || !WC_OUTPUT) && !m_rc_valid_next) begin
s_axil_aready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DECODE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axil_aready_reg <= 1'b0;
m_axil_avalid_reg <= 1'b0;
m_wc_valid_reg <= 1'b0;
m_rc_valid_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axil_aready_reg <= s_axil_aready_next;
m_axil_avalid_reg <= m_axil_avalid_next;
m_wc_valid_reg <= m_wc_valid_next;
m_rc_valid_reg <= m_rc_valid_next;
end
m_select_reg <= m_select_next;
m_decerr_reg <= m_decerr_next;
end
endmodule
`resetall