Add AXI central DMA module and testbenches

This commit is contained in:
Alex Forencich 2018-12-06 17:27:44 -08:00
parent 275cb09205
commit 76fba3ac84
5 changed files with 1857 additions and 0 deletions

729
rtl/axi_cdma.v Normal file
View File

@ -0,0 +1,729 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 Central DMA
*/
module axi_cdma #
(
parameter AXI_DATA_WIDTH = 32, // width of data bus in bits
parameter AXI_ADDR_WIDTH = 16, // width of address bus in bits
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
parameter AXI_ID_WIDTH = 8,
parameter AXI_MAX_BURST_LEN = 16,
parameter LEN_WIDTH = 20,
parameter TAG_WIDTH = 8,
parameter ENABLE_UNALIGNED = 0
)
(
input wire clk,
input wire rst,
/*
* AXI descriptor input
*/
input wire [AXI_ADDR_WIDTH-1:0] s_axis_desc_read_addr,
input wire [AXI_ADDR_WIDTH-1:0] s_axis_desc_write_addr,
input wire [LEN_WIDTH-1:0] s_axis_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_desc_tag,
input wire s_axis_desc_valid,
output wire s_axis_desc_ready,
/*
* AXI descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_desc_status_tag,
output wire m_axis_desc_status_valid,
/*
* AXI write master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire m_axi_bvalid,
output wire m_axi_bready,
/*
* AXI read master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire m_axi_rvalid,
output wire m_axi_rready,
/*
* Configuration
*/
input wire enable
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN << AXI_BURST_SIZE;
parameter OFFSET_WIDTH = AXI_STRB_WIDTH > 1 ? $clog2(AXI_STRB_WIDTH) : 1;
parameter OFFSET_MASK = AXI_STRB_WIDTH > 1 ? {OFFSET_WIDTH{1'b1}} : 0;
parameter ADDR_MASK = {AXI_ADDR_WIDTH{1'b1}} << $clog2(AXI_STRB_WIDTH);
parameter CYCLE_COUNT_WIDTH = LEN_WIDTH - AXI_BURST_SIZE + 1;
parameter STATUS_FIFO_ADDR_WIDTH = 5;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI data width not evenly divisble");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI word width must be even power of two");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256");
$finish;
end
end
localparam [1:0]
READ_STATE_IDLE = 2'd0,
READ_STATE_START = 2'd1,
READ_STATE_REQ = 2'd2;
reg [1:0] read_state_reg = READ_STATE_IDLE, read_state_next;
localparam [0:0]
AXI_STATE_IDLE = 1'd0,
AXI_STATE_WRITE = 1'd1;
reg [0:0] axi_state_reg = AXI_STATE_IDLE, axi_state_next;
// datapath control signals
reg transfer_in_save;
reg axi_cmd_ready;
reg status_fifo_we;
reg [AXI_ADDR_WIDTH-1:0] read_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, read_addr_next;
reg [AXI_ADDR_WIDTH-1:0] write_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, write_addr_next;
reg [LEN_WIDTH-1:0] op_word_count_reg = {LEN_WIDTH{1'b0}}, op_word_count_next;
reg [LEN_WIDTH-1:0] tr_word_count_reg = {LEN_WIDTH{1'b0}}, tr_word_count_next;
reg [LEN_WIDTH-1:0] axi_word_count_reg = {LEN_WIDTH{1'b0}}, axi_word_count_next;
reg [AXI_ADDR_WIDTH-1:0] axi_cmd_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_cmd_addr_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_offset_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] axi_cmd_last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, axi_cmd_last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] axi_cmd_input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, axi_cmd_input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] axi_cmd_output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, axi_cmd_output_cycle_count_next;
reg axi_cmd_bubble_cycle_reg = 1'b0, axi_cmd_bubble_cycle_next;
reg axi_cmd_last_transfer_reg = 1'b0, axi_cmd_last_transfer_next;
reg [TAG_WIDTH-1:0] axi_cmd_tag_reg = {TAG_WIDTH{1'b0}}, axi_cmd_tag_next;
reg axi_cmd_valid_reg = 1'b0, axi_cmd_valid_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg output_active_reg = 1'b0, output_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg first_input_cycle_reg = 1'b0, first_input_cycle_next;
reg first_output_cycle_reg = 1'b0, first_output_cycle_next;
reg output_last_cycle_reg = 1'b0, output_last_cycle_next;
reg last_transfer_reg = 1'b0, last_transfer_next;
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0, status_fifo_wr_ptr_next;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
reg [TAG_WIDTH-1:0] status_fifo_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_last[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg [TAG_WIDTH-1:0] status_fifo_wr_tag;
reg status_fifo_wr_last;
reg s_axis_desc_ready_reg = 1'b0, s_axis_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_desc_status_tag_next;
reg m_axis_desc_status_valid_reg = 1'b0, m_axis_desc_status_valid_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_araddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
reg [AXI_DATA_WIDTH-1:0] save_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axi_rdata = {m_axi_rdata, save_axi_rdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
// internal datapath
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wlast_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
wire m_axi_wready_int_early;
assign s_axis_desc_ready = s_axis_desc_ready_reg;
assign m_axis_desc_status_tag = m_axis_desc_status_tag_reg;
assign m_axis_desc_status_valid = m_axis_desc_status_valid_reg;
assign m_axi_arid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = AXI_BURST_SIZE;
assign m_axi_arburst = 2'b01;
assign m_axi_arlock = 1'b0;
assign m_axi_arcache = 4'b0011;
assign m_axi_arprot = 3'b010;
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = AXI_BURST_SIZE;
assign m_axi_awburst = 2'b01;
assign m_axi_awlock = 1'b0;
assign m_axi_awcache = 4'b0011;
assign m_axi_awprot = 3'b010;
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_max_burst = read_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_op_count = read_addr_reg + op_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] read_addr_plus_axi_count = read_addr_reg + axi_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_max_burst = write_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_op_count = write_addr_reg + op_word_count_reg;
wire [AXI_ADDR_WIDTH-1:0] write_addr_plus_axi_count = write_addr_reg + axi_word_count_reg;
always @* begin
read_state_next = READ_STATE_IDLE;
s_axis_desc_ready_next = 1'b0;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
read_addr_next = read_addr_reg;
write_addr_next = write_addr_reg;
op_word_count_next = op_word_count_reg;
tr_word_count_next = tr_word_count_reg;
axi_word_count_next = axi_word_count_reg;
axi_cmd_addr_next = axi_cmd_addr_reg;
axi_cmd_offset_next = axi_cmd_offset_reg;
axi_cmd_first_cycle_offset_next = axi_cmd_first_cycle_offset_reg;
axi_cmd_last_cycle_offset_next = axi_cmd_last_cycle_offset_reg;
axi_cmd_input_cycle_count_next = axi_cmd_input_cycle_count_reg;
axi_cmd_output_cycle_count_next = axi_cmd_output_cycle_count_reg;
axi_cmd_bubble_cycle_next = axi_cmd_bubble_cycle_reg;
axi_cmd_last_transfer_next = axi_cmd_last_transfer_reg;
axi_cmd_tag_next = axi_cmd_tag_reg;
axi_cmd_valid_next = axi_cmd_valid_reg && !axi_cmd_ready;
case (read_state_reg)
READ_STATE_IDLE: begin
// idle state - load new descriptor to start operation
s_axis_desc_ready_next = !axi_cmd_valid_reg && enable;
if (s_axis_desc_ready && s_axis_desc_valid) begin
if (ENABLE_UNALIGNED) begin
read_addr_next = s_axis_desc_read_addr;
write_addr_next = s_axis_desc_write_addr;
end else begin
read_addr_next = s_axis_desc_read_addr & ADDR_MASK;
write_addr_next = s_axis_desc_write_addr & ADDR_MASK;
end
axi_cmd_tag_next = s_axis_desc_tag;
op_word_count_next = s_axis_desc_len;
s_axis_desc_ready_next = 1'b0;
read_state_next = READ_STATE_START;
end else begin
read_state_next = READ_STATE_IDLE;
end
end
READ_STATE_START: begin
// start state - compute write length
if (!axi_cmd_valid_reg) begin
if (op_word_count_reg <= AXI_MAX_BURST_SIZE - (write_addr_reg & OFFSET_MASK)) begin
// packet smaller than max burst size
if (write_addr_reg[12] != write_addr_plus_op_count[12]) begin
// crosses 4k boundary
axi_word_count_next = 13'h1000 - write_addr_reg[11:0];
end else begin
// does not cross 4k boundary
axi_word_count_next = op_word_count_reg;
end
end else begin
// packet larger than max burst size
if (write_addr_reg[12] != write_addr_plus_max_burst[12]) begin
// crosses 4k boundary
axi_word_count_next = 13'h1000 - write_addr_reg[11:0];
end else begin
// does not cross 4k boundary
axi_word_count_next = AXI_MAX_BURST_SIZE - (write_addr_reg & OFFSET_MASK);
end
end
write_addr_next = write_addr_reg + axi_word_count_next;
op_word_count_next = op_word_count_reg - axi_word_count_next;
axi_cmd_addr_next = write_addr_reg;
if (ENABLE_UNALIGNED) begin
axi_cmd_input_cycle_count_next = (axi_word_count_next + (read_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
axi_cmd_output_cycle_count_next = (axi_word_count_next + (write_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
axi_cmd_offset_next = (write_addr_reg & OFFSET_MASK) - (read_addr_reg & OFFSET_MASK);
axi_cmd_bubble_cycle_next = (read_addr_reg & OFFSET_MASK) > (write_addr_reg & OFFSET_MASK);
axi_cmd_first_cycle_offset_next = write_addr_reg & OFFSET_MASK;
axi_cmd_last_cycle_offset_next = axi_cmd_first_cycle_offset_next + axi_word_count_next & OFFSET_MASK;
end else begin
axi_cmd_input_cycle_count_next = (axi_word_count_next - 1) >> AXI_BURST_SIZE;
axi_cmd_output_cycle_count_next = (axi_word_count_next - 1) >> AXI_BURST_SIZE;
axi_cmd_offset_next = 0;
axi_cmd_bubble_cycle_next = 0;
axi_cmd_first_cycle_offset_next = 0;
axi_cmd_last_cycle_offset_next = axi_word_count_next & OFFSET_MASK;
end
axi_cmd_last_transfer_next = op_word_count_next == 0;
axi_cmd_valid_next = 1'b1;
read_state_next = READ_STATE_REQ;
end else begin
read_state_next = READ_STATE_START;
end
end
READ_STATE_REQ: begin
// request state - issue AXI read requests
if (!m_axi_arvalid) begin
if (axi_word_count_reg <= AXI_MAX_BURST_SIZE - (read_addr_reg & OFFSET_MASK)) begin
// packet smaller than max burst size
if (read_addr_reg[12] != read_addr_plus_axi_count[12]) begin
// crosses 4k boundary
tr_word_count_next = 13'h1000 - read_addr_reg[11:0];
end else begin
// does not cross 4k boundary
tr_word_count_next = axi_word_count_reg;
end
end else begin
// packet larger than max burst size
if (read_addr_reg[12] != read_addr_plus_max_burst[12]) begin
// crosses 4k boundary
tr_word_count_next = 13'h1000 - read_addr_reg[11:0];
end else begin
// does not cross 4k boundary
tr_word_count_next = AXI_MAX_BURST_SIZE - (read_addr_reg & OFFSET_MASK);
end
end
m_axi_araddr_next = read_addr_reg;
if (ENABLE_UNALIGNED) begin
m_axi_arlen_next = (tr_word_count_next + (read_addr_reg & OFFSET_MASK) - 1) >> AXI_BURST_SIZE;
end else begin
m_axi_arlen_next = (tr_word_count_next - 1) >> AXI_BURST_SIZE;
end
m_axi_arvalid_next = 1'b1;
read_addr_next = read_addr_reg + tr_word_count_next;
axi_word_count_next = axi_word_count_reg - tr_word_count_next;
if (axi_word_count_next > 0) begin
read_state_next = READ_STATE_REQ;
end else if (op_word_count_next > 0) begin
read_state_next = READ_STATE_START;
end else begin
s_axis_desc_ready_next = !axi_cmd_valid_reg && enable;
read_state_next = READ_STATE_IDLE;
end
end else begin
read_state_next = READ_STATE_REQ;
end
end
endcase
end
always @* begin
axi_state_next = AXI_STATE_IDLE;
m_axis_desc_status_tag_next = m_axis_desc_status_tag_reg;
m_axis_desc_status_valid_next = 1'b0;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_wdata_int = shift_axi_rdata;
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b0}};
m_axi_wlast_int = 1'b0;
m_axi_wvalid_int = 1'b0;
m_axi_bready_next = 1'b0;
m_axi_rready_next = 1'b0;
transfer_in_save = 1'b0;
axi_cmd_ready = 1'b0;
status_fifo_we = 1'b0;
offset_next = offset_reg;
first_cycle_offset_next = first_cycle_offset_reg;
last_cycle_offset_next = last_cycle_offset_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
output_active_next = output_active_reg;
bubble_cycle_next = bubble_cycle_reg;
first_input_cycle_next = first_input_cycle_reg;
first_output_cycle_next = first_output_cycle_reg;
output_last_cycle_next = output_last_cycle_reg;
last_transfer_next = last_transfer_reg;
tag_next = tag_reg;
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
status_fifo_wr_tag = tag_reg;
status_fifo_wr_last = 1'b0;
case (axi_state_reg)
AXI_STATE_IDLE: begin
// idle state - load new descriptor to start operation
m_axi_rready_next = 1'b0;
// store transfer parameters
if (ENABLE_UNALIGNED) begin
offset_next = axi_cmd_offset_reg;
first_cycle_offset_next = axi_cmd_first_cycle_offset_reg;
end else begin
offset_next = 0;
first_cycle_offset_next = 0;
end
last_cycle_offset_next = axi_cmd_last_cycle_offset_reg;
input_cycle_count_next = axi_cmd_input_cycle_count_reg;
output_cycle_count_next = axi_cmd_output_cycle_count_reg;
bubble_cycle_next = axi_cmd_bubble_cycle_reg;
last_transfer_next = axi_cmd_last_transfer_reg;
tag_next = axi_cmd_tag_reg;
output_last_cycle_next = output_cycle_count_next == 0;
input_active_next = 1'b1;
output_active_next = 1'b1;
first_input_cycle_next = 1'b1;
first_output_cycle_next = 1'b1;
if (!m_axi_awvalid && axi_cmd_valid_reg) begin
axi_cmd_ready = 1'b1;
m_axi_awaddr_next = axi_cmd_addr_reg;
m_axi_awlen_next = axi_cmd_output_cycle_count_reg;
m_axi_awvalid_next = 1'b1;
m_axi_rready_next = m_axi_wready_int_early;
axi_state_next = AXI_STATE_WRITE;
end
end
AXI_STATE_WRITE: begin
// handle AXI read data
m_axi_rready_next = m_axi_wready_int_early && input_active_reg;
if (m_axi_wready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
// transfer in AXI read data
transfer_in_save = m_axi_rready && m_axi_rvalid;
if (ENABLE_UNALIGNED && first_input_cycle_reg && bubble_cycle_reg) begin
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
bubble_cycle_next = 1'b0;
first_input_cycle_next = 1'b0;
m_axi_rready_next = m_axi_wready_int_early && input_active_next;
axi_state_next = AXI_STATE_WRITE;
end else begin
// update counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
if (output_active_reg) begin
output_cycle_count_next = output_cycle_count_reg - 1;
output_active_next = output_cycle_count_reg > 0;
end
output_last_cycle_next = output_cycle_count_next == 0;
bubble_cycle_next = 1'b0;
first_input_cycle_next = 1'b0;
first_output_cycle_next = 1'b0;
// pass through read data
m_axi_wdata_int = shift_axi_rdata;
if (first_output_cycle_reg) begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
end else begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
end
m_axi_wvalid_int = 1'b1;
if (output_last_cycle_reg) begin
// no more data to transfer, finish operation
if (last_cycle_offset_reg > 0) begin
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH - last_cycle_offset_reg);
end
m_axi_wlast_int = 1'b1;
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_reg;
status_fifo_wr_last = last_transfer_reg;
m_axi_rready_next = 1'b0;
axi_state_next = AXI_STATE_IDLE;
end else begin
// more cycles in AXI transfer
axi_state_next = AXI_STATE_WRITE;
end
end
end else begin
axi_state_next = AXI_STATE_WRITE;
end
end
endcase
if (status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
// status FIFO not empty
if (m_axi_bready && m_axi_bvalid) begin
// got write completion, pop and return status
m_axis_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
m_axis_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
m_axi_bready_next = 1'b0;
end else begin
// wait for write completion
m_axi_bready_next = 1'b1;
end
end
end
always @(posedge clk) begin
if (rst) begin
read_state_reg <= READ_STATE_IDLE;
axi_state_reg <= AXI_STATE_IDLE;
axi_cmd_valid_reg <= 1'b0;
s_axis_desc_ready_reg <= 1'b0;
m_axis_desc_status_valid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
status_fifo_wr_ptr_reg <= 0;
status_fifo_rd_ptr_reg <= 0;
end else begin
read_state_reg <= read_state_next;
axi_state_reg <= axi_state_next;
axi_cmd_valid_reg <= axi_cmd_valid_next;
s_axis_desc_ready_reg <= s_axis_desc_ready_next;
m_axis_desc_status_valid_reg <= m_axis_desc_status_valid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
if (status_fifo_we) begin
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
end
m_axis_desc_status_tag_reg <= m_axis_desc_status_tag_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
read_addr_reg <= read_addr_next;
write_addr_reg <= write_addr_next;
op_word_count_reg <= op_word_count_next;
tr_word_count_reg <= tr_word_count_next;
axi_word_count_reg <= axi_word_count_next;
axi_cmd_addr_reg <= axi_cmd_addr_next;
axi_cmd_offset_reg <= axi_cmd_offset_next;
axi_cmd_first_cycle_offset_reg <= axi_cmd_first_cycle_offset_next;
axi_cmd_last_cycle_offset_reg <= axi_cmd_last_cycle_offset_next;
axi_cmd_input_cycle_count_reg <= axi_cmd_input_cycle_count_next;
axi_cmd_output_cycle_count_reg <= axi_cmd_output_cycle_count_next;
axi_cmd_bubble_cycle_reg <= axi_cmd_bubble_cycle_next;
axi_cmd_last_transfer_reg <= axi_cmd_last_transfer_next;
axi_cmd_tag_reg <= axi_cmd_tag_next;
axi_cmd_valid_reg <= axi_cmd_valid_next;
offset_reg <= offset_next;
first_cycle_offset_reg <= first_cycle_offset_next;
last_cycle_offset_reg <= last_cycle_offset_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
output_active_reg <= output_active_next;
bubble_cycle_reg <= bubble_cycle_next;
first_input_cycle_reg <= first_input_cycle_next;
first_output_cycle_reg <= first_output_cycle_next;
output_last_cycle_reg <= output_last_cycle_next;
last_transfer_reg <= last_transfer_next;
tag_reg <= tag_next;
if (transfer_in_save) begin
save_axi_rdata_reg <= m_axi_rdata;
end
if (status_fifo_we) begin
status_fifo_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_tag;
status_fifo_last[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_last;
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
end
// output datapath logic
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg m_axi_wlast_reg = 1'b0;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg temp_m_axi_wlast_reg = 1'b0;
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wvalid = m_axi_wvalid_reg;
assign m_axi_wlast = m_axi_wlast_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready || !m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
end
end
endmodule

350
tb/test_axi_cdma_32.py Executable file
View File

@ -0,0 +1,350 @@
#!/usr/bin/env python
"""
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axi
import axis_ep
module = 'axi_cdma'
testbench = 'test_%s_32' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
AXI_DATA_WIDTH = 32
AXI_ADDR_WIDTH = 16
AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8)
AXI_ID_WIDTH = 8
AXI_MAX_BURST_LEN = 16
LEN_WIDTH = 20
TAG_WIDTH = 8
ENABLE_UNALIGNED = 0
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
s_axis_desc_read_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_write_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_len = Signal(intbv(0)[LEN_WIDTH:])
s_axis_desc_tag = Signal(intbv(0)[TAG_WIDTH:])
s_axis_desc_valid = Signal(bool(0))
m_axi_awready = Signal(bool(0))
m_axi_wready = Signal(bool(0))
m_axi_bid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_bresp = Signal(intbv(0)[2:])
m_axi_bvalid = Signal(bool(0))
m_axi_arready = Signal(bool(0))
m_axi_rid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_rdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_rresp = Signal(intbv(0)[2:])
m_axi_rlast = Signal(bool(0))
m_axi_rvalid = Signal(bool(0))
enable = Signal(bool(0))
# Outputs
s_axis_desc_ready = Signal(bool(0))
m_axis_desc_status_tag = Signal(intbv(0)[TAG_WIDTH:])
m_axis_desc_status_valid = Signal(bool(0))
m_axi_awid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_awaddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_awlen = Signal(intbv(0)[8:])
m_axi_awsize = Signal(intbv(2)[3:])
m_axi_awburst = Signal(intbv(1)[2:])
m_axi_awlock = Signal(bool(0))
m_axi_awcache = Signal(intbv(0)[4:])
m_axi_awprot = Signal(intbv(0)[3:])
m_axi_awvalid = Signal(bool(0))
m_axi_wdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_wstrb = Signal(intbv(0)[AXI_STRB_WIDTH:])
m_axi_wlast = Signal(bool(0))
m_axi_wvalid = Signal(bool(0))
m_axi_bready = Signal(bool(0))
m_axi_arid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_araddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_arlen = Signal(intbv(0)[8:])
m_axi_arsize = Signal(intbv(2)[3:])
m_axi_arburst = Signal(intbv(1)[2:])
m_axi_arlock = Signal(bool(0))
m_axi_arcache = Signal(intbv(0)[4:])
m_axi_arprot = Signal(intbv(0)[3:])
m_axi_arvalid = Signal(bool(0))
m_axi_rready = Signal(bool(0))
# AXI4 RAM model
axi_ram_inst = axi.AXIRam(2**16)
axi_ram_pause = Signal(bool(False))
axi_ram_port0 = axi_ram_inst.create_port(
clk,
s_axi_awid=m_axi_awid,
s_axi_awaddr=m_axi_awaddr,
s_axi_awlen=m_axi_awlen,
s_axi_awsize=m_axi_awsize,
s_axi_awburst=m_axi_awburst,
s_axi_awlock=m_axi_awlock,
s_axi_awcache=m_axi_awcache,
s_axi_awprot=m_axi_awprot,
s_axi_awvalid=m_axi_awvalid,
s_axi_awready=m_axi_awready,
s_axi_wdata=m_axi_wdata,
s_axi_wstrb=m_axi_wstrb,
s_axi_wlast=m_axi_wlast,
s_axi_wvalid=m_axi_wvalid,
s_axi_wready=m_axi_wready,
s_axi_bid=m_axi_bid,
s_axi_bresp=m_axi_bresp,
s_axi_bvalid=m_axi_bvalid,
s_axi_bready=m_axi_bready,
s_axi_arid=m_axi_arid,
s_axi_araddr=m_axi_araddr,
s_axi_arlen=m_axi_arlen,
s_axi_arsize=m_axi_arsize,
s_axi_arburst=m_axi_arburst,
s_axi_arlock=m_axi_arlock,
s_axi_arcache=m_axi_arcache,
s_axi_arprot=m_axi_arprot,
s_axi_arvalid=m_axi_arvalid,
s_axi_arready=m_axi_arready,
s_axi_rid=m_axi_rid,
s_axi_rdata=m_axi_rdata,
s_axi_rresp=m_axi_rresp,
s_axi_rlast=m_axi_rlast,
s_axi_rvalid=m_axi_rvalid,
s_axi_rready=m_axi_rready,
pause=axi_ram_pause,
name='port0'
)
# sources and sinks
desc_source = axis_ep.AXIStreamSource()
desc_source_pause = Signal(bool(False))
desc_source_logic = desc_source.create_logic(
clk,
rst,
tdata=(s_axis_desc_read_addr, s_axis_desc_write_addr, s_axis_desc_len, s_axis_desc_tag),
tvalid=s_axis_desc_valid,
tready=s_axis_desc_ready,
pause=desc_source_pause,
name='desc_source'
)
desc_status_sink = axis_ep.AXIStreamSink()
desc_status_sink_logic = desc_status_sink.create_logic(
clk,
rst,
tdata=(m_axis_desc_status_tag,),
tvalid=m_axis_desc_status_valid,
name='desc_status_sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
s_axis_desc_read_addr=s_axis_desc_read_addr,
s_axis_desc_write_addr=s_axis_desc_write_addr,
s_axis_desc_len=s_axis_desc_len,
s_axis_desc_tag=s_axis_desc_tag,
s_axis_desc_valid=s_axis_desc_valid,
s_axis_desc_ready=s_axis_desc_ready,
m_axis_desc_status_tag=m_axis_desc_status_tag,
m_axis_desc_status_valid=m_axis_desc_status_valid,
m_axi_awid=m_axi_awid,
m_axi_awaddr=m_axi_awaddr,
m_axi_awlen=m_axi_awlen,
m_axi_awsize=m_axi_awsize,
m_axi_awburst=m_axi_awburst,
m_axi_awlock=m_axi_awlock,
m_axi_awcache=m_axi_awcache,
m_axi_awprot=m_axi_awprot,
m_axi_awvalid=m_axi_awvalid,
m_axi_awready=m_axi_awready,
m_axi_wdata=m_axi_wdata,
m_axi_wstrb=m_axi_wstrb,
m_axi_wlast=m_axi_wlast,
m_axi_wvalid=m_axi_wvalid,
m_axi_wready=m_axi_wready,
m_axi_bid=m_axi_bid,
m_axi_bresp=m_axi_bresp,
m_axi_bvalid=m_axi_bvalid,
m_axi_bready=m_axi_bready,
m_axi_arid=m_axi_arid,
m_axi_araddr=m_axi_araddr,
m_axi_arlen=m_axi_arlen,
m_axi_arsize=m_axi_arsize,
m_axi_arburst=m_axi_arburst,
m_axi_arlock=m_axi_arlock,
m_axi_arcache=m_axi_arcache,
m_axi_arprot=m_axi_arprot,
m_axi_arvalid=m_axi_arvalid,
m_axi_arready=m_axi_arready,
m_axi_rid=m_axi_rid,
m_axi_rdata=m_axi_rdata,
m_axi_rresp=m_axi_rresp,
m_axi_rlast=m_axi_rlast,
m_axi_rvalid=m_axi_rvalid,
m_axi_rready=m_axi_rready,
enable=enable
)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while desc_status_sink.empty():
yield clk.posedge
def wait_pause_ram():
while desc_status_sink.empty():
axi_ram_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
axi_ram_pause.next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
cur_tag = 1
enable.next = 1
yield clk.posedge
print("test 1: transfer")
current_test.next = 1
read_addr = 0x00000000
write_addr = 0x00008000
test_data = b'\x11\x22\x33\x44'
axi_ram_inst.write_mem(read_addr, test_data)
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield desc_status_sink.wait(1000)
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr, len(test_data)) == test_data
cur_tag = (cur_tag + 1) % 256
yield delay(100)
yield clk.posedge
print("test 2: various transfers")
current_test.next = 2
for length in list(range(1,17))+[128]:
for read_offset in list(range(8,16,4))+list(range(4096-8,4096,4)):
for write_offset in list(range(8,16,4))+list(range(4096-8,4096,4)):
for wait in wait_normal, wait_pause_ram:
print("length %d, read offset %d, write offset %d"% (length, read_offset, write_offset))
read_addr = read_offset
write_addr = 0x00008000+write_offset
test_data = bytearray([x%256 for x in range(length)])
axi_ram_inst.write_mem(read_addr, test_data)
axi_ram_inst.write_mem(write_addr & 0xffff80, b'\xaa'*(len(test_data)+256))
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield wait()
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr-8, len(test_data)+16) == b'\xaa'*8+test_data+b'\xaa'*8
cur_tag = (cur_tag + 1) % 256
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

214
tb/test_axi_cdma_32.v Normal file
View File

@ -0,0 +1,214 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axi_cdma
*/
module test_axi_cdma_32;
// Parameters
parameter AXI_DATA_WIDTH = 32;
parameter AXI_ADDR_WIDTH = 16;
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8);
parameter AXI_ID_WIDTH = 8;
parameter AXI_MAX_BURST_LEN = 16;
parameter LEN_WIDTH = 20;
parameter TAG_WIDTH = 8;
parameter ENABLE_UNALIGNED = 0;
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [AXI_ADDR_WIDTH-1:0] s_axis_desc_read_addr = 0;
reg [AXI_ADDR_WIDTH-1:0] s_axis_desc_write_addr = 0;
reg [LEN_WIDTH-1:0] s_axis_desc_len = 0;
reg [TAG_WIDTH-1:0] s_axis_desc_tag = 0;
reg s_axis_desc_valid = 0;
reg m_axi_awready = 0;
reg m_axi_wready = 0;
reg [AXI_ID_WIDTH-1:0] m_axi_bid = 0;
reg [1:0] m_axi_bresp = 0;
reg m_axi_bvalid = 0;
reg m_axi_arready = 0;
reg [AXI_ID_WIDTH-1:0] m_axi_rid = 0;
reg [AXI_DATA_WIDTH-1:0] m_axi_rdata = 0;
reg [1:0] m_axi_rresp = 0;
reg m_axi_rlast = 0;
reg m_axi_rvalid = 0;
reg enable = 0;
// Outputs
wire s_axis_desc_ready;
wire [TAG_WIDTH-1:0] m_axis_desc_status_tag;
wire m_axis_desc_status_valid;
wire [AXI_ID_WIDTH-1:0] m_axi_awid;
wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr;
wire [7:0] m_axi_awlen;
wire [2:0] m_axi_awsize;
wire [1:0] m_axi_awburst;
wire m_axi_awlock;
wire [3:0] m_axi_awcache;
wire [2:0] m_axi_awprot;
wire m_axi_awvalid;
wire [AXI_DATA_WIDTH-1:0] m_axi_wdata;
wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb;
wire m_axi_wlast;
wire m_axi_wvalid;
wire m_axi_bready;
wire [AXI_ID_WIDTH-1:0] m_axi_arid;
wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr;
wire [7:0] m_axi_arlen;
wire [2:0] m_axi_arsize;
wire [1:0] m_axi_arburst;
wire m_axi_arlock;
wire [3:0] m_axi_arcache;
wire [2:0] m_axi_arprot;
wire m_axi_arvalid;
wire m_axi_rready;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
s_axis_desc_read_addr,
s_axis_desc_write_addr,
s_axis_desc_len,
s_axis_desc_tag,
s_axis_desc_valid,
m_axi_awready,
m_axi_wready,
m_axi_bid,
m_axi_bresp,
m_axi_bvalid,
m_axi_arready,
m_axi_rid,
m_axi_rdata,
m_axi_rresp,
m_axi_rlast,
m_axi_rvalid,
enable
);
$to_myhdl(
s_axis_desc_ready,
m_axis_desc_status_tag,
m_axis_desc_status_valid,
m_axi_awid,
m_axi_awaddr,
m_axi_awlen,
m_axi_awsize,
m_axi_awburst,
m_axi_awlock,
m_axi_awcache,
m_axi_awprot,
m_axi_awvalid,
m_axi_wdata,
m_axi_wstrb,
m_axi_wlast,
m_axi_wvalid,
m_axi_bready,
m_axi_arid,
m_axi_araddr,
m_axi_arlen,
m_axi_arsize,
m_axi_arburst,
m_axi_arlock,
m_axi_arcache,
m_axi_arprot,
m_axi_arvalid,
m_axi_rready
);
// dump file
$dumpfile("test_axi_cdma_32.lxt");
$dumpvars(0, test_axi_cdma_32);
end
axi_cdma #(
.AXI_DATA_WIDTH(AXI_DATA_WIDTH),
.AXI_ADDR_WIDTH(AXI_ADDR_WIDTH),
.AXI_STRB_WIDTH(AXI_STRB_WIDTH),
.AXI_ID_WIDTH(AXI_ID_WIDTH),
.AXI_MAX_BURST_LEN(AXI_MAX_BURST_LEN),
.LEN_WIDTH(LEN_WIDTH),
.TAG_WIDTH(TAG_WIDTH),
.ENABLE_UNALIGNED(ENABLE_UNALIGNED)
)
UUT (
.clk(clk),
.rst(rst),
.s_axis_desc_read_addr(s_axis_desc_read_addr),
.s_axis_desc_write_addr(s_axis_desc_write_addr),
.s_axis_desc_len(s_axis_desc_len),
.s_axis_desc_tag(s_axis_desc_tag),
.s_axis_desc_valid(s_axis_desc_valid),
.s_axis_desc_ready(s_axis_desc_ready),
.m_axis_desc_status_tag(m_axis_desc_status_tag),
.m_axis_desc_status_valid(m_axis_desc_status_valid),
.m_axi_awid(m_axi_awid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awready(m_axi_awready),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wready(m_axi_wready),
.m_axi_bid(m_axi_bid),
.m_axi_bresp(m_axi_bresp),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bready(m_axi_bready),
.m_axi_arid(m_axi_arid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_arready(m_axi_arready),
.m_axi_rid(m_axi_rid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp),
.m_axi_rlast(m_axi_rlast),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rready(m_axi_rready),
.enable(enable)
);
endmodule

350
tb/test_axi_cdma_32_unaligned.py Executable file
View File

@ -0,0 +1,350 @@
#!/usr/bin/env python
"""
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axi
import axis_ep
module = 'axi_cdma'
testbench = 'test_%s_32_unaligned' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
AXI_DATA_WIDTH = 32
AXI_ADDR_WIDTH = 16
AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8)
AXI_ID_WIDTH = 8
AXI_MAX_BURST_LEN = 16
LEN_WIDTH = 20
TAG_WIDTH = 8
ENABLE_UNALIGNED = 1
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
s_axis_desc_read_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_write_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_len = Signal(intbv(0)[LEN_WIDTH:])
s_axis_desc_tag = Signal(intbv(0)[TAG_WIDTH:])
s_axis_desc_valid = Signal(bool(0))
m_axi_awready = Signal(bool(0))
m_axi_wready = Signal(bool(0))
m_axi_bid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_bresp = Signal(intbv(0)[2:])
m_axi_bvalid = Signal(bool(0))
m_axi_arready = Signal(bool(0))
m_axi_rid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_rdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_rresp = Signal(intbv(0)[2:])
m_axi_rlast = Signal(bool(0))
m_axi_rvalid = Signal(bool(0))
enable = Signal(bool(0))
# Outputs
s_axis_desc_ready = Signal(bool(0))
m_axis_desc_status_tag = Signal(intbv(0)[TAG_WIDTH:])
m_axis_desc_status_valid = Signal(bool(0))
m_axi_awid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_awaddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_awlen = Signal(intbv(0)[8:])
m_axi_awsize = Signal(intbv(2)[3:])
m_axi_awburst = Signal(intbv(1)[2:])
m_axi_awlock = Signal(bool(0))
m_axi_awcache = Signal(intbv(0)[4:])
m_axi_awprot = Signal(intbv(0)[3:])
m_axi_awvalid = Signal(bool(0))
m_axi_wdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_wstrb = Signal(intbv(0)[AXI_STRB_WIDTH:])
m_axi_wlast = Signal(bool(0))
m_axi_wvalid = Signal(bool(0))
m_axi_bready = Signal(bool(0))
m_axi_arid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_araddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_arlen = Signal(intbv(0)[8:])
m_axi_arsize = Signal(intbv(2)[3:])
m_axi_arburst = Signal(intbv(1)[2:])
m_axi_arlock = Signal(bool(0))
m_axi_arcache = Signal(intbv(0)[4:])
m_axi_arprot = Signal(intbv(0)[3:])
m_axi_arvalid = Signal(bool(0))
m_axi_rready = Signal(bool(0))
# AXI4 RAM model
axi_ram_inst = axi.AXIRam(2**16)
axi_ram_pause = Signal(bool(False))
axi_ram_port0 = axi_ram_inst.create_port(
clk,
s_axi_awid=m_axi_awid,
s_axi_awaddr=m_axi_awaddr,
s_axi_awlen=m_axi_awlen,
s_axi_awsize=m_axi_awsize,
s_axi_awburst=m_axi_awburst,
s_axi_awlock=m_axi_awlock,
s_axi_awcache=m_axi_awcache,
s_axi_awprot=m_axi_awprot,
s_axi_awvalid=m_axi_awvalid,
s_axi_awready=m_axi_awready,
s_axi_wdata=m_axi_wdata,
s_axi_wstrb=m_axi_wstrb,
s_axi_wlast=m_axi_wlast,
s_axi_wvalid=m_axi_wvalid,
s_axi_wready=m_axi_wready,
s_axi_bid=m_axi_bid,
s_axi_bresp=m_axi_bresp,
s_axi_bvalid=m_axi_bvalid,
s_axi_bready=m_axi_bready,
s_axi_arid=m_axi_arid,
s_axi_araddr=m_axi_araddr,
s_axi_arlen=m_axi_arlen,
s_axi_arsize=m_axi_arsize,
s_axi_arburst=m_axi_arburst,
s_axi_arlock=m_axi_arlock,
s_axi_arcache=m_axi_arcache,
s_axi_arprot=m_axi_arprot,
s_axi_arvalid=m_axi_arvalid,
s_axi_arready=m_axi_arready,
s_axi_rid=m_axi_rid,
s_axi_rdata=m_axi_rdata,
s_axi_rresp=m_axi_rresp,
s_axi_rlast=m_axi_rlast,
s_axi_rvalid=m_axi_rvalid,
s_axi_rready=m_axi_rready,
pause=axi_ram_pause,
name='port0'
)
# sources and sinks
desc_source = axis_ep.AXIStreamSource()
desc_source_pause = Signal(bool(False))
desc_source_logic = desc_source.create_logic(
clk,
rst,
tdata=(s_axis_desc_read_addr, s_axis_desc_write_addr, s_axis_desc_len, s_axis_desc_tag),
tvalid=s_axis_desc_valid,
tready=s_axis_desc_ready,
pause=desc_source_pause,
name='desc_source'
)
desc_status_sink = axis_ep.AXIStreamSink()
desc_status_sink_logic = desc_status_sink.create_logic(
clk,
rst,
tdata=(m_axis_desc_status_tag,),
tvalid=m_axis_desc_status_valid,
name='desc_status_sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
s_axis_desc_read_addr=s_axis_desc_read_addr,
s_axis_desc_write_addr=s_axis_desc_write_addr,
s_axis_desc_len=s_axis_desc_len,
s_axis_desc_tag=s_axis_desc_tag,
s_axis_desc_valid=s_axis_desc_valid,
s_axis_desc_ready=s_axis_desc_ready,
m_axis_desc_status_tag=m_axis_desc_status_tag,
m_axis_desc_status_valid=m_axis_desc_status_valid,
m_axi_awid=m_axi_awid,
m_axi_awaddr=m_axi_awaddr,
m_axi_awlen=m_axi_awlen,
m_axi_awsize=m_axi_awsize,
m_axi_awburst=m_axi_awburst,
m_axi_awlock=m_axi_awlock,
m_axi_awcache=m_axi_awcache,
m_axi_awprot=m_axi_awprot,
m_axi_awvalid=m_axi_awvalid,
m_axi_awready=m_axi_awready,
m_axi_wdata=m_axi_wdata,
m_axi_wstrb=m_axi_wstrb,
m_axi_wlast=m_axi_wlast,
m_axi_wvalid=m_axi_wvalid,
m_axi_wready=m_axi_wready,
m_axi_bid=m_axi_bid,
m_axi_bresp=m_axi_bresp,
m_axi_bvalid=m_axi_bvalid,
m_axi_bready=m_axi_bready,
m_axi_arid=m_axi_arid,
m_axi_araddr=m_axi_araddr,
m_axi_arlen=m_axi_arlen,
m_axi_arsize=m_axi_arsize,
m_axi_arburst=m_axi_arburst,
m_axi_arlock=m_axi_arlock,
m_axi_arcache=m_axi_arcache,
m_axi_arprot=m_axi_arprot,
m_axi_arvalid=m_axi_arvalid,
m_axi_arready=m_axi_arready,
m_axi_rid=m_axi_rid,
m_axi_rdata=m_axi_rdata,
m_axi_rresp=m_axi_rresp,
m_axi_rlast=m_axi_rlast,
m_axi_rvalid=m_axi_rvalid,
m_axi_rready=m_axi_rready,
enable=enable
)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while desc_status_sink.empty():
yield clk.posedge
def wait_pause_ram():
while desc_status_sink.empty():
axi_ram_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
axi_ram_pause.next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
cur_tag = 1
enable.next = 1
yield clk.posedge
print("test 1: transfer")
current_test.next = 1
read_addr = 0x00000000
write_addr = 0x00008000
test_data = b'\x11\x22\x33\x44'
axi_ram_inst.write_mem(read_addr, test_data)
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield desc_status_sink.wait(1000)
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr, len(test_data)) == test_data
cur_tag = (cur_tag + 1) % 256
yield delay(100)
yield clk.posedge
print("test 2: various transfers")
current_test.next = 2
for length in list(range(1,17))+[128]:
for read_offset in list(range(8,16))+list(range(4096-8,4096)):
for write_offset in list(range(8,16))+list(range(4096-8,4096)):
for wait in wait_normal, wait_pause_ram:
print("length %d, read offset %d, write offset %d"% (length, read_offset, write_offset))
read_addr = read_offset
write_addr = 0x00008000+write_offset
test_data = bytearray([x%256 for x in range(length)])
axi_ram_inst.write_mem(read_addr, test_data)
axi_ram_inst.write_mem(write_addr & 0xffff80, b'\xaa'*(len(test_data)+256))
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield wait()
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr-8, len(test_data)+16) == b'\xaa'*8+test_data+b'\xaa'*8
cur_tag = (cur_tag + 1) % 256
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

View File

@ -0,0 +1,214 @@
/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Testbench for axi_cdma
*/
module test_axi_cdma_32_unaligned;
// Parameters
parameter AXI_DATA_WIDTH = 32;
parameter AXI_ADDR_WIDTH = 16;
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8);
parameter AXI_ID_WIDTH = 8;
parameter AXI_MAX_BURST_LEN = 16;
parameter LEN_WIDTH = 20;
parameter TAG_WIDTH = 8;
parameter ENABLE_UNALIGNED = 1;
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [AXI_ADDR_WIDTH-1:0] s_axis_desc_read_addr = 0;
reg [AXI_ADDR_WIDTH-1:0] s_axis_desc_write_addr = 0;
reg [LEN_WIDTH-1:0] s_axis_desc_len = 0;
reg [TAG_WIDTH-1:0] s_axis_desc_tag = 0;
reg s_axis_desc_valid = 0;
reg m_axi_awready = 0;
reg m_axi_wready = 0;
reg [AXI_ID_WIDTH-1:0] m_axi_bid = 0;
reg [1:0] m_axi_bresp = 0;
reg m_axi_bvalid = 0;
reg m_axi_arready = 0;
reg [AXI_ID_WIDTH-1:0] m_axi_rid = 0;
reg [AXI_DATA_WIDTH-1:0] m_axi_rdata = 0;
reg [1:0] m_axi_rresp = 0;
reg m_axi_rlast = 0;
reg m_axi_rvalid = 0;
reg enable = 0;
// Outputs
wire s_axis_desc_ready;
wire [TAG_WIDTH-1:0] m_axis_desc_status_tag;
wire m_axis_desc_status_valid;
wire [AXI_ID_WIDTH-1:0] m_axi_awid;
wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr;
wire [7:0] m_axi_awlen;
wire [2:0] m_axi_awsize;
wire [1:0] m_axi_awburst;
wire m_axi_awlock;
wire [3:0] m_axi_awcache;
wire [2:0] m_axi_awprot;
wire m_axi_awvalid;
wire [AXI_DATA_WIDTH-1:0] m_axi_wdata;
wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb;
wire m_axi_wlast;
wire m_axi_wvalid;
wire m_axi_bready;
wire [AXI_ID_WIDTH-1:0] m_axi_arid;
wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr;
wire [7:0] m_axi_arlen;
wire [2:0] m_axi_arsize;
wire [1:0] m_axi_arburst;
wire m_axi_arlock;
wire [3:0] m_axi_arcache;
wire [2:0] m_axi_arprot;
wire m_axi_arvalid;
wire m_axi_rready;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
s_axis_desc_read_addr,
s_axis_desc_write_addr,
s_axis_desc_len,
s_axis_desc_tag,
s_axis_desc_valid,
m_axi_awready,
m_axi_wready,
m_axi_bid,
m_axi_bresp,
m_axi_bvalid,
m_axi_arready,
m_axi_rid,
m_axi_rdata,
m_axi_rresp,
m_axi_rlast,
m_axi_rvalid,
enable
);
$to_myhdl(
s_axis_desc_ready,
m_axis_desc_status_tag,
m_axis_desc_status_valid,
m_axi_awid,
m_axi_awaddr,
m_axi_awlen,
m_axi_awsize,
m_axi_awburst,
m_axi_awlock,
m_axi_awcache,
m_axi_awprot,
m_axi_awvalid,
m_axi_wdata,
m_axi_wstrb,
m_axi_wlast,
m_axi_wvalid,
m_axi_bready,
m_axi_arid,
m_axi_araddr,
m_axi_arlen,
m_axi_arsize,
m_axi_arburst,
m_axi_arlock,
m_axi_arcache,
m_axi_arprot,
m_axi_arvalid,
m_axi_rready
);
// dump file
$dumpfile("test_axi_cdma_32_unaligned.lxt");
$dumpvars(0, test_axi_cdma_32_unaligned);
end
axi_cdma #(
.AXI_DATA_WIDTH(AXI_DATA_WIDTH),
.AXI_ADDR_WIDTH(AXI_ADDR_WIDTH),
.AXI_STRB_WIDTH(AXI_STRB_WIDTH),
.AXI_ID_WIDTH(AXI_ID_WIDTH),
.AXI_MAX_BURST_LEN(AXI_MAX_BURST_LEN),
.LEN_WIDTH(LEN_WIDTH),
.TAG_WIDTH(TAG_WIDTH),
.ENABLE_UNALIGNED(ENABLE_UNALIGNED)
)
UUT (
.clk(clk),
.rst(rst),
.s_axis_desc_read_addr(s_axis_desc_read_addr),
.s_axis_desc_write_addr(s_axis_desc_write_addr),
.s_axis_desc_len(s_axis_desc_len),
.s_axis_desc_tag(s_axis_desc_tag),
.s_axis_desc_valid(s_axis_desc_valid),
.s_axis_desc_ready(s_axis_desc_ready),
.m_axis_desc_status_tag(m_axis_desc_status_tag),
.m_axis_desc_status_valid(m_axis_desc_status_valid),
.m_axi_awid(m_axi_awid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awready(m_axi_awready),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wready(m_axi_wready),
.m_axi_bid(m_axi_bid),
.m_axi_bresp(m_axi_bresp),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bready(m_axi_bready),
.m_axi_arid(m_axi_arid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_arready(m_axi_arready),
.m_axi_rid(m_axi_rid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp),
.m_axi_rlast(m_axi_rlast),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rready(m_axi_rready),
.enable(enable)
);
endmodule