/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 RAM */ module axi_ram # ( parameter DATA_WIDTH = 32, // width of data bus in bits parameter ADDR_WIDTH = 16, // width of address bus in bits parameter STRB_WIDTH = (DATA_WIDTH/8), parameter ID_WIDTH = 8, parameter PIPELINE_OUTPUT = 0 ) ( input wire clk, input wire rst, input wire [ID_WIDTH-1:0] s_axi_awid, input wire [ADDR_WIDTH-1:0] s_axi_awaddr, input wire [7:0] s_axi_awlen, input wire [2:0] s_axi_awsize, input wire [1:0] s_axi_awburst, input wire s_axi_awlock, input wire [3:0] s_axi_awcache, input wire [2:0] s_axi_awprot, input wire s_axi_awvalid, output wire s_axi_awready, input wire [DATA_WIDTH-1:0] s_axi_wdata, input wire [STRB_WIDTH-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire s_axi_wvalid, output wire s_axi_wready, output wire [ID_WIDTH-1:0] s_axi_bid, output wire [1:0] s_axi_bresp, output wire s_axi_bvalid, input wire s_axi_bready, input wire [ID_WIDTH-1:0] s_axi_arid, input wire [ADDR_WIDTH-1:0] s_axi_araddr, input wire [7:0] s_axi_arlen, input wire [2:0] s_axi_arsize, input wire [1:0] s_axi_arburst, input wire s_axi_arlock, input wire [3:0] s_axi_arcache, input wire [2:0] s_axi_arprot, input wire s_axi_arvalid, output wire s_axi_arready, output wire [ID_WIDTH-1:0] s_axi_rid, output wire [DATA_WIDTH-1:0] s_axi_rdata, output wire [1:0] s_axi_rresp, output wire s_axi_rlast, output wire s_axi_rvalid, input wire s_axi_rready ); parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH); parameter WORD_WIDTH = STRB_WIDTH; parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH; // bus width assertions initial begin if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin $error("Error: AXI data width not evenly divisble"); $finish; end if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin $error("Error: AXI word width must be even power of two"); $finish; end end localparam [0:0] READ_STATE_IDLE = 1'd0, READ_STATE_BURST = 1'd1; reg [0:0] read_state_reg = READ_STATE_IDLE, read_state_next; localparam [0:0] WRITE_STATE_IDLE = 1'd0, WRITE_STATE_BURST = 1'd1; reg [0:0] write_state_reg = WRITE_STATE_IDLE, write_state_next; reg mem_wr_en; reg mem_rd_en; reg [ID_WIDTH-1:0] read_id_reg = {ID_WIDTH{1'b0}}, read_id_next; reg [ADDR_WIDTH-1:0] read_addr_reg = {ADDR_WIDTH{1'b0}}, read_addr_next; reg read_addr_valid_reg = 1'b0, read_addr_valid_next; reg read_addr_ready; reg read_last_reg = 1'b0, read_last_next; reg [7:0] read_count_reg = 8'd0, read_count_next; reg [2:0] read_size_reg = 3'd0, read_size_next; reg [1:0] read_burst_reg = 2'd0, read_burst_next; reg [ID_WIDTH-1:0] write_id_reg = {ID_WIDTH{1'b0}}, write_id_next; reg [ADDR_WIDTH-1:0] write_addr_reg = {ADDR_WIDTH{1'b0}}, write_addr_next; reg write_addr_valid_reg = 1'b0, write_addr_valid_next; reg write_addr_ready; reg [7:0] write_count_reg = 8'd0, write_count_next; reg [2:0] write_size_reg = 3'd0, write_size_next; reg [1:0] write_burst_reg = 2'd0, write_burst_next; reg s_axi_awready_reg = 1'b0, s_axi_awready_next; reg s_axi_wready_reg = 1'b0, s_axi_wready_next; reg [ID_WIDTH-1:0] s_axi_bid_reg = {ID_WIDTH{1'b0}}, s_axi_bid_next; reg [1:0] s_axi_bresp_reg = 2'b00, s_axi_bresp_next; reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next; reg s_axi_arready_reg = 1'b0, s_axi_arready_next; reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}}, s_axi_rid_next; reg [DATA_WIDTH-1:0] s_axi_rdata_reg = {DATA_WIDTH{1'b0}}, s_axi_rdata_next; reg [1:0] s_axi_rresp_reg = 2'b00, s_axi_rresp_next; reg s_axi_rlast_reg = 1'b0, s_axi_rlast_next; reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; reg [ID_WIDTH-1:0] s_axi_rid_pipe_reg = {ID_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] s_axi_rdata_pipe_reg = {DATA_WIDTH{1'b0}}; reg [1:0] s_axi_rresp_pipe_reg = 2'b00; reg s_axi_rlast_pipe_reg = 1'b0; reg s_axi_rvalid_pipe_reg = 1'b0; // (* RAM_STYLE="BLOCK" *) reg [DATA_WIDTH-1:0] mem[(2**VALID_ADDR_WIDTH)-1:0]; wire [VALID_ADDR_WIDTH-1:0] s_axi_awaddr_valid = s_axi_awaddr >> (ADDR_WIDTH - VALID_ADDR_WIDTH); wire [VALID_ADDR_WIDTH-1:0] s_axi_araddr_valid = s_axi_araddr >> (ADDR_WIDTH - VALID_ADDR_WIDTH); wire [VALID_ADDR_WIDTH-1:0] read_addr_valid = read_addr_reg >> (ADDR_WIDTH - VALID_ADDR_WIDTH); wire [VALID_ADDR_WIDTH-1:0] write_addr_valid = write_addr_reg >> (ADDR_WIDTH - VALID_ADDR_WIDTH); assign s_axi_awready = s_axi_awready_reg; assign s_axi_wready = s_axi_wready_reg; assign s_axi_bid = s_axi_bid_reg; assign s_axi_bresp = s_axi_bresp_reg; assign s_axi_bvalid = s_axi_bvalid_reg; assign s_axi_arready = s_axi_arready_reg; assign s_axi_rid = PIPELINE_OUTPUT ? s_axi_rid_pipe_reg : s_axi_rid_reg; assign s_axi_rdata = PIPELINE_OUTPUT ? s_axi_rdata_pipe_reg : s_axi_rdata_reg; assign s_axi_rresp = PIPELINE_OUTPUT ? s_axi_rresp_pipe_reg : s_axi_rresp_reg; assign s_axi_rlast = PIPELINE_OUTPUT ? s_axi_rlast_pipe_reg : s_axi_rlast_reg; assign s_axi_rvalid = PIPELINE_OUTPUT ? s_axi_rvalid_pipe_reg : s_axi_rvalid_reg; integer i, j; initial begin // two nested loops for smaller number of iterations per loop // workaround for synthesizer complaints about large loop counts for (i = 0; i < 2**ADDR_WIDTH; i = i + 2**(ADDR_WIDTH/2)) begin for (j = i; j < i + 2**(ADDR_WIDTH/2); j = j + 1) begin mem[j] = 0; end end end always @* begin write_state_next = WRITE_STATE_IDLE; mem_wr_en = 1'b0; write_addr_ready = 1'b0; if (s_axi_wready & s_axi_wvalid) begin write_addr_ready = 1'b1; mem_wr_en = 1'b1; end write_id_next = write_id_reg; write_addr_next = write_addr_reg; write_addr_valid_next = write_addr_valid_reg && !write_addr_ready; write_count_next = write_count_reg; write_size_next = write_size_reg; write_burst_next = write_burst_reg; s_axi_awready_next = 1'b0; s_axi_wready_next = write_addr_valid_next; s_axi_bid_next = s_axi_bid_reg; s_axi_bresp_next = s_axi_bresp_reg; s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready; case (write_state_reg) WRITE_STATE_IDLE: begin s_axi_awready_next = (write_addr_ready || !write_addr_valid_reg) && (!s_axi_bvalid || s_axi_bready); if (s_axi_awready & s_axi_awvalid) begin write_id_next = s_axi_awid; write_addr_next = s_axi_awaddr; write_count_next = s_axi_awlen; write_size_next = s_axi_awsize < $clog2(STRB_WIDTH) ? s_axi_awsize : $clog2(STRB_WIDTH); write_burst_next = s_axi_awburst; write_addr_valid_next = 1'b1; s_axi_wready_next = 1'b1; if (s_axi_awlen > 0) begin s_axi_awready_next = 1'b0; write_state_next = WRITE_STATE_BURST; end else begin s_axi_awready_next = 1'b0; s_axi_bid_next = write_id_next; s_axi_bresp_next = 2'b00; s_axi_bvalid_next = 1'b1; write_state_next = WRITE_STATE_IDLE; end end else begin write_state_next = WRITE_STATE_IDLE; end end WRITE_STATE_BURST: begin s_axi_awready_next = 1'b0; if (write_addr_ready) begin if (write_burst_reg != 2'b00) begin write_addr_next = write_addr_reg + (1 << write_size_reg); end write_count_next = write_count_reg - 1; s_axi_wready_next = 1'b1; if (write_count_reg > 0) begin write_addr_valid_next = 1'b1; write_state_next = WRITE_STATE_BURST; end else begin write_addr_valid_next = 1'b0; s_axi_awready_next = 1'b0; s_axi_wready_next = 1'b0; s_axi_bid_next = write_id_reg; s_axi_bresp_next = 2'b00; s_axi_bvalid_next = 1'b1; write_state_next = WRITE_STATE_IDLE; end end else begin write_state_next = WRITE_STATE_BURST; end end endcase end always @(posedge clk) begin if (rst) begin write_state_reg <= WRITE_STATE_IDLE; write_addr_valid_reg <= 1'b0; s_axi_awready_reg <= 1'b0; s_axi_wready_reg <= 1'b0; s_axi_bvalid_reg <= 1'b0; end else begin write_state_reg <= write_state_next; write_addr_valid_reg <= write_addr_valid_next; s_axi_awready_reg <= s_axi_awready_next; s_axi_wready_reg <= s_axi_wready_next; s_axi_bvalid_reg <= s_axi_bvalid_next; end write_id_reg <= write_id_next; write_addr_reg <= write_addr_next; write_count_reg <= write_count_next; write_size_reg <= write_size_next; write_burst_reg <= write_burst_next; s_axi_bid_reg <= s_axi_bid_next; s_axi_bresp_reg <= s_axi_bresp_next; for (i = 0; i < WORD_WIDTH; i = i + 1) begin if (mem_wr_en & s_axi_wstrb[i]) begin mem[write_addr_valid][8*i +: 8] <= s_axi_wdata[8*i +: 8]; end end end always @* begin read_state_next = READ_STATE_IDLE; mem_rd_en = 1'b0; read_addr_ready = (s_axi_rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg)); s_axi_rid_next = s_axi_rid_reg; s_axi_rresp_next = s_axi_rresp_reg; s_axi_rlast_next = s_axi_rlast_reg; s_axi_rvalid_next = s_axi_rvalid_reg && !(s_axi_rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg)); if (read_addr_valid_reg && (s_axi_rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg) || !s_axi_rvalid)) begin read_addr_ready = 1'b1; mem_rd_en = 1'b1; s_axi_rvalid_next = 1'b1; s_axi_rid_next = read_id_reg; s_axi_rlast_next = read_last_reg; end read_id_next = read_id_reg; read_addr_next = read_addr_reg; read_addr_valid_next = read_addr_valid_reg && !read_addr_ready; read_last_next = read_last_reg; read_count_next = read_count_reg; read_size_next = read_size_reg; read_burst_next = read_burst_reg; s_axi_arready_next = 1'b0; case (read_state_reg) READ_STATE_IDLE: begin s_axi_arready_next = (read_addr_ready || !read_addr_valid_reg); if (s_axi_arready & s_axi_arvalid) begin read_id_next = s_axi_arid; read_addr_next = s_axi_araddr; read_count_next = s_axi_arlen; read_size_next = s_axi_arsize < $clog2(STRB_WIDTH) ? s_axi_arsize : $clog2(STRB_WIDTH); read_burst_next = s_axi_arburst; read_addr_valid_next = 1'b1; if (s_axi_arlen > 0) begin s_axi_arready_next = 1'b0; read_last_next = 1'b0; read_state_next = READ_STATE_BURST; end else begin s_axi_arready_next = 1'b0; read_last_next = 1'b1; read_state_next = READ_STATE_IDLE; end end else begin read_state_next = READ_STATE_IDLE; end end READ_STATE_BURST: begin s_axi_arready_next = 1'b0; if (read_addr_ready) begin if (read_burst_reg != 2'b00) begin read_addr_next = read_addr_reg + (1 << read_size_reg); end read_count_next = read_count_reg - 1; read_last_next = read_count_next == 0; if (read_count_reg > 0) begin read_addr_valid_next = 1'b1; read_state_next = READ_STATE_BURST; end else begin s_axi_arready_next = 1'b0; read_addr_valid_next = 1'b0; read_state_next = READ_STATE_IDLE; end end else begin read_state_next = READ_STATE_BURST; end end endcase end always @(posedge clk) begin if (rst) begin read_state_reg <= READ_STATE_IDLE; read_addr_valid_reg <= 1'b0; s_axi_arready_reg <= 1'b0; s_axi_rvalid_reg <= 1'b0; s_axi_rvalid_pipe_reg <= 1'b0; end else begin read_state_reg <= read_state_next; read_addr_valid_reg <= read_addr_valid_next; s_axi_arready_reg <= s_axi_arready_next; s_axi_rvalid_reg <= s_axi_rvalid_next; if (!s_axi_rvalid_pipe_reg || s_axi_rready) begin s_axi_rvalid_pipe_reg <= s_axi_rvalid_reg; end end read_id_reg <= read_id_next; read_addr_reg <= read_addr_next; read_last_reg <= read_last_next; read_count_reg <= read_count_next; read_size_reg <= read_size_next; read_burst_reg <= read_burst_next; s_axi_rid_reg <= s_axi_rid_next; s_axi_rresp_reg <= s_axi_rresp_next; s_axi_rlast_reg <= s_axi_rlast_next; if (mem_rd_en) begin s_axi_rdata_reg <= mem[read_addr_valid]; end if (!s_axi_rvalid_pipe_reg || s_axi_rready) begin s_axi_rid_pipe_reg <= s_axi_rid_reg; s_axi_rdata_pipe_reg <= s_axi_rdata_reg; s_axi_rresp_pipe_reg <= s_axi_rresp_reg; s_axi_rlast_pipe_reg <= s_axi_rlast_reg; end end endmodule