/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 FIFO (read) */ module axi_fifo_rd # ( // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Width of ID signal parameter ID_WIDTH = 8, // Propagate aruser signal parameter ARUSER_ENABLE = 0, // Width of aruser signal parameter ARUSER_WIDTH = 1, // Propagate ruser signal parameter RUSER_ENABLE = 0, // Width of ruser signal parameter RUSER_WIDTH = 1, // Read data FIFO depth (cycles) parameter FIFO_DEPTH = 32, // Hold read address until space available in FIFO for data, if possible parameter FIFO_DELAY = 0 ) ( input wire clk, input wire rst, /* * AXI slave interface */ input wire [ID_WIDTH-1:0] s_axi_arid, input wire [ADDR_WIDTH-1:0] s_axi_araddr, input wire [7:0] s_axi_arlen, input wire [2:0] s_axi_arsize, input wire [1:0] s_axi_arburst, input wire s_axi_arlock, input wire [3:0] s_axi_arcache, input wire [2:0] s_axi_arprot, input wire [3:0] s_axi_arqos, input wire [3:0] s_axi_arregion, input wire [ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, output wire [ID_WIDTH-1:0] s_axi_rid, output wire [DATA_WIDTH-1:0] s_axi_rdata, output wire [1:0] s_axi_rresp, output wire s_axi_rlast, output wire [RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, /* * AXI master interface */ output wire [ID_WIDTH-1:0] m_axi_arid, output wire [ADDR_WIDTH-1:0] m_axi_araddr, output wire [7:0] m_axi_arlen, output wire [2:0] m_axi_arsize, output wire [1:0] m_axi_arburst, output wire m_axi_arlock, output wire [3:0] m_axi_arcache, output wire [2:0] m_axi_arprot, output wire [3:0] m_axi_arqos, output wire [3:0] m_axi_arregion, output wire [ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, input wire [ID_WIDTH-1:0] m_axi_rid, input wire [DATA_WIDTH-1:0] m_axi_rdata, input wire [1:0] m_axi_rresp, input wire m_axi_rlast, input wire [RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); parameter LAST_OFFSET = DATA_WIDTH; parameter ID_OFFSET = LAST_OFFSET + 1; parameter RESP_OFFSET = ID_OFFSET + ID_WIDTH; parameter RUSER_OFFSET = RESP_OFFSET + 2; parameter RWIDTH = RUSER_OFFSET + (RUSER_ENABLE ? RUSER_WIDTH : 0); parameter FIFO_ADDR_WIDTH = $clog2(FIFO_DEPTH); reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [FIFO_ADDR_WIDTH:0] wr_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [FIFO_ADDR_WIDTH:0] rd_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}; reg [RWIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0]; reg [RWIDTH-1:0] mem_read_data_reg; reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next; wire [RWIDTH-1:0] m_axi_r; reg [RWIDTH-1:0] s_axi_r_reg; reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next; // full when first MSB different but rest same wire full = ((wr_ptr_reg[FIFO_ADDR_WIDTH] != rd_ptr_reg[FIFO_ADDR_WIDTH]) && (wr_ptr_reg[FIFO_ADDR_WIDTH-1:0] == rd_ptr_reg[FIFO_ADDR_WIDTH-1:0])); // empty when pointers match exactly wire empty = wr_ptr_reg == rd_ptr_reg; // control signals reg write; reg read; reg store_output; assign m_axi_rready = !full; generate assign m_axi_r[DATA_WIDTH-1:0] = m_axi_rdata; assign m_axi_r[LAST_OFFSET] = m_axi_rlast; assign m_axi_r[ID_OFFSET +: ID_WIDTH] = m_axi_rid; assign m_axi_r[RESP_OFFSET +: 2] = m_axi_rresp; if (RUSER_ENABLE) assign m_axi_r[RUSER_OFFSET +: RUSER_WIDTH] = m_axi_ruser; endgenerate generate if (FIFO_DELAY) begin // store AR channel value until there is enough space to store R channel burst in FIFO or FIFO is empty localparam COUNT_WIDTH = (FIFO_ADDR_WIDTH > 8 ? FIFO_ADDR_WIDTH : 8) + 1; localparam [1:0] STATE_IDLE = 1'd0, STATE_WAIT = 1'd1; reg [1:0] state_reg = STATE_IDLE, state_next; reg [COUNT_WIDTH-1:0] count_reg = 0, count_next; reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next; reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next; reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next; reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next; reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next; reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next; reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next; reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next; reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next; reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next; reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next; reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next; reg s_axi_arready_reg = 1'b0, s_axi_arready_next; assign m_axi_arid = m_axi_arid_reg; assign m_axi_araddr = m_axi_araddr_reg; assign m_axi_arlen = m_axi_arlen_reg; assign m_axi_arsize = m_axi_arsize_reg; assign m_axi_arburst = m_axi_arburst_reg; assign m_axi_arlock = m_axi_arlock_reg; assign m_axi_arcache = m_axi_arcache_reg; assign m_axi_arprot = m_axi_arprot_reg; assign m_axi_arqos = m_axi_arqos_reg; assign m_axi_arregion = m_axi_arregion_reg; assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}}; assign m_axi_arvalid = m_axi_arvalid_reg; assign s_axi_arready = s_axi_arready_reg; always @* begin state_next = STATE_IDLE; count_next = count_reg; m_axi_arid_next = m_axi_arid_reg; m_axi_araddr_next = m_axi_araddr_reg; m_axi_arlen_next = m_axi_arlen_reg; m_axi_arsize_next = m_axi_arsize_reg; m_axi_arburst_next = m_axi_arburst_reg; m_axi_arlock_next = m_axi_arlock_reg; m_axi_arcache_next = m_axi_arcache_reg; m_axi_arprot_next = m_axi_arprot_reg; m_axi_arqos_next = m_axi_arqos_reg; m_axi_arregion_next = m_axi_arregion_reg; m_axi_aruser_next = m_axi_aruser_reg; m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready; s_axi_arready_next = s_axi_arready_reg; case (state_reg) STATE_IDLE: begin s_axi_arready_next = !m_axi_arvalid; if (s_axi_arready & s_axi_arvalid) begin s_axi_arready_next = 1'b0; m_axi_arid_next = s_axi_arid; m_axi_araddr_next = s_axi_araddr; m_axi_arlen_next = s_axi_arlen; m_axi_arsize_next = s_axi_arsize; m_axi_arburst_next = s_axi_arburst; m_axi_arlock_next = s_axi_arlock; m_axi_arcache_next = s_axi_arcache; m_axi_arprot_next = s_axi_arprot; m_axi_arqos_next = s_axi_arqos; m_axi_arregion_next = s_axi_arregion; m_axi_aruser_next = s_axi_aruser; if (count_reg == 0 || count_reg + m_axi_arlen_next + 1 <= 2**FIFO_ADDR_WIDTH) begin count_next = count_reg + m_axi_arlen_next + 1; m_axi_arvalid_next = 1'b1; s_axi_arready_next = 1'b0; state_next = STATE_IDLE; end else begin s_axi_arready_next = 1'b0; state_next = STATE_WAIT; end end else begin state_next = STATE_IDLE; end end STATE_WAIT: begin s_axi_arready_next = 1'b0; if (count_reg == 0 || count_reg + m_axi_arlen_reg + 1 <= 2**FIFO_ADDR_WIDTH) begin count_next = count_reg + m_axi_arlen_reg + 1; m_axi_arvalid_next = 1'b1; state_next = STATE_IDLE; end else begin state_next = STATE_WAIT; end end endcase if (s_axi_rready && s_axi_rvalid) begin count_next = count_next - 1; end end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; m_axi_arvalid_reg <= 1'b0; s_axi_arready_reg <= 1'b0; end else begin state_reg <= state_next; m_axi_arvalid_reg <= m_axi_arvalid_next; s_axi_arready_reg <= s_axi_arready_next; end count_reg <= count_next; m_axi_arid_reg <= m_axi_arid_next; m_axi_araddr_reg <= m_axi_araddr_next; m_axi_arlen_reg <= m_axi_arlen_next; m_axi_arsize_reg <= m_axi_arsize_next; m_axi_arburst_reg <= m_axi_arburst_next; m_axi_arlock_reg <= m_axi_arlock_next; m_axi_arcache_reg <= m_axi_arcache_next; m_axi_arprot_reg <= m_axi_arprot_next; m_axi_arqos_reg <= m_axi_arqos_next; m_axi_arregion_reg <= m_axi_arregion_next; m_axi_aruser_reg <= m_axi_aruser_next; end end else begin // bypass AR channel assign m_axi_arid = s_axi_arid; assign m_axi_araddr = s_axi_araddr; assign m_axi_arlen = s_axi_arlen; assign m_axi_arsize = s_axi_arsize; assign m_axi_arburst = s_axi_arburst; assign m_axi_arlock = s_axi_arlock; assign m_axi_arcache = s_axi_arcache; assign m_axi_arprot = s_axi_arprot; assign m_axi_arqos = s_axi_arqos; assign m_axi_arregion = s_axi_arregion; assign m_axi_aruser = ARUSER_ENABLE ? s_axi_aruser : {ARUSER_WIDTH{1'b0}}; assign m_axi_arvalid = s_axi_arvalid; assign s_axi_arready = m_axi_arready; end endgenerate assign s_axi_rvalid = s_axi_rvalid_reg; assign s_axi_rdata = s_axi_r_reg[DATA_WIDTH-1:0]; assign s_axi_rlast = s_axi_r_reg[LAST_OFFSET]; assign s_axi_rid = s_axi_r_reg[ID_OFFSET +: ID_WIDTH]; assign s_axi_rresp = s_axi_r_reg[RESP_OFFSET +: 2]; assign s_axi_ruser = RUSER_ENABLE ? s_axi_r_reg[RUSER_OFFSET +: RUSER_WIDTH] : {RUSER_WIDTH{1'b0}}; // Write logic always @* begin write = 1'b0; wr_ptr_next = wr_ptr_reg; if (m_axi_rvalid) begin // input data valid if (!full) begin // not full, perform write write = 1'b1; wr_ptr_next = wr_ptr_reg + 1; end end end always @(posedge clk) begin if (rst) begin wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; end else begin wr_ptr_reg <= wr_ptr_next; end wr_addr_reg <= wr_ptr_next; if (write) begin mem[wr_addr_reg[FIFO_ADDR_WIDTH-1:0]] <= m_axi_r; end end // Read logic always @* begin read = 1'b0; rd_ptr_next = rd_ptr_reg; mem_read_data_valid_next = mem_read_data_valid_reg; if (store_output || !mem_read_data_valid_reg) begin // output data not valid OR currently being transferred if (!empty) begin // not empty, perform read read = 1'b1; mem_read_data_valid_next = 1'b1; rd_ptr_next = rd_ptr_reg + 1; end else begin // empty, invalidate mem_read_data_valid_next = 1'b0; end end end always @(posedge clk) begin if (rst) begin rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}}; mem_read_data_valid_reg <= 1'b0; end else begin rd_ptr_reg <= rd_ptr_next; mem_read_data_valid_reg <= mem_read_data_valid_next; end rd_addr_reg <= rd_ptr_next; if (read) begin mem_read_data_reg <= mem[rd_addr_reg[FIFO_ADDR_WIDTH-1:0]]; end end // Output register always @* begin store_output = 1'b0; s_axi_rvalid_next = s_axi_rvalid_reg; if (s_axi_rready || !s_axi_rvalid) begin store_output = 1'b1; s_axi_rvalid_next = mem_read_data_valid_reg; end end always @(posedge clk) begin if (rst) begin s_axi_rvalid_reg <= 1'b0; end else begin s_axi_rvalid_reg <= s_axi_rvalid_next; end if (store_output) begin s_axi_r_reg <= mem_read_data_reg; end end endmodule