/* Copyright (c) 2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4 lite interconnect */ module axil_interconnect # ( // Number of AXI inputs (slave interfaces) parameter S_COUNT = 4, // Number of AXI outputs (master interfaces) parameter M_COUNT = 4, // Width of data bus in bits parameter DATA_WIDTH = 32, // Width of address bus in bits parameter ADDR_WIDTH = 32, // Width of wstrb (width of data bus in words) parameter STRB_WIDTH = (DATA_WIDTH/8), // Number of regions per master interface parameter M_REGIONS = 1, // Master interface base addresses // M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits // set to zero for default addressing based on M_ADDR_WIDTH parameter M_BASE_ADDR = 0, // Master interface address widths // M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}}, // Read connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT_READ = {M_COUNT{{S_COUNT{1'b1}}}}, // Write connections between interfaces // M_COUNT concatenated fields of S_COUNT bits parameter M_CONNECT_WRITE = {M_COUNT{{S_COUNT{1'b1}}}}, // Secure master (fail operations based on awprot/arprot) // M_COUNT bits parameter M_SECURE = {M_COUNT{1'b0}} ) ( input wire clk, input wire rst, /* * AXI lite slave interfaces */ input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_awaddr, input wire [S_COUNT*3-1:0] s_axil_awprot, input wire [S_COUNT-1:0] s_axil_awvalid, output wire [S_COUNT-1:0] s_axil_awready, input wire [S_COUNT*DATA_WIDTH-1:0] s_axil_wdata, input wire [S_COUNT*STRB_WIDTH-1:0] s_axil_wstrb, input wire [S_COUNT-1:0] s_axil_wvalid, output wire [S_COUNT-1:0] s_axil_wready, output wire [S_COUNT*2-1:0] s_axil_bresp, output wire [S_COUNT-1:0] s_axil_bvalid, input wire [S_COUNT-1:0] s_axil_bready, input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_araddr, input wire [S_COUNT*3-1:0] s_axil_arprot, input wire [S_COUNT-1:0] s_axil_arvalid, output wire [S_COUNT-1:0] s_axil_arready, output wire [S_COUNT*DATA_WIDTH-1:0] s_axil_rdata, output wire [S_COUNT*2-1:0] s_axil_rresp, output wire [S_COUNT-1:0] s_axil_rvalid, input wire [S_COUNT-1:0] s_axil_rready, /* * AXI lite master interfaces */ output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_awaddr, output wire [M_COUNT*3-1:0] m_axil_awprot, output wire [M_COUNT-1:0] m_axil_awvalid, input wire [M_COUNT-1:0] m_axil_awready, output wire [M_COUNT*DATA_WIDTH-1:0] m_axil_wdata, output wire [M_COUNT*STRB_WIDTH-1:0] m_axil_wstrb, output wire [M_COUNT-1:0] m_axil_wvalid, input wire [M_COUNT-1:0] m_axil_wready, input wire [M_COUNT*2-1:0] m_axil_bresp, input wire [M_COUNT-1:0] m_axil_bvalid, output wire [M_COUNT-1:0] m_axil_bready, output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_araddr, output wire [M_COUNT*3-1:0] m_axil_arprot, output wire [M_COUNT-1:0] m_axil_arvalid, input wire [M_COUNT-1:0] m_axil_arready, input wire [M_COUNT*DATA_WIDTH-1:0] m_axil_rdata, input wire [M_COUNT*2-1:0] m_axil_rresp, input wire [M_COUNT-1:0] m_axil_rvalid, output wire [M_COUNT-1:0] m_axil_rready ); parameter CL_S_COUNT = $clog2(S_COUNT); parameter CL_M_COUNT = $clog2(M_COUNT); // default address computation function [M_COUNT*M_REGIONS*ADDR_WIDTH-1:0] calcBaseAddrs(input [31:0] dummy); integer i; reg [ADDR_WIDTH-1:0] base; begin calcBaseAddrs = {M_COUNT*M_REGIONS*ADDR_WIDTH{1'b0}}; base = 0; for (i = 1; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_WIDTH[i*32 +: 32]) begin base = base + 2**M_ADDR_WIDTH[(i-1)*32 +: 32]; // increment base = base - (base % 2**M_ADDR_WIDTH[i*32 +: 32]); // align calcBaseAddrs[i * ADDR_WIDTH +: ADDR_WIDTH] = base; end end end endfunction parameter M_BASE_ADDR_INT = M_BASE_ADDR ? M_BASE_ADDR : calcBaseAddrs(0); integer i, j; // check configuration initial begin for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 0 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin $error("Error: address width out of range (instance %m)"); $finish; end end $display("Addressing configuration for axil_interconnect instance %m"); for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin if (M_ADDR_WIDTH[i*32 +: 32]) begin $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))); end end for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin for (j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin if (M_ADDR_WIDTH[i*32 +: 32] && M_ADDR_WIDTH[j*32 +: 32]) begin if (((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32])) <= (M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])))) && ((M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32])) <= (M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))))) begin $display("Overlapping regions:"); $display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))); $display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[j*32 +: 32], M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32]), M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32]))); $error("Error: address ranges overlap (instance %m)"); $finish; end end end end end localparam [2:0] STATE_IDLE = 3'd0, STATE_DECODE = 3'd1, STATE_WRITE = 3'd2, STATE_WRITE_RESP = 3'd3, STATE_WRITE_DROP = 3'd4, STATE_READ = 3'd5, STATE_WAIT_IDLE = 3'd6; reg [2:0] state_reg = STATE_IDLE, state_next; reg match; reg [CL_M_COUNT-1:0] m_select_reg = 2'd0, m_select_next; reg [ADDR_WIDTH-1:0] axil_addr_reg = {ADDR_WIDTH{1'b0}}, axil_addr_next; reg axil_addr_valid_reg = 1'b0, axil_addr_valid_next; reg [2:0] axil_prot_reg = 3'b000, axil_prot_next; reg [DATA_WIDTH-1:0] axil_data_reg = {DATA_WIDTH{1'b0}}, axil_data_next; reg [STRB_WIDTH-1:0] axil_wstrb_reg = {STRB_WIDTH{1'b0}}, axil_wstrb_next; reg [1:0] axil_resp_reg = 2'b00, axil_resp_next; reg [S_COUNT-1:0] s_axil_awready_reg = 0, s_axil_awready_next; reg [S_COUNT-1:0] s_axil_wready_reg = 0, s_axil_wready_next; reg [S_COUNT-1:0] s_axil_bvalid_reg = 0, s_axil_bvalid_next; reg [S_COUNT-1:0] s_axil_arready_reg = 0, s_axil_arready_next; reg [S_COUNT-1:0] s_axil_rvalid_reg = 0, s_axil_rvalid_next; reg [M_COUNT-1:0] m_axil_awvalid_reg = 0, m_axil_awvalid_next; reg [M_COUNT-1:0] m_axil_wvalid_reg = 0, m_axil_wvalid_next; reg [M_COUNT-1:0] m_axil_bready_reg = 0, m_axil_bready_next; reg [M_COUNT-1:0] m_axil_arvalid_reg = 0, m_axil_arvalid_next; reg [M_COUNT-1:0] m_axil_rready_reg = 0, m_axil_rready_next; assign s_axil_awready = s_axil_awready_reg; assign s_axil_wready = s_axil_wready_reg; assign s_axil_bresp = {S_COUNT{axil_resp_reg}}; assign s_axil_bvalid = s_axil_bvalid_reg; assign s_axil_arready = s_axil_arready_reg; assign s_axil_rdata = {S_COUNT{axil_data_reg}}; assign s_axil_rresp = {S_COUNT{axil_resp_reg}}; assign s_axil_rvalid = s_axil_rvalid_reg; assign m_axil_awaddr = {M_COUNT{axil_addr_reg}}; assign m_axil_awprot = {M_COUNT{axil_prot_reg}}; assign m_axil_awvalid = m_axil_awvalid_reg; assign m_axil_wdata = {M_COUNT{axil_data_reg}}; assign m_axil_wstrb = {M_COUNT{axil_wstrb_reg}}; assign m_axil_wvalid = m_axil_wvalid_reg; assign m_axil_bready = m_axil_bready_reg; assign m_axil_araddr = {M_COUNT{axil_addr_reg}}; assign m_axil_arprot = {M_COUNT{axil_prot_reg}}; assign m_axil_arvalid = m_axil_arvalid_reg; assign m_axil_rready = m_axil_rready_reg; // slave side mux wire [(CL_S_COUNT > 0 ? CL_S_COUNT-1 : 0):0] s_select; wire [ADDR_WIDTH-1:0] current_s_axil_awaddr = s_axil_awaddr[s_select*ADDR_WIDTH +: ADDR_WIDTH]; wire [2:0] current_s_axil_awprot = s_axil_awprot[s_select*3 +: 3]; wire current_s_axil_awvalid = s_axil_awvalid[s_select]; wire current_s_axil_awready = s_axil_awready[s_select]; wire [DATA_WIDTH-1:0] current_s_axil_wdata = s_axil_wdata[s_select*DATA_WIDTH +: DATA_WIDTH]; wire [STRB_WIDTH-1:0] current_s_axil_wstrb = s_axil_wstrb[s_select*STRB_WIDTH +: STRB_WIDTH]; wire current_s_axil_wvalid = s_axil_wvalid[s_select]; wire current_s_axil_wready = s_axil_wready[s_select]; wire [1:0] current_s_axil_bresp = s_axil_bresp[s_select*2 +: 2]; wire current_s_axil_bvalid = s_axil_bvalid[s_select]; wire current_s_axil_bready = s_axil_bready[s_select]; wire [ADDR_WIDTH-1:0] current_s_axil_araddr = s_axil_araddr[s_select*ADDR_WIDTH +: ADDR_WIDTH]; wire [2:0] current_s_axil_arprot = s_axil_arprot[s_select*3 +: 3]; wire current_s_axil_arvalid = s_axil_arvalid[s_select]; wire current_s_axil_arready = s_axil_arready[s_select]; wire [DATA_WIDTH-1:0] current_s_axil_rdata = s_axil_rdata[s_select*DATA_WIDTH +: DATA_WIDTH]; wire [1:0] current_s_axil_rresp = s_axil_rresp[s_select*2 +: 2]; wire current_s_axil_rvalid = s_axil_rvalid[s_select]; wire current_s_axil_rready = s_axil_rready[s_select]; // master side mux wire [ADDR_WIDTH-1:0] current_m_axil_awaddr = m_axil_awaddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH]; wire [2:0] current_m_axil_awprot = m_axil_awprot[m_select_reg*3 +: 3]; wire current_m_axil_awvalid = m_axil_awvalid[m_select_reg]; wire current_m_axil_awready = m_axil_awready[m_select_reg]; wire [DATA_WIDTH-1:0] current_m_axil_wdata = m_axil_wdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH]; wire [STRB_WIDTH-1:0] current_m_axil_wstrb = m_axil_wstrb[m_select_reg*STRB_WIDTH +: STRB_WIDTH]; wire current_m_axil_wvalid = m_axil_wvalid[m_select_reg]; wire current_m_axil_wready = m_axil_wready[m_select_reg]; wire [1:0] current_m_axil_bresp = m_axil_bresp[m_select_reg*2 +: 2]; wire current_m_axil_bvalid = m_axil_bvalid[m_select_reg]; wire current_m_axil_bready = m_axil_bready[m_select_reg]; wire [ADDR_WIDTH-1:0] current_m_axil_araddr = m_axil_araddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH]; wire [2:0] current_m_axil_arprot = m_axil_arprot[m_select_reg*3 +: 3]; wire current_m_axil_arvalid = m_axil_arvalid[m_select_reg]; wire current_m_axil_arready = m_axil_arready[m_select_reg]; wire [DATA_WIDTH-1:0] current_m_axil_rdata = m_axil_rdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH]; wire [1:0] current_m_axil_rresp = m_axil_rresp[m_select_reg*2 +: 2]; wire current_m_axil_rvalid = m_axil_rvalid[m_select_reg]; wire current_m_axil_rready = m_axil_rready[m_select_reg]; // arbiter instance wire [S_COUNT*2-1:0] request; wire [S_COUNT*2-1:0] acknowledge; wire [S_COUNT*2-1:0] grant; wire grant_valid; wire [CL_S_COUNT:0] grant_encoded; wire read = grant_encoded[0]; assign s_select = grant_encoded >> 1; arbiter #( .PORTS(S_COUNT*2), .ARB_TYPE_ROUND_ROBIN(1), .ARB_BLOCK(1), .ARB_BLOCK_ACK(1), .ARB_LSB_HIGH_PRIORITY(1) ) arb_inst ( .clk(clk), .rst(rst), .request(request), .acknowledge(acknowledge), .grant(grant), .grant_valid(grant_valid), .grant_encoded(grant_encoded) ); genvar n; // request generation generate for (n = 0; n < S_COUNT; n = n + 1) begin assign request[2*n] = s_axil_awvalid[n]; assign request[2*n+1] = s_axil_arvalid[n]; end endgenerate // acknowledge generation generate for (n = 0; n < S_COUNT; n = n + 1) begin assign acknowledge[2*n] = grant[2*n] && s_axil_bvalid[n] && s_axil_bready[n]; assign acknowledge[2*n+1] = grant[2*n+1] && s_axil_rvalid[n] && s_axil_rready[n]; end endgenerate always @* begin state_next = STATE_IDLE; match = 1'b0; m_select_next = m_select_reg; axil_addr_next = axil_addr_reg; axil_addr_valid_next = axil_addr_valid_reg; axil_prot_next = axil_prot_reg; axil_data_next = axil_data_reg; axil_wstrb_next = axil_wstrb_reg; axil_resp_next = axil_resp_reg; s_axil_awready_next = 0; s_axil_wready_next = 0; s_axil_bvalid_next = s_axil_bvalid_reg & ~s_axil_bready; s_axil_arready_next = 0; s_axil_rvalid_next = s_axil_rvalid_reg & ~s_axil_rready; m_axil_awvalid_next = m_axil_awvalid_reg & ~m_axil_awready; m_axil_wvalid_next = m_axil_wvalid_reg & ~m_axil_wready; m_axil_bready_next = 0; m_axil_arvalid_next = m_axil_arvalid_reg & ~m_axil_arready; m_axil_rready_next = 0; case (state_reg) STATE_IDLE: begin // idle state; wait for arbitration if (grant_valid) begin axil_addr_valid_next = 1'b1; if (read) begin // reading axil_addr_next = current_s_axil_araddr; axil_prot_next = current_s_axil_arprot; s_axil_arready_next[s_select] = 1'b1; end else begin // writing axil_addr_next = current_s_axil_awaddr; axil_prot_next = current_s_axil_awprot; s_axil_awready_next[s_select] = 1'b1; end state_next = STATE_DECODE; end else begin state_next = STATE_IDLE; end end STATE_DECODE: begin // decode state; determine master interface match = 1'b0; for (i = 0; i < M_COUNT; i = i + 1) begin for (j = 0; j < M_REGIONS; j = j + 1) begin if (M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32] && (!M_SECURE[i] || !axil_prot_reg[1]) && ((read ? M_CONNECT_READ : M_CONNECT_WRITE) & (1 << (s_select+i*S_COUNT))) && (axil_addr_reg >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32]) == (M_BASE_ADDR_INT[(i*M_REGIONS+j)*ADDR_WIDTH +: ADDR_WIDTH] >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32])) begin m_select_next = i; match = 1'b1; end end end if (match) begin if (read) begin // reading m_axil_rready_next[m_select_next] = 1'b1; state_next = STATE_READ; end else begin // writing s_axil_wready_next[s_select] = 1'b1; state_next = STATE_WRITE; end end else begin // no match; return decode error axil_data_next = {DATA_WIDTH{1'b0}}; axil_resp_next = 2'b11; if (read) begin // reading s_axil_rvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin // writing s_axil_wready_next[s_select] = 1'b1; state_next = STATE_WRITE_DROP; end end end STATE_WRITE: begin // write state; store and forward write data s_axil_wready_next[s_select] = 1'b1; if (axil_addr_valid_reg) begin m_axil_awvalid_next[m_select_reg] = 1'b1; end axil_addr_valid_next = 1'b0; if (current_s_axil_wready && current_s_axil_wvalid) begin s_axil_wready_next[s_select] = 1'b0; axil_data_next = current_s_axil_wdata; axil_wstrb_next = current_s_axil_wstrb; m_axil_wvalid_next[m_select_reg] = 1'b1; m_axil_bready_next[m_select_reg] = 1'b1; state_next = STATE_WRITE_RESP; end else begin state_next = STATE_WRITE; end end STATE_WRITE_RESP: begin // write response state; store and forward write response m_axil_bready_next[m_select_reg] = 1'b1; if (current_m_axil_bready && current_m_axil_bvalid) begin m_axil_bready_next[m_select_reg] = 1'b0; axil_resp_next = current_m_axil_bresp; s_axil_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_RESP; end end STATE_WRITE_DROP: begin // write drop state; drop write data s_axil_wready_next[s_select] = 1'b1; axil_addr_valid_next = 1'b0; if (current_s_axil_wready && current_s_axil_wvalid) begin s_axil_wready_next[s_select] = 1'b0; s_axil_bvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_WRITE_DROP; end end STATE_READ: begin // read state; store and forward read response m_axil_rready_next[m_select_reg] = 1'b1; if (axil_addr_valid_reg) begin m_axil_arvalid_next[m_select_reg] = 1'b1; end axil_addr_valid_next = 1'b0; if (current_m_axil_rready && current_m_axil_rvalid) begin m_axil_rready_next[m_select_reg] = 1'b0; axil_data_next = current_m_axil_rdata; axil_resp_next = current_m_axil_rresp; s_axil_rvalid_next[s_select] = 1'b1; state_next = STATE_WAIT_IDLE; end else begin state_next = STATE_READ; end end STATE_WAIT_IDLE: begin // wait for idle state; wait untl grant valid is deasserted if (!grant_valid || acknowledge) begin state_next = STATE_IDLE; end else begin state_next = STATE_WAIT_IDLE; end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; s_axil_awready_reg <= 0; s_axil_wready_reg <= 0; s_axil_bvalid_reg <= 0; s_axil_arready_reg <= 0; s_axil_rvalid_reg <= 0; m_axil_awvalid_reg <= 0; m_axil_wvalid_reg <= 0; m_axil_bready_reg <= 0; m_axil_arvalid_reg <= 0; m_axil_rready_reg <= 0; end else begin state_reg <= state_next; s_axil_awready_reg <= s_axil_awready_next; s_axil_wready_reg <= s_axil_wready_next; s_axil_bvalid_reg <= s_axil_bvalid_next; s_axil_arready_reg <= s_axil_arready_next; s_axil_rvalid_reg <= s_axil_rvalid_next; m_axil_awvalid_reg <= m_axil_awvalid_next; m_axil_wvalid_reg <= m_axil_wvalid_next; m_axil_bready_reg <= m_axil_bready_next; m_axil_arvalid_reg <= m_axil_arvalid_next; m_axil_rready_reg <= m_axil_rready_next; end m_select_reg <= m_select_next; axil_addr_reg <= axil_addr_next; axil_addr_valid_reg <= axil_addr_valid_next; axil_prot_reg <= axil_prot_next; axil_data_reg <= axil_data_next; axil_wstrb_reg <= axil_wstrb_next; axil_resp_reg <= axil_resp_next; end endmodule