verilog-axi/rtl/axi_fifo_rd.v
2020-08-27 13:26:03 -07:00

409 lines
14 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 FIFO (read)
*/
module axi_fifo_rd #
(
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// Read data FIFO depth (cycles)
parameter FIFO_DEPTH = 32,
// Hold read address until space available in FIFO for data, if possible
parameter FIFO_DELAY = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_arid,
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire [3:0] m_axi_arqos,
output wire [3:0] m_axi_arregion,
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [ID_WIDTH-1:0] m_axi_rid,
input wire [DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
parameter LAST_OFFSET = DATA_WIDTH;
parameter ID_OFFSET = LAST_OFFSET + 1;
parameter RESP_OFFSET = ID_OFFSET + ID_WIDTH;
parameter RUSER_OFFSET = RESP_OFFSET + 2;
parameter RWIDTH = RUSER_OFFSET + (RUSER_ENABLE ? RUSER_WIDTH : 0);
parameter FIFO_ADDR_WIDTH = $clog2(FIFO_DEPTH);
reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [FIFO_ADDR_WIDTH:0] wr_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [FIFO_ADDR_WIDTH:0] rd_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [RWIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0];
reg [RWIDTH-1:0] mem_read_data_reg;
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [RWIDTH-1:0] m_axi_r;
reg [RWIDTH-1:0] s_axi_r_reg;
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
// full when first MSB different but rest same
wire full = ((wr_ptr_reg[FIFO_ADDR_WIDTH] != rd_ptr_reg[FIFO_ADDR_WIDTH]) &&
(wr_ptr_reg[FIFO_ADDR_WIDTH-1:0] == rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]));
// empty when pointers match exactly
wire empty = wr_ptr_reg == rd_ptr_reg;
// control signals
reg write;
reg read;
reg store_output;
assign m_axi_rready = !full;
generate
assign m_axi_r[DATA_WIDTH-1:0] = m_axi_rdata;
assign m_axi_r[LAST_OFFSET] = m_axi_rlast;
assign m_axi_r[ID_OFFSET +: ID_WIDTH] = m_axi_rid;
assign m_axi_r[RESP_OFFSET +: 2] = m_axi_rresp;
if (RUSER_ENABLE) assign m_axi_r[RUSER_OFFSET +: RUSER_WIDTH] = m_axi_ruser;
endgenerate
generate
if (FIFO_DELAY) begin
// store AR channel value until there is enough space to store R channel burst in FIFO or FIFO is empty
localparam COUNT_WIDTH = (FIFO_ADDR_WIDTH > 8 ? FIFO_ADDR_WIDTH : 8) + 1;
localparam [1:0]
STATE_IDLE = 1'd0,
STATE_WAIT = 1'd1;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [COUNT_WIDTH-1:0] count_reg = 0, count_next;
reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next;
reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next;
reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next;
reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next;
reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next;
reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next;
reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next;
reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next;
reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
assign m_axi_arid = m_axi_arid_reg;
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = m_axi_arsize_reg;
assign m_axi_arburst = m_axi_arburst_reg;
assign m_axi_arlock = m_axi_arlock_reg;
assign m_axi_arcache = m_axi_arcache_reg;
assign m_axi_arprot = m_axi_arprot_reg;
assign m_axi_arqos = m_axi_arqos_reg;
assign m_axi_arregion = m_axi_arregion_reg;
assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}};
assign m_axi_arvalid = m_axi_arvalid_reg;
assign s_axi_arready = s_axi_arready_reg;
always @* begin
state_next = STATE_IDLE;
count_next = count_reg;
m_axi_arid_next = m_axi_arid_reg;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arsize_next = m_axi_arsize_reg;
m_axi_arburst_next = m_axi_arburst_reg;
m_axi_arlock_next = m_axi_arlock_reg;
m_axi_arcache_next = m_axi_arcache_reg;
m_axi_arprot_next = m_axi_arprot_reg;
m_axi_arqos_next = m_axi_arqos_reg;
m_axi_arregion_next = m_axi_arregion_reg;
m_axi_aruser_next = m_axi_aruser_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
s_axi_arready_next = s_axi_arready_reg;
case (state_reg)
STATE_IDLE: begin
s_axi_arready_next = !m_axi_arvalid || m_axi_arready;
if (s_axi_arready && s_axi_arvalid) begin
s_axi_arready_next = 1'b0;
m_axi_arid_next = s_axi_arid;
m_axi_araddr_next = s_axi_araddr;
m_axi_arlen_next = s_axi_arlen;
m_axi_arsize_next = s_axi_arsize;
m_axi_arburst_next = s_axi_arburst;
m_axi_arlock_next = s_axi_arlock;
m_axi_arcache_next = s_axi_arcache;
m_axi_arprot_next = s_axi_arprot;
m_axi_arqos_next = s_axi_arqos;
m_axi_arregion_next = s_axi_arregion;
m_axi_aruser_next = s_axi_aruser;
if (count_reg == 0 || count_reg + m_axi_arlen_next + 1 <= 2**FIFO_ADDR_WIDTH) begin
count_next = count_reg + m_axi_arlen_next + 1;
m_axi_arvalid_next = 1'b1;
s_axi_arready_next = 1'b0;
state_next = STATE_IDLE;
end else begin
s_axi_arready_next = 1'b0;
state_next = STATE_WAIT;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_WAIT: begin
s_axi_arready_next = 1'b0;
if (count_reg == 0 || count_reg + m_axi_arlen_reg + 1 <= 2**FIFO_ADDR_WIDTH) begin
count_next = count_reg + m_axi_arlen_reg + 1;
m_axi_arvalid_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT;
end
end
endcase
if (s_axi_rready && s_axi_rvalid) begin
count_next = count_next - 1;
end
end
always @(posedge clk) begin
state_reg <= state_next;
count_reg <= count_next;
m_axi_arid_reg <= m_axi_arid_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arsize_reg <= m_axi_arsize_next;
m_axi_arburst_reg <= m_axi_arburst_next;
m_axi_arlock_reg <= m_axi_arlock_next;
m_axi_arcache_reg <= m_axi_arcache_next;
m_axi_arprot_reg <= m_axi_arprot_next;
m_axi_arqos_reg <= m_axi_arqos_next;
m_axi_arregion_reg <= m_axi_arregion_next;
m_axi_aruser_reg <= m_axi_aruser_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
s_axi_arready_reg <= s_axi_arready_next;
if (rst) begin
state_reg <= STATE_IDLE;
count_reg <= {COUNT_WIDTH{1'b0}};
m_axi_arvalid_reg <= 1'b0;
s_axi_arready_reg <= 1'b0;
end
end
end else begin
// bypass AR channel
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = s_axi_arlen;
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock;
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_arregion = s_axi_arregion;
assign m_axi_aruser = ARUSER_ENABLE ? s_axi_aruser : {ARUSER_WIDTH{1'b0}};
assign m_axi_arvalid = s_axi_arvalid;
assign s_axi_arready = m_axi_arready;
end
endgenerate
assign s_axi_rvalid = s_axi_rvalid_reg;
assign s_axi_rdata = s_axi_r_reg[DATA_WIDTH-1:0];
assign s_axi_rlast = s_axi_r_reg[LAST_OFFSET];
assign s_axi_rid = s_axi_r_reg[ID_OFFSET +: ID_WIDTH];
assign s_axi_rresp = s_axi_r_reg[RESP_OFFSET +: 2];
assign s_axi_ruser = RUSER_ENABLE ? s_axi_r_reg[RUSER_OFFSET +: RUSER_WIDTH] : {RUSER_WIDTH{1'b0}};
// Write logic
always @* begin
write = 1'b0;
wr_ptr_next = wr_ptr_reg;
if (m_axi_rvalid) begin
// input data valid
if (!full) begin
// not full, perform write
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
end
end
end
always @(posedge clk) begin
wr_ptr_reg <= wr_ptr_next;
wr_addr_reg <= wr_ptr_next;
if (write) begin
mem[wr_addr_reg[FIFO_ADDR_WIDTH-1:0]] <= m_axi_r;
end
if (rst) begin
wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
end
end
// Read logic
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (store_output || !mem_read_data_valid_reg) begin
// output data not valid OR currently being transferred
if (!empty) begin
// not empty, perform read
read = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
always @(posedge clk) begin
rd_ptr_reg <= rd_ptr_next;
rd_addr_reg <= rd_ptr_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
if (read) begin
mem_read_data_reg <= mem[rd_addr_reg[FIFO_ADDR_WIDTH-1:0]];
end
if (rst) begin
rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
mem_read_data_valid_reg <= 1'b0;
end
end
// Output register
always @* begin
store_output = 1'b0;
s_axi_rvalid_next = s_axi_rvalid_reg;
if (s_axi_rready || !s_axi_rvalid) begin
store_output = 1'b1;
s_axi_rvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
s_axi_rvalid_reg <= s_axi_rvalid_next;
if (store_output) begin
s_axi_r_reg <= mem_read_data_reg;
end
if (rst) begin
s_axi_rvalid_reg <= 1'b0;
end
end
endmodule