verilog-axi/tb/test_axil_interconnect_4x4.py

543 lines
20 KiB
Python
Executable File

#!/usr/bin/env python
"""
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axil
module = 'axil_interconnect'
testbench = 'test_%s_4x4' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("../rtl/arbiter.v")
srcs.append("../rtl/priority_encoder.v")
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
S_COUNT = 4
M_COUNT = 4
DATA_WIDTH = 32
ADDR_WIDTH = 32
STRB_WIDTH = (DATA_WIDTH/8)
M_REGIONS = 1
M_BASE_ADDR = [0x00000000, 0x01000000, 0x02000000, 0x03000000]
M_ADDR_WIDTH = [24]*M_COUNT*M_REGIONS
M_CONNECT_READ = [0b1111]*M_COUNT
M_CONNECT_WRITE = [0b1111]*M_COUNT
M_SECURE = 0b0000
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
s_axil_awaddr_list = [Signal(intbv(0)[ADDR_WIDTH:]) for i in range(S_COUNT)]
s_axil_awprot_list = [Signal(intbv(0)[3:]) for i in range(S_COUNT)]
s_axil_awvalid_list = [Signal(bool(0)) for i in range(S_COUNT)]
s_axil_wdata_list = [Signal(intbv(0)[DATA_WIDTH:]) for i in range(S_COUNT)]
s_axil_wstrb_list = [Signal(intbv(0)[STRB_WIDTH:]) for i in range(S_COUNT)]
s_axil_wvalid_list = [Signal(bool(0)) for i in range(S_COUNT)]
s_axil_bready_list = [Signal(bool(0)) for i in range(S_COUNT)]
s_axil_araddr_list = [Signal(intbv(0)[ADDR_WIDTH:]) for i in range(S_COUNT)]
s_axil_arprot_list = [Signal(intbv(0)[3:]) for i in range(S_COUNT)]
s_axil_arvalid_list = [Signal(bool(0)) for i in range(S_COUNT)]
s_axil_rready_list = [Signal(bool(0)) for i in range(S_COUNT)]
m_axil_awready_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axil_wready_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axil_bresp_list = [Signal(intbv(0)[2:]) for i in range(M_COUNT)]
m_axil_bvalid_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axil_arready_list = [Signal(bool(0)) for i in range(M_COUNT)]
m_axil_rdata_list = [Signal(intbv(0)[DATA_WIDTH:]) for i in range(M_COUNT)]
m_axil_rresp_list = [Signal(intbv(0)[2:]) for i in range(M_COUNT)]
m_axil_rvalid_list = [Signal(bool(0)) for i in range(M_COUNT)]
s_axil_awaddr = ConcatSignal(*reversed(s_axil_awaddr_list))
s_axil_awprot = ConcatSignal(*reversed(s_axil_awprot_list))
s_axil_awvalid = ConcatSignal(*reversed(s_axil_awvalid_list))
s_axil_wdata = ConcatSignal(*reversed(s_axil_wdata_list))
s_axil_wstrb = ConcatSignal(*reversed(s_axil_wstrb_list))
s_axil_wvalid = ConcatSignal(*reversed(s_axil_wvalid_list))
s_axil_bready = ConcatSignal(*reversed(s_axil_bready_list))
s_axil_araddr = ConcatSignal(*reversed(s_axil_araddr_list))
s_axil_arprot = ConcatSignal(*reversed(s_axil_arprot_list))
s_axil_arvalid = ConcatSignal(*reversed(s_axil_arvalid_list))
s_axil_rready = ConcatSignal(*reversed(s_axil_rready_list))
m_axil_awready = ConcatSignal(*reversed(m_axil_awready_list))
m_axil_wready = ConcatSignal(*reversed(m_axil_wready_list))
m_axil_bresp = ConcatSignal(*reversed(m_axil_bresp_list))
m_axil_bvalid = ConcatSignal(*reversed(m_axil_bvalid_list))
m_axil_arready = ConcatSignal(*reversed(m_axil_arready_list))
m_axil_rdata = ConcatSignal(*reversed(m_axil_rdata_list))
m_axil_rresp = ConcatSignal(*reversed(m_axil_rresp_list))
m_axil_rvalid = ConcatSignal(*reversed(m_axil_rvalid_list))
# Outputs
s_axil_awready = Signal(intbv(0)[S_COUNT:])
s_axil_wready = Signal(intbv(0)[S_COUNT:])
s_axil_bresp = Signal(intbv(0)[S_COUNT*2:])
s_axil_bvalid = Signal(intbv(0)[S_COUNT:])
s_axil_arready = Signal(intbv(0)[S_COUNT:])
s_axil_rdata = Signal(intbv(0)[S_COUNT*DATA_WIDTH:])
s_axil_rresp = Signal(intbv(0)[S_COUNT*2:])
s_axil_rvalid = Signal(intbv(0)[S_COUNT:])
m_axil_awaddr = Signal(intbv(0)[M_COUNT*ADDR_WIDTH:])
m_axil_awprot = Signal(intbv(0)[M_COUNT*3:])
m_axil_awvalid = Signal(intbv(0)[M_COUNT:])
m_axil_wdata = Signal(intbv(0)[M_COUNT*DATA_WIDTH:])
m_axil_wstrb = Signal(intbv(0)[M_COUNT*STRB_WIDTH:])
m_axil_wvalid = Signal(intbv(0)[M_COUNT:])
m_axil_bready = Signal(intbv(0)[M_COUNT:])
m_axil_araddr = Signal(intbv(0)[M_COUNT*ADDR_WIDTH:])
m_axil_arprot = Signal(intbv(0)[M_COUNT*3:])
m_axil_arvalid = Signal(intbv(0)[M_COUNT:])
m_axil_rready = Signal(intbv(0)[M_COUNT:])
s_axil_awready_list = [s_axil_awready(i) for i in range(S_COUNT)]
s_axil_wready_list = [s_axil_wready(i) for i in range(S_COUNT)]
s_axil_bresp_list = [s_axil_bresp((i+1)*2, i*2) for i in range(S_COUNT)]
s_axil_bvalid_list = [s_axil_bvalid(i) for i in range(S_COUNT)]
s_axil_arready_list = [s_axil_arready(i) for i in range(S_COUNT)]
s_axil_rdata_list = [s_axil_rdata((i+1)*DATA_WIDTH, i*DATA_WIDTH) for i in range(S_COUNT)]
s_axil_rresp_list = [s_axil_rresp((i+1)*2, i*2) for i in range(S_COUNT)]
s_axil_rvalid_list = [s_axil_rvalid(i) for i in range(S_COUNT)]
m_axil_awaddr_list = [m_axil_awaddr((i+1)*ADDR_WIDTH, i*ADDR_WIDTH) for i in range(M_COUNT)]
m_axil_awprot_list = [m_axil_awprot((i+1)*3, i*3) for i in range(M_COUNT)]
m_axil_awvalid_list = [m_axil_awvalid(i) for i in range(M_COUNT)]
m_axil_wdata_list = [m_axil_wdata((i+1)*DATA_WIDTH, i*DATA_WIDTH) for i in range(M_COUNT)]
m_axil_wstrb_list = [m_axil_wstrb((i+1)*STRB_WIDTH, i*STRB_WIDTH) for i in range(M_COUNT)]
m_axil_wvalid_list = [m_axil_wvalid(i) for i in range(M_COUNT)]
m_axil_bready_list = [m_axil_bready(i) for i in range(M_COUNT)]
m_axil_araddr_list = [m_axil_araddr((i+1)*ADDR_WIDTH, i*ADDR_WIDTH) for i in range(M_COUNT)]
m_axil_arprot_list = [m_axil_arprot((i+1)*3, i*3) for i in range(M_COUNT)]
m_axil_arvalid_list = [m_axil_arvalid(i) for i in range(M_COUNT)]
m_axil_rready_list = [m_axil_rready(i) for i in range(M_COUNT)]
# AXI4-Lite masters
axil_master_inst_list = []
axil_master_pause_list = []
axil_master_logic = []
for k in range(S_COUNT):
m = axil.AXILiteMaster()
p = Signal(bool(False))
axil_master_inst_list.append(m)
axil_master_pause_list.append(p)
axil_master_logic.append(m.create_logic(
clk,
rst,
m_axil_awaddr=s_axil_awaddr_list[k],
m_axil_awprot=s_axil_awprot_list[k],
m_axil_awvalid=s_axil_awvalid_list[k],
m_axil_awready=s_axil_awready_list[k],
m_axil_wdata=s_axil_wdata_list[k],
m_axil_wstrb=s_axil_wstrb_list[k],
m_axil_wvalid=s_axil_wvalid_list[k],
m_axil_wready=s_axil_wready_list[k],
m_axil_bresp=s_axil_bresp_list[k],
m_axil_bvalid=s_axil_bvalid_list[k],
m_axil_bready=s_axil_bready_list[k],
m_axil_araddr=s_axil_araddr_list[k],
m_axil_arprot=s_axil_arprot_list[k],
m_axil_arvalid=s_axil_arvalid_list[k],
m_axil_arready=s_axil_arready_list[k],
m_axil_rdata=s_axil_rdata_list[k],
m_axil_rresp=s_axil_rresp_list[k],
m_axil_rvalid=s_axil_rvalid_list[k],
m_axil_rready=s_axil_rready_list[k],
pause=p,
name='master_%d' % k
))
# AXI4-Lite RAM models
axil_ram_inst_list = []
axil_ram_pause_list = []
axil_ram_logic = []
for k in range(M_COUNT):
r = axil.AXILiteRam(2**16)
p = Signal(bool(False))
axil_ram_inst_list.append(r)
axil_ram_pause_list.append(p)
axil_ram_logic.append(r.create_port(
clk,
s_axil_awaddr=m_axil_awaddr_list[k],
s_axil_awprot=m_axil_awprot_list[k],
s_axil_awvalid=m_axil_awvalid_list[k],
s_axil_awready=m_axil_awready_list[k],
s_axil_wdata=m_axil_wdata_list[k],
s_axil_wstrb=m_axil_wstrb_list[k],
s_axil_wvalid=m_axil_wvalid_list[k],
s_axil_wready=m_axil_wready_list[k],
s_axil_bresp=m_axil_bresp_list[k],
s_axil_bvalid=m_axil_bvalid_list[k],
s_axil_bready=m_axil_bready_list[k],
s_axil_araddr=m_axil_araddr_list[k],
s_axil_arprot=m_axil_arprot_list[k],
s_axil_arvalid=m_axil_arvalid_list[k],
s_axil_arready=m_axil_arready_list[k],
s_axil_rdata=m_axil_rdata_list[k],
s_axil_rresp=m_axil_rresp_list[k],
s_axil_rvalid=m_axil_rvalid_list[k],
s_axil_rready=m_axil_rready_list[k],
pause=p,
latency=1,
name='ram_%d' % k
))
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
s_axil_awaddr=s_axil_awaddr,
s_axil_awprot=s_axil_awprot,
s_axil_awvalid=s_axil_awvalid,
s_axil_awready=s_axil_awready,
s_axil_wdata=s_axil_wdata,
s_axil_wstrb=s_axil_wstrb,
s_axil_wvalid=s_axil_wvalid,
s_axil_wready=s_axil_wready,
s_axil_bresp=s_axil_bresp,
s_axil_bvalid=s_axil_bvalid,
s_axil_bready=s_axil_bready,
s_axil_araddr=s_axil_araddr,
s_axil_arprot=s_axil_arprot,
s_axil_arvalid=s_axil_arvalid,
s_axil_arready=s_axil_arready,
s_axil_rdata=s_axil_rdata,
s_axil_rresp=s_axil_rresp,
s_axil_rvalid=s_axil_rvalid,
s_axil_rready=s_axil_rready,
m_axil_awaddr=m_axil_awaddr,
m_axil_awprot=m_axil_awprot,
m_axil_awvalid=m_axil_awvalid,
m_axil_awready=m_axil_awready,
m_axil_wdata=m_axil_wdata,
m_axil_wstrb=m_axil_wstrb,
m_axil_wvalid=m_axil_wvalid,
m_axil_wready=m_axil_wready,
m_axil_bresp=m_axil_bresp,
m_axil_bvalid=m_axil_bvalid,
m_axil_bready=m_axil_bready,
m_axil_araddr=m_axil_araddr,
m_axil_arprot=m_axil_arprot,
m_axil_arvalid=m_axil_arvalid,
m_axil_arready=m_axil_arready,
m_axil_rdata=m_axil_rdata,
m_axil_rresp=m_axil_rresp,
m_axil_rvalid=m_axil_rvalid,
m_axil_rready=m_axil_rready
)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while not all([axil_master_inst_list[k].idle() for k in range(S_COUNT)]):
yield clk.posedge
def wait_pause_master():
while not all([axil_master_inst_list[k].idle() for k in range(S_COUNT)]):
for k in range(S_COUNT):
axil_master_pause_list[k].next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
for k in range(S_COUNT):
axil_master_pause_list[k].next = False
yield clk.posedge
def wait_pause_slave():
while not all([axil_master_inst_list[k].idle() for k in range(S_COUNT)]):
for k in range(M_COUNT):
axil_ram_pause_list[k].next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
for k in range(M_COUNT):
axil_ram_pause_list[k].next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
yield clk.posedge
print("test 1: write")
current_test.next = 1
addr = 4
test_data = b'\x11\x22\x33\x44'
axil_master_inst_list[0].init_write(addr, test_data)
yield axil_master_inst_list[0].wait()
yield clk.posedge
data = axil_ram_inst_list[0].read_mem(addr&0xffffff80, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axil_ram_inst_list[0].read_mem(addr, len(test_data)) == test_data
yield delay(100)
yield clk.posedge
print("test 2: read")
current_test.next = 2
addr = 4
test_data = b'\x11\x22\x33\x44'
axil_ram_inst_list[0].write_mem(addr, test_data)
axil_master_inst_list[0].init_read(addr, len(test_data))
yield axil_master_inst_list[0].wait()
yield clk.posedge
data = axil_master_inst_list[0].get_read_data()
assert data[0] == addr
assert data[1] == test_data
yield delay(100)
yield clk.posedge
print("test 3: one to many")
current_test.next = 3
addr = 4
test_data = b'\x11\x22\x33\x44'
for k in range(S_COUNT):
axil_master_inst_list[0].init_write(addr+M_BASE_ADDR[k], test_data)
yield axil_master_inst_list[0].wait()
yield clk.posedge
for k in range(S_COUNT):
data = axil_ram_inst_list[k].read_mem(addr&0xffffff80, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
for k in range(S_COUNT):
assert axil_ram_inst_list[k].read_mem(addr, len(test_data)) == test_data
for k in range(S_COUNT):
axil_master_inst_list[0].init_read(addr+M_BASE_ADDR[k], len(test_data))
yield axil_master_inst_list[0].wait()
yield clk.posedge
for k in range(S_COUNT):
data = axil_master_inst_list[0].get_read_data()
assert data[0] == addr+M_BASE_ADDR[k]
assert data[1] == test_data
yield delay(100)
yield clk.posedge
print("test 4: many to one")
current_test.next = 4
for k in range(M_COUNT):
axil_master_inst_list[k].init_write(k*4, bytearray([(k+1)*17]*4))
for k in range(M_COUNT):
yield axil_master_inst_list[k].wait()
yield clk.posedge
data = axil_ram_inst_list[0].read_mem(addr&0xffffff80, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
for k in range(M_COUNT):
assert axil_ram_inst_list[0].read_mem(k*4, 4) == bytearray([(k+1)*17]*4)
for k in range(M_COUNT):
axil_master_inst_list[k].init_read(k*4, 4)
for k in range(M_COUNT):
yield axil_master_inst_list[k].wait()
yield clk.posedge
for k in range(M_COUNT):
data = axil_master_inst_list[k].get_read_data()
assert data[0] == k*4
assert data[1] == bytearray([(k+1)*17]*4)
yield delay(100)
yield clk.posedge
print("test 5: various writes")
current_test.next = 5
for length in range(1,8):
for offset in range(4,8):
for wait in wait_normal, wait_pause_master, wait_pause_slave:
print("length %d, offset %d"% (length, offset))
addr = 256*(16*offset+length)+offset
test_data = b'\x11\x22\x33\x44\x55\x66\x77\x88'[0:length]
axil_ram_inst_list[0].write_mem(256*(16*offset+length), b'\xAA'*32)
axil_master_inst_list[0].init_write(addr, test_data)
yield wait()
yield clk.posedge
data = axil_ram_inst_list[0].read_mem(256*(16*offset+length), 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axil_ram_inst_list[0].read_mem(addr, length) == test_data
assert axil_ram_inst_list[0].read_mem(addr-1, 1) == b'\xAA'
assert axil_ram_inst_list[0].read_mem(addr+length, 1) == b'\xAA'
yield delay(100)
yield clk.posedge
print("test 6: various reads")
current_test.next = 6
for length in range(1,8):
for offset in range(4,8):
for wait in wait_normal, wait_pause_master, wait_pause_slave:
print("length %d, offset %d"% (length, offset))
addr = 256*(16*offset+length)+offset
test_data = b'\x11\x22\x33\x44\x55\x66\x77\x88'[0:length]
axil_master_inst_list[0].init_read(addr, length)
yield wait()
yield clk.posedge
data = axil_master_inst_list[0].get_read_data()
assert data[0] == addr
assert data[1] == test_data
yield delay(100)
yield clk.posedge
print("test 7: concurrent operations")
current_test.next = 7
for count in [1, 2, 4, 8]:
for stride in [2, 3, 5, 7]:
for wait in wait_normal, wait_pause_master, wait_pause_slave:
print("count %d, stride %d"% (count, stride))
for k in range(S_COUNT):
for l in range(count):
ram = ((k*61+l)*stride)%M_COUNT
offset = k*256+l*4
axil_ram_inst_list[ram].write_mem(offset, b'\xAA'*4)
axil_master_inst_list[k].init_write(M_BASE_ADDR[ram]+offset, bytearray([0xaa, k, l, 0xaa]))
ram = ((k*61+l+67)*stride)%M_COUNT
offset = k*256+l*4
axil_ram_inst_list[ram].write_mem(offset+0x8000, bytearray([0xaa, k, l, 0xaa]))
axil_master_inst_list[k].init_read(M_BASE_ADDR[ram]+offset+0x8000, 4)
yield wait()
yield clk.posedge
for k in range(S_COUNT):
for l in range(count):
ram = ((k*61+l)*stride)%M_COUNT
offset = k*256+l*4
axil_ram_inst_list[ram].read_mem(offset, 4) == bytearray([0xaa, k, l, 0xaa])
ram = ((k*61+l+67)*stride)%M_COUNT
offset = k*256+l*4
data = axil_master_inst_list[k].get_read_data()
assert data[0] == M_BASE_ADDR[ram]+offset+0x8000
assert data[1] == bytearray([0xaa, k, l, 0xaa])
yield delay(100)
yield clk.posedge
print("test 8: bad write")
current_test.next = 8
axil_master_inst_list[0].init_write(0xff000000, b'\xDE\xAD\xBE\xEF')
yield axil_master_inst_list[0].wait()
yield clk.posedge
yield delay(100)
yield clk.posedge
print("test 9: bad read")
current_test.next = 9
axil_master_inst_list[0].init_read(0xff000000, 4)
yield axil_master_inst_list[0].wait()
yield clk.posedge
data = axil_master_inst_list[0].get_read_data()
assert data[0] == 0xff000000
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()