verilog-axi/rtl/axi_dp_ram.v
2021-10-20 15:36:04 -07:00

427 lines
14 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 dual port RAM
*/
module axi_dp_ram #
(
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 16,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Extra pipeline register on output port A
parameter A_PIPELINE_OUTPUT = 0,
// Extra pipeline register on output port B
parameter B_PIPELINE_OUTPUT = 0,
// Interleave read and write burst cycles on port A
parameter A_INTERLEAVE = 0,
// Interleave read and write burst cycles on port B
parameter B_INTERLEAVE = 0
)
(
input wire a_clk,
input wire a_rst,
input wire b_clk,
input wire b_rst,
input wire [ID_WIDTH-1:0] s_axi_a_awid,
input wire [ADDR_WIDTH-1:0] s_axi_a_awaddr,
input wire [7:0] s_axi_a_awlen,
input wire [2:0] s_axi_a_awsize,
input wire [1:0] s_axi_a_awburst,
input wire s_axi_a_awlock,
input wire [3:0] s_axi_a_awcache,
input wire [2:0] s_axi_a_awprot,
input wire s_axi_a_awvalid,
output wire s_axi_a_awready,
input wire [DATA_WIDTH-1:0] s_axi_a_wdata,
input wire [STRB_WIDTH-1:0] s_axi_a_wstrb,
input wire s_axi_a_wlast,
input wire s_axi_a_wvalid,
output wire s_axi_a_wready,
output wire [ID_WIDTH-1:0] s_axi_a_bid,
output wire [1:0] s_axi_a_bresp,
output wire s_axi_a_bvalid,
input wire s_axi_a_bready,
input wire [ID_WIDTH-1:0] s_axi_a_arid,
input wire [ADDR_WIDTH-1:0] s_axi_a_araddr,
input wire [7:0] s_axi_a_arlen,
input wire [2:0] s_axi_a_arsize,
input wire [1:0] s_axi_a_arburst,
input wire s_axi_a_arlock,
input wire [3:0] s_axi_a_arcache,
input wire [2:0] s_axi_a_arprot,
input wire s_axi_a_arvalid,
output wire s_axi_a_arready,
output wire [ID_WIDTH-1:0] s_axi_a_rid,
output wire [DATA_WIDTH-1:0] s_axi_a_rdata,
output wire [1:0] s_axi_a_rresp,
output wire s_axi_a_rlast,
output wire s_axi_a_rvalid,
input wire s_axi_a_rready,
input wire [ID_WIDTH-1:0] s_axi_b_awid,
input wire [ADDR_WIDTH-1:0] s_axi_b_awaddr,
input wire [7:0] s_axi_b_awlen,
input wire [2:0] s_axi_b_awsize,
input wire [1:0] s_axi_b_awburst,
input wire s_axi_b_awlock,
input wire [3:0] s_axi_b_awcache,
input wire [2:0] s_axi_b_awprot,
input wire s_axi_b_awvalid,
output wire s_axi_b_awready,
input wire [DATA_WIDTH-1:0] s_axi_b_wdata,
input wire [STRB_WIDTH-1:0] s_axi_b_wstrb,
input wire s_axi_b_wlast,
input wire s_axi_b_wvalid,
output wire s_axi_b_wready,
output wire [ID_WIDTH-1:0] s_axi_b_bid,
output wire [1:0] s_axi_b_bresp,
output wire s_axi_b_bvalid,
input wire s_axi_b_bready,
input wire [ID_WIDTH-1:0] s_axi_b_arid,
input wire [ADDR_WIDTH-1:0] s_axi_b_araddr,
input wire [7:0] s_axi_b_arlen,
input wire [2:0] s_axi_b_arsize,
input wire [1:0] s_axi_b_arburst,
input wire s_axi_b_arlock,
input wire [3:0] s_axi_b_arcache,
input wire [2:0] s_axi_b_arprot,
input wire s_axi_b_arvalid,
output wire s_axi_b_arready,
output wire [ID_WIDTH-1:0] s_axi_b_rid,
output wire [DATA_WIDTH-1:0] s_axi_b_rdata,
output wire [1:0] s_axi_b_rresp,
output wire s_axi_b_rlast,
output wire s_axi_b_rvalid,
input wire s_axi_b_rready
);
parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH);
parameter WORD_WIDTH = STRB_WIDTH;
parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH;
// bus width assertions
initial begin
if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin
$error("Error: AXI data width not evenly divisble (instance %m)");
$finish;
end
if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin
$error("Error: AXI word width must be even power of two (instance %m)");
$finish;
end
end
wire [ID_WIDTH-1:0] ram_a_cmd_id;
wire [ADDR_WIDTH-1:0] ram_a_cmd_addr;
wire [DATA_WIDTH-1:0] ram_a_cmd_wr_data;
wire [STRB_WIDTH-1:0] ram_a_cmd_wr_strb;
wire ram_a_cmd_wr_en;
wire ram_a_cmd_rd_en;
wire ram_a_cmd_last;
wire ram_a_cmd_ready;
reg [ID_WIDTH-1:0] ram_a_rd_resp_id_reg = {ID_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] ram_a_rd_resp_data_reg = {DATA_WIDTH{1'b0}};
reg ram_a_rd_resp_last_reg = 1'b0;
reg ram_a_rd_resp_valid_reg = 1'b0;
wire ram_a_rd_resp_ready;
wire [ID_WIDTH-1:0] ram_b_cmd_id;
wire [ADDR_WIDTH-1:0] ram_b_cmd_addr;
wire [DATA_WIDTH-1:0] ram_b_cmd_wr_data;
wire [STRB_WIDTH-1:0] ram_b_cmd_wr_strb;
wire ram_b_cmd_wr_en;
wire ram_b_cmd_rd_en;
wire ram_b_cmd_last;
wire ram_b_cmd_ready;
reg [ID_WIDTH-1:0] ram_b_rd_resp_id_reg = {ID_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] ram_b_rd_resp_data_reg = {DATA_WIDTH{1'b0}};
reg ram_b_rd_resp_last_reg = 1'b0;
reg ram_b_rd_resp_valid_reg = 1'b0;
wire ram_b_rd_resp_ready;
axi_ram_wr_rd_if #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.AWUSER_ENABLE(0),
.WUSER_ENABLE(0),
.BUSER_ENABLE(0),
.ARUSER_ENABLE(0),
.RUSER_ENABLE(0),
.PIPELINE_OUTPUT(A_PIPELINE_OUTPUT),
.INTERLEAVE(A_INTERLEAVE)
)
a_if (
.clk(a_clk),
.rst(a_rst),
/*
* AXI slave interface
*/
.s_axi_awid(s_axi_a_awid),
.s_axi_awaddr(s_axi_a_awaddr),
.s_axi_awlen(s_axi_a_awlen),
.s_axi_awsize(s_axi_a_awsize),
.s_axi_awburst(s_axi_a_awburst),
.s_axi_awlock(s_axi_a_awlock),
.s_axi_awcache(s_axi_a_awcache),
.s_axi_awprot(s_axi_a_awprot),
.s_axi_awqos(4'd0),
.s_axi_awregion(4'd0),
.s_axi_awuser(0),
.s_axi_awvalid(s_axi_a_awvalid),
.s_axi_awready(s_axi_a_awready),
.s_axi_wdata(s_axi_a_wdata),
.s_axi_wstrb(s_axi_a_wstrb),
.s_axi_wlast(s_axi_a_wlast),
.s_axi_wuser(0),
.s_axi_wvalid(s_axi_a_wvalid),
.s_axi_wready(s_axi_a_wready),
.s_axi_bid(s_axi_a_bid),
.s_axi_bresp(s_axi_a_bresp),
.s_axi_buser(),
.s_axi_bvalid(s_axi_a_bvalid),
.s_axi_bready(s_axi_a_bready),
.s_axi_arid(s_axi_a_arid),
.s_axi_araddr(s_axi_a_araddr),
.s_axi_arlen(s_axi_a_arlen),
.s_axi_arsize(s_axi_a_arsize),
.s_axi_arburst(s_axi_a_arburst),
.s_axi_arlock(s_axi_a_arlock),
.s_axi_arcache(s_axi_a_arcache),
.s_axi_arprot(s_axi_a_arprot),
.s_axi_arqos(4'd0),
.s_axi_arregion(4'd0),
.s_axi_aruser(0),
.s_axi_arvalid(s_axi_a_arvalid),
.s_axi_arready(s_axi_a_arready),
.s_axi_rid(s_axi_a_rid),
.s_axi_rdata(s_axi_a_rdata),
.s_axi_rresp(s_axi_a_rresp),
.s_axi_rlast(s_axi_a_rlast),
.s_axi_ruser(),
.s_axi_rvalid(s_axi_a_rvalid),
.s_axi_rready(s_axi_a_rready),
/*
* RAM interface
*/
.ram_cmd_id(ram_a_cmd_id),
.ram_cmd_addr(ram_a_cmd_addr),
.ram_cmd_lock(),
.ram_cmd_cache(),
.ram_cmd_prot(),
.ram_cmd_qos(),
.ram_cmd_region(),
.ram_cmd_auser(),
.ram_cmd_wr_data(ram_a_cmd_wr_data),
.ram_cmd_wr_strb(ram_a_cmd_wr_strb),
.ram_cmd_wr_user(),
.ram_cmd_wr_en(ram_a_cmd_wr_en),
.ram_cmd_rd_en(ram_a_cmd_rd_en),
.ram_cmd_last(ram_a_cmd_last),
.ram_cmd_ready(ram_a_cmd_ready),
.ram_rd_resp_id(ram_a_rd_resp_id_reg),
.ram_rd_resp_data(ram_a_rd_resp_data_reg),
.ram_rd_resp_last(ram_a_rd_resp_last_reg),
.ram_rd_resp_user(0),
.ram_rd_resp_valid(ram_a_rd_resp_valid_reg),
.ram_rd_resp_ready(ram_a_rd_resp_ready)
);
axi_ram_wr_rd_if #(
.DATA_WIDTH(DATA_WIDTH),
.ADDR_WIDTH(ADDR_WIDTH),
.STRB_WIDTH(STRB_WIDTH),
.ID_WIDTH(ID_WIDTH),
.AWUSER_ENABLE(0),
.WUSER_ENABLE(0),
.BUSER_ENABLE(0),
.ARUSER_ENABLE(0),
.RUSER_ENABLE(0),
.PIPELINE_OUTPUT(B_PIPELINE_OUTPUT),
.INTERLEAVE(B_INTERLEAVE)
)
b_if (
.clk(b_clk),
.rst(b_rst),
/*
* AXI slave interface
*/
.s_axi_awid(s_axi_b_awid),
.s_axi_awaddr(s_axi_b_awaddr),
.s_axi_awlen(s_axi_b_awlen),
.s_axi_awsize(s_axi_b_awsize),
.s_axi_awburst(s_axi_b_awburst),
.s_axi_awlock(s_axi_b_awlock),
.s_axi_awcache(s_axi_b_awcache),
.s_axi_awprot(s_axi_b_awprot),
.s_axi_awqos(4'd0),
.s_axi_awregion(4'd0),
.s_axi_awuser(0),
.s_axi_awvalid(s_axi_b_awvalid),
.s_axi_awready(s_axi_b_awready),
.s_axi_wdata(s_axi_b_wdata),
.s_axi_wstrb(s_axi_b_wstrb),
.s_axi_wlast(s_axi_b_wlast),
.s_axi_wuser(0),
.s_axi_wvalid(s_axi_b_wvalid),
.s_axi_wready(s_axi_b_wready),
.s_axi_bid(s_axi_b_bid),
.s_axi_bresp(s_axi_b_bresp),
.s_axi_buser(),
.s_axi_bvalid(s_axi_b_bvalid),
.s_axi_bready(s_axi_b_bready),
.s_axi_arid(s_axi_b_arid),
.s_axi_araddr(s_axi_b_araddr),
.s_axi_arlen(s_axi_b_arlen),
.s_axi_arsize(s_axi_b_arsize),
.s_axi_arburst(s_axi_b_arburst),
.s_axi_arlock(s_axi_b_arlock),
.s_axi_arcache(s_axi_b_arcache),
.s_axi_arprot(s_axi_b_arprot),
.s_axi_arqos(4'd0),
.s_axi_arregion(4'd0),
.s_axi_aruser(0),
.s_axi_arvalid(s_axi_b_arvalid),
.s_axi_arready(s_axi_b_arready),
.s_axi_rid(s_axi_b_rid),
.s_axi_rdata(s_axi_b_rdata),
.s_axi_rresp(s_axi_b_rresp),
.s_axi_rlast(s_axi_b_rlast),
.s_axi_ruser(),
.s_axi_rvalid(s_axi_b_rvalid),
.s_axi_rready(s_axi_b_rready),
/*
* RAM interface
*/
.ram_cmd_id(ram_b_cmd_id),
.ram_cmd_addr(ram_b_cmd_addr),
.ram_cmd_lock(),
.ram_cmd_cache(),
.ram_cmd_prot(),
.ram_cmd_qos(),
.ram_cmd_region(),
.ram_cmd_auser(),
.ram_cmd_wr_data(ram_b_cmd_wr_data),
.ram_cmd_wr_strb(ram_b_cmd_wr_strb),
.ram_cmd_wr_user(),
.ram_cmd_wr_en(ram_b_cmd_wr_en),
.ram_cmd_rd_en(ram_b_cmd_rd_en),
.ram_cmd_last(ram_b_cmd_last),
.ram_cmd_ready(ram_b_cmd_ready),
.ram_rd_resp_id(ram_b_rd_resp_id_reg),
.ram_rd_resp_data(ram_b_rd_resp_data_reg),
.ram_rd_resp_last(ram_b_rd_resp_last_reg),
.ram_rd_resp_user(0),
.ram_rd_resp_valid(ram_b_rd_resp_valid_reg),
.ram_rd_resp_ready(ram_b_rd_resp_ready)
);
// (* RAM_STYLE="BLOCK" *)
reg [DATA_WIDTH-1:0] mem[(2**VALID_ADDR_WIDTH)-1:0];
wire [VALID_ADDR_WIDTH-1:0] addr_a_valid = ram_a_cmd_addr >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
wire [VALID_ADDR_WIDTH-1:0] addr_b_valid = ram_b_cmd_addr >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
integer i, j;
initial begin
// two nested loops for smaller number of iterations per loop
// workaround for synthesizer complaints about large loop counts
for (i = 0; i < 2**VALID_ADDR_WIDTH; i = i + 2**(VALID_ADDR_WIDTH/2)) begin
for (j = i; j < i + 2**(VALID_ADDR_WIDTH/2); j = j + 1) begin
mem[j] = 0;
end
end
end
assign ram_a_cmd_ready = !ram_a_rd_resp_valid_reg || ram_a_rd_resp_ready;
always @(posedge a_clk) begin
ram_a_rd_resp_valid_reg <= ram_a_rd_resp_valid_reg && !ram_a_rd_resp_ready;
if (ram_a_cmd_rd_en && ram_a_cmd_ready) begin
ram_a_rd_resp_id_reg <= ram_a_cmd_id;
ram_a_rd_resp_data_reg <= mem[addr_a_valid];
ram_a_rd_resp_last_reg <= ram_a_cmd_last;
ram_a_rd_resp_valid_reg <= 1'b1;
end else if (ram_a_cmd_wr_en && ram_a_cmd_ready) begin
for (i = 0; i < WORD_WIDTH; i = i + 1) begin
if (ram_a_cmd_wr_strb[i]) begin
mem[addr_a_valid][WORD_SIZE*i +: WORD_SIZE] <= ram_a_cmd_wr_data[WORD_SIZE*i +: WORD_SIZE];
end
end
end
if (a_rst) begin
ram_a_rd_resp_valid_reg <= 1'b0;
end
end
assign ram_b_cmd_ready = !ram_b_rd_resp_valid_reg || ram_b_rd_resp_ready;
always @(posedge b_clk) begin
ram_b_rd_resp_valid_reg <= ram_b_rd_resp_valid_reg && !ram_b_rd_resp_ready;
if (ram_b_cmd_rd_en && ram_b_cmd_ready) begin
ram_b_rd_resp_id_reg <= ram_b_cmd_id;
ram_b_rd_resp_data_reg <= mem[addr_b_valid];
ram_b_rd_resp_last_reg <= ram_b_cmd_last;
ram_b_rd_resp_valid_reg <= 1'b1;
end else if (ram_b_cmd_wr_en && ram_b_cmd_ready) begin
for (i = 0; i < WORD_WIDTH; i = i + 1) begin
if (ram_b_cmd_wr_strb[i]) begin
mem[addr_b_valid][WORD_SIZE*i +: WORD_SIZE] <= ram_b_cmd_wr_data[WORD_SIZE*i +: WORD_SIZE];
end
end
end
if (b_rst) begin
ram_b_rd_resp_valid_reg <= 1'b0;
end
end
endmodule
`resetall