verilog-axi/rtl/axi_axil_adapter_wr.v
2021-02-17 18:06:47 -08:00

561 lines
24 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 to AXI4-Lite adapter (write)
*/
module axi_axil_adapter_wr #
(
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of input (slave) AXI interface data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of input (slave) AXI interface wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Width of output (master) AXI lite interface data bus in bits
parameter AXIL_DATA_WIDTH = 32,
// Width of output (master) AXI lite interface wstrb (width of data bus in words)
parameter AXIL_STRB_WIDTH = (AXIL_DATA_WIDTH/8),
// When adapting to a wider bus, re-pack full-width burst instead of passing through narrow burst if possible
parameter CONVERT_BURST = 1,
// When adapting to a wider bus, re-pack all bursts instead of passing through narrow burst if possible
parameter CONVERT_NARROW_BURST = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [AXI_STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI lite master interface
*/
output wire [ADDR_WIDTH-1:0] m_axil_awaddr,
output wire [2:0] m_axil_awprot,
output wire m_axil_awvalid,
input wire m_axil_awready,
output wire [AXIL_DATA_WIDTH-1:0] m_axil_wdata,
output wire [AXIL_STRB_WIDTH-1:0] m_axil_wstrb,
output wire m_axil_wvalid,
input wire m_axil_wready,
input wire [1:0] m_axil_bresp,
input wire m_axil_bvalid,
output wire m_axil_bready
);
parameter AXI_ADDR_BIT_OFFSET = $clog2(AXI_STRB_WIDTH);
parameter AXIL_ADDR_BIT_OFFSET = $clog2(AXIL_STRB_WIDTH);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXIL_WORD_WIDTH = AXIL_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXIL_WORD_SIZE = AXIL_DATA_WIDTH/AXIL_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXIL_BURST_SIZE = $clog2(AXIL_STRB_WIDTH);
// output bus is wider
parameter EXPAND = AXIL_STRB_WIDTH > AXI_STRB_WIDTH;
parameter DATA_WIDTH = EXPAND ? AXIL_DATA_WIDTH : AXI_DATA_WIDTH;
parameter STRB_WIDTH = EXPAND ? AXIL_STRB_WIDTH : AXI_STRB_WIDTH;
// required number of segments in wider bus
parameter SEGMENT_COUNT = EXPAND ? (AXIL_STRB_WIDTH / AXI_STRB_WIDTH) : (AXI_STRB_WIDTH / AXIL_STRB_WIDTH);
// data width and keep width per segment
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
// bus width assertions
initial begin
if (AXI_WORD_SIZE * AXI_STRB_WIDTH != AXI_DATA_WIDTH) begin
$error("Error: AXI slave interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXIL_WORD_SIZE * AXIL_STRB_WIDTH != AXIL_DATA_WIDTH) begin
$error("Error: AXI lite master interface data width not evenly divisble (instance %m)");
$finish;
end
if (AXI_WORD_SIZE != AXIL_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(AXI_WORD_WIDTH) != AXI_WORD_WIDTH) begin
$error("Error: AXI slave interface word width must be even power of two (instance %m)");
$finish;
end
if (2**$clog2(AXIL_WORD_WIDTH) != AXIL_WORD_WIDTH) begin
$error("Error: AXI lite master interface word width must be even power of two (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_DATA = 2'd1,
STATE_DATA_2 = 2'd2,
STATE_RESP = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [AXI_ID_WIDTH-1:0] id_reg = {AXI_ID_WIDTH{1'b0}}, id_next;
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
reg [STRB_WIDTH-1:0] strb_reg = {STRB_WIDTH{1'b0}}, strb_next;
reg [7:0] burst_reg = 8'd0, burst_next;
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
reg burst_active_reg = 1'b0, burst_active_next;
reg convert_burst_reg = 1'b0, convert_burst_next;
reg first_transfer_reg = 1'b0, first_transfer_next;
reg last_segment_reg = 1'b0, last_segment_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
reg [AXI_ID_WIDTH-1:0] s_axi_bid_reg = {AXI_ID_WIDTH{1'b0}}, s_axi_bid_next;
reg [1:0] s_axi_bresp_reg = 2'd0, s_axi_bresp_next;
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
reg [ADDR_WIDTH-1:0] m_axil_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axil_awaddr_next;
reg [2:0] m_axil_awprot_reg = 3'd0, m_axil_awprot_next;
reg m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
reg [AXIL_DATA_WIDTH-1:0] m_axil_wdata_reg = {AXIL_DATA_WIDTH{1'b0}}, m_axil_wdata_next;
reg [AXIL_STRB_WIDTH-1:0] m_axil_wstrb_reg = {AXIL_STRB_WIDTH{1'b0}}, m_axil_wstrb_next;
reg m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
reg m_axil_bready_reg = 1'b0, m_axil_bready_next;
assign s_axi_awready = s_axi_awready_reg;
assign s_axi_wready = s_axi_wready_reg;
assign s_axi_bid = s_axi_bid_reg;
assign s_axi_bresp = s_axi_bresp_reg;
assign s_axi_bvalid = s_axi_bvalid_reg;
assign m_axil_awaddr = m_axil_awaddr_reg;
//assign m_axil_awlen = m_axil_awlen_reg;
//assign m_axil_awsize = m_axil_awsize_reg;
//assign m_axil_awburst = m_axil_awburst_reg;
assign m_axil_awprot = m_axil_awprot_reg;
assign m_axil_awvalid = m_axil_awvalid_reg;
assign m_axil_wdata = m_axil_wdata_reg;
assign m_axil_wstrb = m_axil_wstrb_reg;
assign m_axil_wvalid = m_axil_wvalid_reg;
assign m_axil_bready = m_axil_bready_reg;
integer i;
always @* begin
state_next = STATE_IDLE;
id_next = id_reg;
addr_next = addr_reg;
data_next = data_reg;
strb_next = strb_reg;
burst_next = burst_reg;
burst_size_next = burst_size_reg;
master_burst_size_next = master_burst_size_reg;
burst_active_next = burst_active_reg;
convert_burst_next = convert_burst_reg;
first_transfer_next = first_transfer_reg;
last_segment_next = last_segment_reg;
s_axi_awready_next = 1'b0;
s_axi_wready_next = 1'b0;
s_axi_bid_next = s_axi_bid_reg;
s_axi_bresp_next = s_axi_bresp_reg;
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
m_axil_awaddr_next = m_axil_awaddr_reg;
m_axil_awprot_next = m_axil_awprot_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wready;
m_axil_bready_next = 1'b0;
if (SEGMENT_COUNT == 1) begin
// master output is same width; direct transfer with no splitting/merging
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
m_axil_wdata_next = s_axi_wdata;
m_axil_wstrb_next = s_axi_wstrb;
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end else if (EXPAND) begin
// master output is wider; merge writes
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
if (CONVERT_BURST && s_axi_awcache[1] && (CONVERT_NARROW_BURST || s_axi_awsize == AXI_BURST_SIZE)) begin
// merge writes
// require CONVERT_BURST and awcache[1] set
convert_burst_next = 1'b1;
master_burst_size_next = AXIL_BURST_SIZE;
state_next = STATE_DATA_2;
end else begin
// output narrow burst
convert_burst_next = 1'b0;
master_burst_size_next = s_axi_awsize;
state_next = STATE_DATA;
end
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
// data state; transfer write data
s_axi_wready_next = !m_axil_wvalid || m_axil_wready;
if (s_axi_wready && s_axi_wvalid) begin
m_axil_wdata_next = {(AXIL_WORD_WIDTH/AXI_WORD_WIDTH){s_axi_wdata}};
m_axil_wstrb_next = s_axi_wstrb << (addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET] * AXI_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
if (CONVERT_NARROW_BURST) begin
for (i = 0; i < AXI_WORD_WIDTH; i = i + 1) begin
if (s_axi_wstrb[i]) begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH+i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE] = s_axi_wdata[i*AXIL_WORD_SIZE +: AXIL_WORD_SIZE];
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH+i] = 1'b1;
end
end
end else begin
data_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = s_axi_wdata;
strb_next[addr_reg[AXIL_ADDR_BIT_OFFSET-1:AXI_ADDR_BIT_OFFSET]*SEGMENT_STRB_WIDTH +: SEGMENT_STRB_WIDTH] = s_axi_wstrb;
end
m_axil_wdata_next = data_next;
m_axil_wstrb_next = strb_next;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << burst_size_reg);
if (burst_reg == 0 || addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
data_next = {DATA_WIDTH{1'b0}};
strb_next = {STRB_WIDTH{1'b0}};
m_axil_wvalid_next = 1'b1;
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
first_transfer_next = 1'b0;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg) begin
// burst on slave interface still active; start new AXI lite write
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid || m_axil_wready;
if (convert_burst_reg) begin
state_next = STATE_DATA_2;
end else begin
state_next = STATE_DATA;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end else begin
// master output is narrower; split writes, and possibly split burst
case (state_reg)
STATE_IDLE: begin
// idle state; wait for new burst
s_axi_awready_next = !m_axil_awvalid;
first_transfer_next = 1'b1;
if (s_axi_awready && s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
id_next = s_axi_awid;
m_axil_awaddr_next = s_axi_awaddr;
addr_next = s_axi_awaddr;
burst_next = s_axi_awlen;
burst_size_next = s_axi_awsize;
burst_active_next = 1'b1;
if (s_axi_awsize > AXIL_BURST_SIZE) begin
// need to adjust burst size
master_burst_size_next = AXIL_BURST_SIZE;
end else begin
// pass through narrow (enough) burst
master_burst_size_next = s_axi_awsize;
end
m_axil_awprot_next = s_axi_awprot;
m_axil_awvalid_next = 1'b1;
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DATA: begin
s_axi_wready_next = !m_axil_wvalid;
if (s_axi_wready && s_axi_wvalid) begin
data_next = s_axi_wdata;
strb_next = s_axi_wstrb;
m_axil_wdata_next = s_axi_wdata >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH);
m_axil_wstrb_next = s_axi_wstrb >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
burst_next = burst_reg - 1;
burst_active_next = burst_reg != 0;
addr_next = addr_reg + (1 << master_burst_size_reg);
last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA;
end
end
STATE_DATA_2: begin
s_axi_wready_next = 1'b0;
if (!m_axil_wvalid || m_axil_wready) begin
m_axil_wdata_next = data_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_DATA_WIDTH);
m_axil_wstrb_next = strb_reg >> (addr_reg[AXI_ADDR_BIT_OFFSET-1:AXIL_ADDR_BIT_OFFSET] * AXIL_STRB_WIDTH);
m_axil_wvalid_next = 1'b1;
addr_next = addr_reg + (1 << master_burst_size_reg);
last_segment_next = addr_next[burst_size_reg] != addr_reg[burst_size_reg];
s_axi_wready_next = 1'b0;
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
state_next = STATE_RESP;
end else begin
state_next = STATE_DATA_2;
end
end
STATE_RESP: begin
// resp state; transfer write response
m_axil_bready_next = !s_axi_bvalid && !m_axil_awvalid;
if (m_axil_bready && m_axil_bvalid) begin
first_transfer_next = 1'b0;
m_axil_bready_next = 1'b0;
s_axi_bid_next = id_reg;
if (first_transfer_reg || m_axil_bresp != 0) begin
s_axi_bresp_next = m_axil_bresp;
end
if (burst_active_reg || !last_segment_reg) begin
// burst on slave interface still active; start new burst
m_axil_awaddr_next = addr_reg;
m_axil_awvalid_next = 1'b1;
if (last_segment_reg) begin
s_axi_wready_next = !m_axil_wvalid;
state_next = STATE_DATA;
end else begin
s_axi_wready_next = 1'b0;
state_next = STATE_DATA_2;
end
end else begin
// burst on slave interface finished; return to idle
s_axi_bvalid_next = 1'b1;
s_axi_awready_next = !m_axil_awvalid;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_RESP;
end
end
endcase
end
end
always @(posedge clk) begin
state_reg <= state_next;
id_reg <= id_next;
addr_reg <= addr_next;
data_reg <= data_next;
strb_reg <= strb_next;
burst_reg <= burst_next;
burst_size_reg <= burst_size_next;
master_burst_size_reg <= master_burst_size_next;
burst_active_reg <= burst_active_next;
convert_burst_reg <= convert_burst_next;
first_transfer_reg <= first_transfer_next;
last_segment_reg <= last_segment_next;
s_axi_awready_reg <= s_axi_awready_next;
s_axi_wready_reg <= s_axi_wready_next;
s_axi_bid_reg <= s_axi_bid_next;
s_axi_bresp_reg <= s_axi_bresp_next;
s_axi_bvalid_reg <= s_axi_bvalid_next;
m_axil_awaddr_reg <= m_axil_awaddr_next;
m_axil_awprot_reg <= m_axil_awprot_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axi_awready_reg <= 1'b0;
s_axi_wready_reg <= 1'b0;
s_axi_bvalid_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
end
end
endmodule