verilog-ethernet/rtl/mac_pause_ctrl_tx.v

314 lines
11 KiB
Coq
Raw Normal View History

/*
Copyright (c) 2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* PFC and pause frame transmit handling
*/
module mac_pause_ctrl_tx #
(
parameter MCF_PARAMS_SIZE = 18,
parameter PFC_ENABLE = 1
)
(
input wire clk,
input wire rst,
/*
* MAC control frame interface
*/
output wire mcf_valid,
input wire mcf_ready,
output wire [47:0] mcf_eth_dst,
output wire [47:0] mcf_eth_src,
output wire [15:0] mcf_eth_type,
output wire [15:0] mcf_opcode,
output wire [MCF_PARAMS_SIZE*8-1:0] mcf_params,
/*
* Link-level Flow Control (LFC) (IEEE 802.3 annex 31B PAUSE)
*/
input wire tx_lfc_req,
input wire tx_lfc_resend,
/*
* Priority Flow Control (PFC) (IEEE 802.3 annex 31D)
*/
input wire [7:0] tx_pfc_req,
input wire tx_pfc_resend,
/*
* Configuration
*/
input wire [47:0] cfg_tx_lfc_eth_dst,
input wire [47:0] cfg_tx_lfc_eth_src,
input wire [15:0] cfg_tx_lfc_eth_type,
input wire [15:0] cfg_tx_lfc_opcode,
input wire cfg_tx_lfc_en,
input wire [15:0] cfg_tx_lfc_quanta,
input wire [15:0] cfg_tx_lfc_refresh,
input wire [47:0] cfg_tx_pfc_eth_dst,
input wire [47:0] cfg_tx_pfc_eth_src,
input wire [15:0] cfg_tx_pfc_eth_type,
input wire [15:0] cfg_tx_pfc_opcode,
input wire cfg_tx_pfc_en,
input wire [8*16-1:0] cfg_tx_pfc_quanta,
input wire [8*16-1:0] cfg_tx_pfc_refresh,
input wire [9:0] cfg_quanta_step,
input wire cfg_quanta_clk_en,
/*
* Status
*/
output wire stat_tx_lfc_pkt,
output wire stat_tx_lfc_xon,
output wire stat_tx_lfc_xoff,
output wire stat_tx_lfc_paused,
output wire stat_tx_pfc_pkt,
output wire [7:0] stat_tx_pfc_xon,
output wire [7:0] stat_tx_pfc_xoff,
output wire [7:0] stat_tx_pfc_paused
);
localparam QFB = 8;
// check configuration
initial begin
if (MCF_PARAMS_SIZE < (PFC_ENABLE ? 18 : 2)) begin
$error("Error: MCF_PARAMS_SIZE too small for requested configuration (instance %m)");
$finish;
end
end
reg lfc_req_reg = 1'b0, lfc_req_next;
reg lfc_act_reg = 1'b0, lfc_act_next;
reg lfc_send_reg = 1'b0, lfc_send_next;
reg [7:0] pfc_req_reg = 8'd0, pfc_req_next;
reg [7:0] pfc_act_reg = 8'd0, pfc_act_next;
reg [7:0] pfc_en_reg = 8'd0, pfc_en_next;
reg pfc_send_reg = 1'b0, pfc_send_next;
reg [16+QFB-1:0] lfc_refresh_reg = 0, lfc_refresh_next;
reg [16+QFB-1:0] pfc_refresh_reg[0:7], pfc_refresh_next[0:7];
reg stat_tx_lfc_pkt_reg = 1'b0, stat_tx_lfc_pkt_next;
reg stat_tx_lfc_xon_reg = 1'b0, stat_tx_lfc_xon_next;
reg stat_tx_lfc_xoff_reg = 1'b0, stat_tx_lfc_xoff_next;
reg stat_tx_pfc_pkt_reg = 1'b0, stat_tx_pfc_pkt_next;
reg [7:0] stat_tx_pfc_xon_reg = 0, stat_tx_pfc_xon_next;
reg [7:0] stat_tx_pfc_xoff_reg = 0, stat_tx_pfc_xoff_next;
// MAC control interface
reg mcf_pfc_sel_reg = PFC_ENABLE != 0, mcf_pfc_sel_next;
reg mcf_valid_reg = 1'b0, mcf_valid_next;
wire [2*8-1:0] mcf_lfc_params;
assign mcf_lfc_params[16*0 +: 16] = lfc_req_reg ? {cfg_tx_lfc_quanta[0 +: 8], cfg_tx_lfc_quanta[8 +: 8]} : 0;
wire [18*8-1:0] mcf_pfc_params;
assign mcf_pfc_params[16*0 +: 16] = {pfc_en_reg, 8'd0};
assign mcf_pfc_params[16*1 +: 16] = pfc_req_reg[0] ? {cfg_tx_pfc_quanta[16*0+0 +: 8], cfg_tx_pfc_quanta[16*0+8 +: 8]} : 0;
assign mcf_pfc_params[16*2 +: 16] = pfc_req_reg[1] ? {cfg_tx_pfc_quanta[16*1+0 +: 8], cfg_tx_pfc_quanta[16*1+8 +: 8]} : 0;
assign mcf_pfc_params[16*3 +: 16] = pfc_req_reg[2] ? {cfg_tx_pfc_quanta[16*2+0 +: 8], cfg_tx_pfc_quanta[16*2+8 +: 8]} : 0;
assign mcf_pfc_params[16*4 +: 16] = pfc_req_reg[3] ? {cfg_tx_pfc_quanta[16*3+0 +: 8], cfg_tx_pfc_quanta[16*3+8 +: 8]} : 0;
assign mcf_pfc_params[16*5 +: 16] = pfc_req_reg[4] ? {cfg_tx_pfc_quanta[16*4+0 +: 8], cfg_tx_pfc_quanta[16*4+8 +: 8]} : 0;
assign mcf_pfc_params[16*6 +: 16] = pfc_req_reg[5] ? {cfg_tx_pfc_quanta[16*5+0 +: 8], cfg_tx_pfc_quanta[16*5+8 +: 8]} : 0;
assign mcf_pfc_params[16*7 +: 16] = pfc_req_reg[6] ? {cfg_tx_pfc_quanta[16*6+0 +: 8], cfg_tx_pfc_quanta[16*6+8 +: 8]} : 0;
assign mcf_pfc_params[16*8 +: 16] = pfc_req_reg[7] ? {cfg_tx_pfc_quanta[16*7+0 +: 8], cfg_tx_pfc_quanta[16*7+8 +: 8]} : 0;
assign mcf_valid = mcf_valid_reg;
assign mcf_eth_dst = (PFC_ENABLE && mcf_pfc_sel_reg) ? cfg_tx_pfc_eth_dst : cfg_tx_lfc_eth_dst;
assign mcf_eth_src = (PFC_ENABLE && mcf_pfc_sel_reg) ? cfg_tx_pfc_eth_src : cfg_tx_lfc_eth_src;
assign mcf_eth_type = (PFC_ENABLE && mcf_pfc_sel_reg) ? cfg_tx_pfc_eth_type : cfg_tx_lfc_eth_type;
assign mcf_opcode = (PFC_ENABLE && mcf_pfc_sel_reg) ? cfg_tx_pfc_opcode : cfg_tx_lfc_opcode;
assign mcf_params = (PFC_ENABLE && mcf_pfc_sel_reg) ? mcf_pfc_params : mcf_lfc_params;
assign stat_tx_lfc_pkt = stat_tx_lfc_pkt_reg;
assign stat_tx_lfc_xon = stat_tx_lfc_xon_reg;
assign stat_tx_lfc_xoff = stat_tx_lfc_xoff_reg;
assign stat_tx_lfc_paused = lfc_req_reg;
assign stat_tx_pfc_pkt = stat_tx_pfc_pkt_reg;
assign stat_tx_pfc_xon = stat_tx_pfc_xon_reg;
assign stat_tx_pfc_xoff = stat_tx_pfc_xoff_reg;
assign stat_tx_pfc_paused = pfc_req_reg;
integer k;
initial begin
for (k = 0; k < 8; k = k + 1) begin
pfc_refresh_reg[k] = 0;
end
end
always @* begin
lfc_req_next = lfc_req_reg;
lfc_act_next = lfc_act_reg;
lfc_send_next = lfc_send_reg | tx_lfc_resend;
pfc_req_next = pfc_req_reg;
pfc_act_next = pfc_act_reg;
pfc_en_next = pfc_en_reg;
pfc_send_next = pfc_send_reg | tx_pfc_resend;
mcf_pfc_sel_next = mcf_pfc_sel_reg;
mcf_valid_next = mcf_valid_reg && !mcf_ready;
stat_tx_lfc_pkt_next = 1'b0;
stat_tx_lfc_xon_next = 1'b0;
stat_tx_lfc_xoff_next = 1'b0;
stat_tx_pfc_pkt_next = 1'b0;
stat_tx_pfc_xon_next = 0;
stat_tx_pfc_xoff_next = 0;
if (cfg_quanta_clk_en) begin
if (lfc_refresh_reg > cfg_quanta_step) begin
lfc_refresh_next = lfc_refresh_reg - cfg_quanta_step;
end else begin
lfc_refresh_next = 0;
if (lfc_req_reg) begin
lfc_send_next = 1'b1;
end
end
end else begin
lfc_refresh_next = lfc_refresh_reg;
end
for (k = 0; k < 8; k = k + 1) begin
if (cfg_quanta_clk_en) begin
if (pfc_refresh_reg[k] > cfg_quanta_step) begin
pfc_refresh_next[k] = pfc_refresh_reg[k] - cfg_quanta_step;
end else begin
pfc_refresh_next[k] = 0;
if (pfc_req_reg[k]) begin
pfc_send_next = 1'b1;
end
end
end else begin
pfc_refresh_next[k] = pfc_refresh_reg[k];
end
end
if (cfg_tx_lfc_en) begin
if (!mcf_valid_reg) begin
if (lfc_req_reg != tx_lfc_req) begin
lfc_req_next = tx_lfc_req;
lfc_act_next = lfc_act_reg | tx_lfc_req;
lfc_send_next = 1'b1;
end
if (lfc_send_reg && !(PFC_ENABLE && cfg_tx_pfc_en && pfc_send_reg)) begin
mcf_pfc_sel_next = 1'b0;
mcf_valid_next = lfc_act_reg;
lfc_act_next = lfc_req_reg;
lfc_refresh_next = lfc_req_reg ? {cfg_tx_lfc_refresh, {QFB{1'b0}}} : 0;
lfc_send_next = 1'b0;
stat_tx_lfc_pkt_next = lfc_act_reg;
stat_tx_lfc_xon_next = lfc_act_reg && !lfc_req_reg;
stat_tx_lfc_xoff_next = lfc_act_reg && lfc_req_reg;
end
end
end
if (PFC_ENABLE && cfg_tx_pfc_en) begin
if (!mcf_valid_reg) begin
if (pfc_req_reg != tx_pfc_req) begin
pfc_req_next = tx_pfc_req;
pfc_act_next = pfc_act_reg | tx_pfc_req;
pfc_send_next = 1'b1;
end
if (pfc_send_reg) begin
mcf_pfc_sel_next = 1'b1;
mcf_valid_next = pfc_act_reg != 0;
pfc_en_next = pfc_act_reg;
pfc_act_next = pfc_req_reg;
for (k = 0; k < 8; k = k + 1) begin
pfc_refresh_next[k] = pfc_req_reg[k] ? {cfg_tx_pfc_refresh[16*k +: 16], {QFB{1'b0}}} : 0;
end
pfc_send_next = 1'b0;
stat_tx_pfc_pkt_next = pfc_act_reg != 0;
stat_tx_pfc_xon_next = pfc_act_reg & ~pfc_req_reg;
stat_tx_pfc_xoff_next = pfc_act_reg & pfc_req_reg;
end
end
end
end
always @(posedge clk) begin
lfc_req_reg <= lfc_req_next;
lfc_act_reg <= lfc_act_next;
lfc_send_reg <= lfc_send_next;
pfc_req_reg <= pfc_req_next;
pfc_act_reg <= pfc_act_next;
pfc_en_reg <= pfc_en_next;
pfc_send_reg <= pfc_send_next;
mcf_pfc_sel_reg <= mcf_pfc_sel_next;
mcf_valid_reg <= mcf_valid_next;
lfc_refresh_reg <= lfc_refresh_next;
for (k = 0; k < 8; k = k + 1) begin
pfc_refresh_reg[k] <= pfc_refresh_next[k];
end
stat_tx_lfc_pkt_reg <= stat_tx_lfc_pkt_next;
stat_tx_lfc_xon_reg <= stat_tx_lfc_xon_next;
stat_tx_lfc_xoff_reg <= stat_tx_lfc_xoff_next;
stat_tx_pfc_pkt_reg <= stat_tx_pfc_pkt_next;
stat_tx_pfc_xon_reg <= stat_tx_pfc_xon_next;
stat_tx_pfc_xoff_reg <= stat_tx_pfc_xoff_next;
if (rst) begin
lfc_req_reg <= 1'b0;
lfc_act_reg <= 1'b0;
lfc_send_reg <= 1'b0;
pfc_req_reg <= 0;
pfc_act_reg <= 0;
pfc_send_reg <= 0;
mcf_pfc_sel_reg <= PFC_ENABLE != 0;
mcf_valid_reg <= 1'b0;
lfc_refresh_reg <= 0;
for (k = 0; k < 8; k = k + 1) begin
pfc_refresh_reg[k] <= 0;
end
stat_tx_lfc_pkt_reg <= 1'b0;
stat_tx_lfc_xon_reg <= 1'b0;
stat_tx_lfc_xoff_reg <= 1'b0;
stat_tx_pfc_pkt_reg <= 1'b0;
stat_tx_pfc_xon_reg <= 0;
stat_tx_pfc_xoff_reg <= 0;
end
end
endmodule
`resetall