merged changes in axis

This commit is contained in:
Alex Forencich 2022-05-15 17:39:11 -07:00
commit 794eb98789
18 changed files with 306 additions and 278 deletions

View File

@ -141,16 +141,16 @@ always @* begin
end
always @(posedge clk) begin
grant_reg <= grant_next;
grant_valid_reg <= grant_valid_next;
grant_encoded_reg <= grant_encoded_next;
mask_reg <= mask_next;
if (rst) begin
grant_reg <= 0;
grant_valid_reg <= 0;
grant_encoded_reg <= 0;
mask_reg <= 0;
end else begin
grant_reg <= grant_next;
grant_valid_reg <= grant_valid_next;
grant_encoded_reg <= grant_encoded_next;
mask_reg <= mask_next;
end
end

View File

@ -484,8 +484,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -516,15 +516,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -551,6 +545,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -118,6 +118,15 @@ wire [S_COUNT-1:0] grant;
wire grant_valid;
wire [CL_S_COUNT-1:0] grant_encoded;
// input registers to pipeline arbitration delay
reg [S_COUNT*DATA_WIDTH-1:0] s_axis_tdata_reg = 0;
reg [S_COUNT*KEEP_WIDTH-1:0] s_axis_tkeep_reg = 0;
reg [S_COUNT-1:0] s_axis_tvalid_reg = 0;
reg [S_COUNT-1:0] s_axis_tlast_reg = 0;
reg [S_COUNT*S_ID_WIDTH-1:0] s_axis_tid_reg = 0;
reg [S_COUNT*DEST_WIDTH-1:0] s_axis_tdest_reg = 0;
reg [S_COUNT*USER_WIDTH-1:0] s_axis_tuser_reg = 0;
// internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
@ -129,17 +138,17 @@ reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = (m_axis_tready_int_reg && grant_valid) << grant_encoded;
assign s_axis_tready = ~s_axis_tvalid_reg | ({S_COUNT{m_axis_tready_int_reg}} & grant);
// mux for incoming packet
wire [DATA_WIDTH-1:0] current_s_tdata = s_axis_tdata[grant_encoded*DATA_WIDTH +: DATA_WIDTH];
wire [KEEP_WIDTH-1:0] current_s_tkeep = s_axis_tkeep[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH];
wire current_s_tvalid = s_axis_tvalid[grant_encoded];
wire [DATA_WIDTH-1:0] current_s_tdata = s_axis_tdata_reg[grant_encoded*DATA_WIDTH +: DATA_WIDTH];
wire [KEEP_WIDTH-1:0] current_s_tkeep = s_axis_tkeep_reg[grant_encoded*KEEP_WIDTH +: KEEP_WIDTH];
wire current_s_tvalid = s_axis_tvalid_reg[grant_encoded];
wire current_s_tready = s_axis_tready[grant_encoded];
wire current_s_tlast = s_axis_tlast[grant_encoded];
wire [S_ID_WIDTH-1:0] current_s_tid = s_axis_tid[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT];
wire [DEST_WIDTH-1:0] current_s_tdest = s_axis_tdest[grant_encoded*DEST_WIDTH +: DEST_WIDTH];
wire [USER_WIDTH-1:0] current_s_tuser = s_axis_tuser[grant_encoded*USER_WIDTH +: USER_WIDTH];
wire current_s_tlast = s_axis_tlast_reg[grant_encoded];
wire [S_ID_WIDTH-1:0] current_s_tid = s_axis_tid_reg[grant_encoded*S_ID_WIDTH +: S_ID_WIDTH_INT];
wire [DEST_WIDTH-1:0] current_s_tdest = s_axis_tdest_reg[grant_encoded*DEST_WIDTH +: DEST_WIDTH];
wire [USER_WIDTH-1:0] current_s_tuser = s_axis_tuser_reg[grant_encoded*USER_WIDTH +: USER_WIDTH];
// arbiter instance
arbiter #(
@ -159,8 +168,8 @@ arb_inst (
.grant_encoded(grant_encoded)
);
assign request = s_axis_tvalid & ~grant;
assign acknowledge = grant & s_axis_tvalid & s_axis_tready & (LAST_ENABLE ? s_axis_tlast : {S_COUNT{1'b1}});
assign request = (s_axis_tvalid_reg & ~grant) | (s_axis_tvalid & grant);
assign acknowledge = grant & s_axis_tvalid_reg & {S_COUNT{m_axis_tready_int_reg}} & (LAST_ENABLE ? s_axis_tlast_reg : {S_COUNT{1'b1}});
always @* begin
// pass through selected packet data
@ -176,6 +185,27 @@ always @* begin
m_axis_tuser_int = current_s_tuser;
end
integer i;
always @(posedge clk) begin
// register inputs
for (i = 0; i < S_COUNT; i = i + 1) begin
if (s_axis_tready[i]) begin
s_axis_tdata_reg[i*DATA_WIDTH +: DATA_WIDTH] <= s_axis_tdata[i*DATA_WIDTH +: DATA_WIDTH];
s_axis_tkeep_reg[i*KEEP_WIDTH +: KEEP_WIDTH] <= s_axis_tkeep[i*KEEP_WIDTH +: KEEP_WIDTH];
s_axis_tvalid_reg[i] <= s_axis_tvalid[i];
s_axis_tlast_reg[i] <= s_axis_tlast[i];
s_axis_tid_reg[i*S_ID_WIDTH +: S_ID_WIDTH_INT] <= s_axis_tid[i*S_ID_WIDTH +: S_ID_WIDTH_INT];
s_axis_tdest_reg[i*DEST_WIDTH +: DEST_WIDTH] <= s_axis_tdest[i*DEST_WIDTH +: DEST_WIDTH];
s_axis_tuser_reg[i*USER_WIDTH +: USER_WIDTH] <= s_axis_tuser[i*USER_WIDTH +: USER_WIDTH];
end
end
if (rst) begin
s_axis_tvalid_reg <= 0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
@ -206,8 +236,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {M_ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -238,15 +268,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -273,6 +297,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -121,8 +121,8 @@ assign m_axis_tid = ID_ENABLE ? {M_COUNT{m_axis_tid_reg}} : {M_COUNT*ID_W
assign m_axis_tdest = DEST_ENABLE ? {M_COUNT{m_axis_tdest_reg}} : {M_COUNT*DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? {M_COUNT{m_axis_tuser_reg}} : {M_COUNT*USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
wire s_axis_tready_early = ((m_axis_tready & m_axis_tvalid) == m_axis_tvalid) || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid || !s_axis_tvalid));
// enable ready input next cycle if output is ready or if both output registers are empty
wire s_axis_tready_early = ((m_axis_tready & m_axis_tvalid) == m_axis_tvalid) || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -153,15 +153,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= {M_COUNT{1'b0}};
temp_m_axis_tvalid_reg <= {M_COUNT{1'b0}};
end else begin
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_input_to_output) begin
@ -188,6 +182,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= s_axis_tdest;
temp_m_axis_tuser_reg <= s_axis_tuser;
end
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= {M_COUNT{1'b0}};
temp_m_axis_tvalid_reg <= {M_COUNT{1'b0}};
end
end
endmodule

View File

@ -230,20 +230,21 @@ always @* begin
end
always @(posedge clk) begin
state_reg <= state_next;
count_reg <= count_next;
suppress_zero_reg <= suppress_zero_next;
temp_tdata_reg <= temp_tdata_next;
temp_tvalid_reg <= temp_tvalid_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
state_reg <= STATE_IDLE;
temp_tvalid_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end else begin
state_reg <= state_next;
temp_tvalid_reg <= temp_tvalid_next;
s_axis_tready_reg <= s_axis_tready_next;
end
temp_tdata_reg <= temp_tdata_next;
count_reg <= count_next;
suppress_zero_reg <= suppress_zero_next;
end
// output datapath logic
@ -267,8 +268,8 @@ assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -299,15 +300,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -325,6 +320,12 @@ always @(posedge clk) begin
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -411,17 +411,17 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
input_state_reg <= INPUT_STATE_IDLE;
output_state_reg <= OUTPUT_STATE_IDLE;
end else begin
input_state_reg <= input_state_next;
output_state_reg <= output_state_next;
end
input_state_reg <= input_state_next;
output_state_reg <= output_state_next;
input_count_reg <= input_count_next;
output_count_reg <= output_count_next;
fail_frame_reg <= fail_frame_next;
if (rst) begin
input_state_reg <= INPUT_STATE_IDLE;
output_state_reg <= OUTPUT_STATE_IDLE;
end
end
// output datapath logic
@ -445,8 +445,8 @@ assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -477,15 +477,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -503,6 +497,12 @@ always @(posedge clk) begin
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -121,33 +121,31 @@ assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {M_COUNT*USER_WIDTH{1'b0
integer i;
always @(posedge clk) begin
if (rst) begin
s_axis_tvalid_reg <= {S_COUNT{1'b0}};
m_axis_tvalid_reg <= {S_COUNT{1'b0}};
select_reg <= {M_COUNT*CL_S_COUNT{1'b0}};
end else begin
s_axis_tvalid_reg <= s_axis_tvalid;
for (i = 0; i < M_COUNT; i = i + 1) begin
m_axis_tvalid_reg[i] <= s_axis_tvalid_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]];
end
select_reg <= select;
end
s_axis_tdata_reg <= s_axis_tdata;
s_axis_tkeep_reg <= s_axis_tkeep;
s_axis_tvalid_reg <= s_axis_tvalid;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
select_reg <= select;
for (i = 0; i < M_COUNT; i = i + 1) begin
m_axis_tdata_reg[i*DATA_WIDTH +: DATA_WIDTH] <= s_axis_tdata_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]*DATA_WIDTH +: DATA_WIDTH];
m_axis_tkeep_reg[i*KEEP_WIDTH +: KEEP_WIDTH] <= s_axis_tkeep_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]*KEEP_WIDTH +: KEEP_WIDTH];
m_axis_tvalid_reg[i] <= s_axis_tvalid_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]];
m_axis_tlast_reg[i] <= s_axis_tlast_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]];
m_axis_tid_reg[i*ID_WIDTH +: ID_WIDTH] <= s_axis_tid_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]*ID_WIDTH +: ID_WIDTH];
m_axis_tdest_reg[i*DEST_WIDTH +: DEST_WIDTH] <= s_axis_tdest_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]*DEST_WIDTH +: DEST_WIDTH];
m_axis_tuser_reg[i*USER_WIDTH +: USER_WIDTH] <= s_axis_tuser_reg[select_reg[i*CL_S_COUNT +: CL_S_COUNT]*USER_WIDTH +: USER_WIDTH];
end
if (rst) begin
s_axis_tvalid_reg <= {S_COUNT{1'b0}};
m_axis_tvalid_reg <= {S_COUNT{1'b0}};
select_reg <= {M_COUNT*CL_S_COUNT{1'b0}};
end
end
endmodule

View File

@ -184,16 +184,16 @@ always @* begin
end
always @(posedge clk) begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
select_reg <= 2'd0;
drop_reg <= 1'b0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end else begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
end
end
@ -227,8 +227,8 @@ assign m_axis_tid = ID_ENABLE ? {M_COUNT{m_axis_tid_reg}} : {M_COUNT*ID_W
assign m_axis_tdest = DEST_ENABLE ? {M_COUNT{m_axis_tdest_reg}} : {M_COUNT*M_DEST_WIDTH_INT{1'b0}};
assign m_axis_tuser = USER_ENABLE ? {M_COUNT{m_axis_tuser_reg}} : {M_COUNT*USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = (m_axis_tready & m_axis_tvalid) || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = (m_axis_tready & m_axis_tvalid) || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -259,15 +259,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= {M_COUNT{1'b0}};
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= {M_COUNT{1'b0}};
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -294,6 +288,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= {M_COUNT{1'b0}};
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= {M_COUNT{1'b0}};
end
end
endmodule

View File

@ -223,6 +223,18 @@ always @* begin
end
always @(posedge clk) begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
port_sel_reg <= port_sel_next;
s_axis_tready_reg <= s_axis_tready_next;
output_tuser_reg <= output_tuser_next;
busy_reg <= state_next != STATE_IDLE;
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= {CL_TAG_WORD_WIDTH{1'b0}};
@ -230,18 +242,6 @@ always @(posedge clk) begin
s_axis_tready_reg <= {S_COUNT{1'b0}};
output_tuser_reg <= 1'b0;
busy_reg <= 1'b0;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
port_sel_reg <= port_sel_next;
s_axis_tready_reg <= s_axis_tready_next;
output_tuser_reg <= output_tuser_next;
busy_reg <= state_next != STATE_IDLE;
end
end
@ -266,8 +266,8 @@ assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -298,15 +298,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -324,6 +318,12 @@ always @(posedge clk) begin
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -543,8 +543,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -575,15 +575,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -610,6 +604,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -152,14 +152,14 @@ always @* begin
end
always @(posedge clk) begin
select_reg <= select_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
select_reg <= 0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 0;
end else begin
select_reg <= select_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
end
end
@ -193,8 +193,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -225,15 +225,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -260,6 +254,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -145,14 +145,14 @@ always @* begin
end
always @(posedge clk) begin
acc_reg <= acc_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
acc_reg <= 24'd0;
frame_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end else begin
acc_reg <= acc_next;
frame_reg <= frame_next;
s_axis_tready_reg <= s_axis_tready_next;
end
end
@ -186,8 +186,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -218,15 +218,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -253,6 +247,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -125,8 +125,8 @@ if (REG_TYPE > 1) begin
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
wire s_axis_tready_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !s_axis_tvalid));
// enable ready input next cycle if output is ready or if both output registers are empty
wire s_axis_tready_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -157,15 +157,9 @@ if (REG_TYPE > 1) begin
end
always @(posedge clk) begin
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_input_to_output) begin
@ -192,6 +186,12 @@ if (REG_TYPE > 1) begin
temp_m_axis_tdest_reg <= s_axis_tdest;
temp_m_axis_tuser_reg <= s_axis_tuser;
end
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
end else if (REG_TYPE == 1) begin
@ -239,13 +239,8 @@ end else if (REG_TYPE == 1) begin
end
always @(posedge clk) begin
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end else begin
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
end
s_axis_tready_reg <= s_axis_tready_early;
m_axis_tvalid_reg <= m_axis_tvalid_next;
// datapath
if (store_axis_input_to_output) begin
@ -256,6 +251,11 @@ end else if (REG_TYPE == 1) begin
m_axis_tdest_reg <= s_axis_tdest;
m_axis_tuser_reg <= s_axis_tuser;
end
if (rst) begin
s_axis_tready_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end
end
end else begin

View File

@ -169,29 +169,29 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
ptr_reg <= 0;
full_reg <= 1'b0;
empty_reg <= 1'b1;
if (inc) begin
ptr_reg <= ptr_reg + 1;
end else if (dec) begin
ptr_reg <= ptr_reg - 1;
end else begin
if (inc) begin
ptr_reg <= ptr_reg + 1;
end else if (dec) begin
ptr_reg <= ptr_reg - 1;
end else begin
ptr_reg <= ptr_reg;
end
full_reg <= full_next;
empty_reg <= empty_next;
ptr_reg <= ptr_reg;
end
full_reg <= full_next;
empty_reg <= empty_next;
if (shift) begin
data_reg[0] <= s_axis;
for (i = 0; i < DEPTH-1; i = i + 1) begin
data_reg[i+1] <= data_reg[i];
end
end
if (rst) begin
ptr_reg <= 0;
full_reg <= 1'b0;
empty_reg <= 1'b1;
end
end
endmodule

View File

@ -129,27 +129,27 @@ initial begin
end
always @(posedge clk) begin
// transfer empty to full
full_reg <= !m_axis_tready && m_axis_tvalid;
// transfer in if not full
if (s_axis_tready) begin
data_reg[0] <= s_axis;
valid_reg[0] <= s_axis_tvalid;
for (i = 0; i < 1; i = i + 1) begin
data_reg[i+1] <= data_reg[i];
valid_reg[i+1] <= valid_reg[i];
end
ptr_reg <= valid_reg[0];
end
if (m_axis_tready) begin
ptr_reg <= 0;
end
if (rst) begin
ptr_reg <= 0;
full_reg <= 0;
end else begin
// transfer empty to full
full_reg <= !m_axis_tready && m_axis_tvalid;
// transfer in if not full
if (s_axis_tready) begin
data_reg[0] <= s_axis;
valid_reg[0] <= s_axis_tvalid;
for (i = 0; i < 1; i = i + 1) begin
data_reg[i+1] <= data_reg[i];
valid_reg[i+1] <= valid_reg[i];
end
ptr_reg <= valid_reg[0];
end
if (m_axis_tready) begin
ptr_reg <= 0;
end
end
end

View File

@ -258,6 +258,21 @@ always @* begin
end
always @(posedge clk) begin
state_reg <= state_next;
tick_count_reg <= tick_count_next;
byte_count_reg <= byte_count_next;
frame_count_reg <= frame_count_next;
frame_reg <= frame_next;
frame_ptr_reg <= frame_ptr_next;
busy_reg <= state_next != STATE_IDLE;
if (store_output) begin
tick_count_output_reg <= tick_count_reg;
byte_count_output_reg <= byte_count_reg;
frame_count_output_reg <= frame_count_reg;
end
if (rst) begin
state_reg <= STATE_IDLE;
tick_count_reg <= 0;
@ -266,21 +281,6 @@ always @(posedge clk) begin
frame_reg <= 1'b0;
frame_ptr_reg <= 0;
busy_reg <= 1'b0;
end else begin
state_reg <= state_next;
tick_count_reg <= tick_count_next;
byte_count_reg <= byte_count_next;
frame_count_reg <= frame_count_next;
frame_reg <= frame_next;
frame_ptr_reg <= frame_ptr_next;
busy_reg <= state_next != STATE_IDLE;
end
if (store_output) begin
tick_count_output_reg <= tick_count_reg;
byte_count_output_reg <= byte_count_reg;
frame_count_output_reg <= frame_count_reg;
end
end
@ -305,8 +305,8 @@ assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -337,15 +337,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -363,6 +357,12 @@ always @(posedge clk) begin
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule

View File

@ -258,14 +258,13 @@ generate
end
always @(posedge clk) begin
if (rst) begin
select_valid_reg <= 1'b0;
end else begin
select_valid_reg <= select_valid_next;
end
select_reg <= select_next;
drop_reg <= drop_next;
select_valid_reg <= select_valid_next;
if (rst) begin
select_valid_reg <= 1'b0;
end
end
// forwarding

View File

@ -213,19 +213,19 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_reg <= 1'b0;
end else begin
state_reg <= state_next;
frame_reg <= frame_next;
end
state_reg <= state_next;
frame_reg <= frame_next;
if (store_last_word) begin
last_word_id_reg <= tap_axis_tid;
last_word_dest_reg <= tap_axis_tdest;
last_word_user_reg <= tap_axis_tuser;
end
if (rst) begin
state_reg <= STATE_IDLE;
frame_reg <= 1'b0;
end
end
// output datapath logic
@ -258,8 +258,8 @@ assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
@ -290,15 +290,9 @@ always @* begin
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
@ -325,6 +319,12 @@ always @(posedge clk) begin
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule