Add FIFO output pipeline registers to aid block RAM output timing closure

This commit is contained in:
Alex Forencich 2016-08-04 18:03:00 -07:00
parent b44e401b95
commit a961a9756a
8 changed files with 286 additions and 56 deletions

View File

@ -82,8 +82,11 @@ reg output_rst_sync3_reg = 1'b1;
reg [DATA_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+2-1:0] mem_write_data;
reg [DATA_WIDTH+2-1:0] output_data_reg = {DATA_WIDTH+2{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first TWO MSBs do NOT match, but rest matches
@ -97,13 +100,14 @@ wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg;
// control signals
reg write;
reg read;
reg store_output;
assign input_axis_tready = ~full & ~input_rst_sync3_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tuser, input_axis_tdata};
assign {output_axis_tlast, output_axis_tuser, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tuser, output_axis_tdata} = output_data_reg;
// reset synchronization
always @(posedge input_clk or posedge async_rst) begin
@ -192,18 +196,19 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -212,11 +217,11 @@ always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -226,4 +231,28 @@ always @(posedge output_clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -84,9 +84,12 @@ reg output_rst_sync2_reg = 1'b1;
reg output_rst_sync3_reg = 1'b1;
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+KEEP_WIDTH+2{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_write_data;
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] output_data_reg = {DATA_WIDTH+KEEP_WIDTH+2{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first TWO MSBs do NOT match, but rest matches
@ -100,13 +103,14 @@ wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg;
// control signals
reg write;
reg read;
reg store_output;
assign input_axis_tready = ~full & ~input_rst_sync3_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tuser, input_axis_tkeep, input_axis_tdata};
assign {output_axis_tlast, output_axis_tuser, output_axis_tkeep, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tuser, output_axis_tkeep, output_axis_tdata} = output_data_reg;
// reset synchronization
always @(posedge input_clk or posedge async_rst) begin
@ -195,18 +199,19 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -215,11 +220,11 @@ always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -229,4 +234,28 @@ always @(posedge output_clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -92,9 +92,12 @@ reg output_rst_sync2_reg = 1'b1;
reg output_rst_sync3_reg = 1'b1;
reg [DATA_WIDTH+1-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+1{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+1-1:0] mem_write_data;
reg [DATA_WIDTH+1-1:0] output_data_reg = {DATA_WIDTH+1{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first TWO MSBs do NOT match, but rest matches
@ -111,6 +114,7 @@ wire full_cur = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) &&
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0, drop_frame_next;
reg overflow_reg = 1'b0, overflow_next;
@ -135,7 +139,7 @@ assign input_axis_tready = (~full | DROP_WHEN_FULL) & ~input_rst_sync3_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tdata};
assign {output_axis_tlast, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tdata} = output_data_reg;
assign input_status_overflow = overflow_reg;
assign input_status_bad_frame = bad_frame_reg;
@ -308,18 +312,19 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -328,11 +333,11 @@ always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -342,4 +347,28 @@ always @(posedge output_clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -95,9 +95,12 @@ reg output_rst_sync2_reg = 1'b1;
reg output_rst_sync3_reg = 1'b1;
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+KEEP_WIDTH+1{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_write_data;
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] output_data_reg = {DATA_WIDTH+KEEP_WIDTH+1{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first TWO MSBs do NOT match, but rest matches
@ -114,6 +117,7 @@ wire full_cur = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) &&
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0, drop_frame_next;
reg overflow_reg = 1'b0, overflow_next;
@ -138,7 +142,7 @@ assign input_axis_tready = (~full | DROP_WHEN_FULL) & ~input_rst_sync3_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tkeep, input_axis_tdata};
assign {output_axis_tlast, output_axis_tkeep, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tkeep, output_axis_tdata} = output_data_reg;
assign input_status_overflow = overflow_reg;
assign input_status_bad_frame = bad_frame_reg;
@ -311,18 +315,19 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -331,11 +336,11 @@ always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -345,4 +350,28 @@ always @(posedge output_clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge output_clk) begin
if (output_rst_sync3_reg) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -64,8 +64,11 @@ reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}};
reg [DATA_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+2-1:0] mem_write_data;
reg [DATA_WIDTH+2-1:0] output_data_reg = {DATA_WIDTH+2{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first MSB different but rest same
@ -77,13 +80,14 @@ wire empty = wr_ptr_reg == rd_ptr_reg;
// control signals
reg write;
reg read;
reg store_output;
assign input_axis_tready = ~full;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tuser, input_axis_tdata};
assign {output_axis_tlast, output_axis_tuser, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tuser, output_axis_tdata} = output_data_reg;
// Write logic
always @* begin
@ -121,17 +125,18 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -139,10 +144,10 @@ end
always @(posedge clk) begin
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -152,4 +157,28 @@ always @(posedge clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
if (rst) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -66,9 +66,12 @@ reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_read_data_reg = {DATA_WIDTH+KEEP_WIDTH+2{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+KEEP_WIDTH+2-1:0] mem_write_data;
reg [DATA_WIDTH+KEEP_WIDTH+2-1:0] output_data_reg = {DATA_WIDTH+KEEP_WIDTH+2{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first MSB different but rest same
@ -80,15 +83,16 @@ wire empty = wr_ptr_reg == rd_ptr_reg;
// control signals
reg write;
reg read;
reg store_output;
assign input_axis_tready = ~full;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tuser, input_axis_tkeep, input_axis_tdata};
assign {output_axis_tlast, output_axis_tuser, output_axis_tkeep, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tuser, output_axis_tkeep, output_axis_tdata} = output_data_reg;
// FIFO write logic
// Write logic
always @* begin
write = 1'b0;
@ -118,24 +122,24 @@ always @(posedge clk) begin
end
end
// FIFO read logic
// Read logic
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
output_axis_tvalid_next = 1'b0;
mem_read_data_valid_next = 1'b0;
end
end
end
@ -143,10 +147,10 @@ end
always @(posedge clk) begin
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -156,4 +160,28 @@ always @(posedge clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
if (rst) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -71,9 +71,12 @@ reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}};
reg [DATA_WIDTH+1-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+1{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+1-1:0] mem_write_data;
reg [DATA_WIDTH+1-1:0] output_data_reg = {DATA_WIDTH+1{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first MSB different but rest same
@ -88,6 +91,7 @@ wire full_cur = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) &&
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0, drop_frame_next;
reg overflow_reg = 1'b0, overflow_next;
@ -99,7 +103,7 @@ assign input_axis_tready = (~full | DROP_WHEN_FULL);
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tdata};
assign {output_axis_tlast, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tdata} = output_data_reg;
assign overflow = overflow_reg;
assign bad_frame = bad_frame_reg;
@ -183,18 +187,18 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
output_axis_tvalid_next = 1'b0;
mem_read_data_valid_next = 1'b0;
end
end
end
@ -202,10 +206,10 @@ end
always @(posedge clk) begin
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -215,4 +219,28 @@ always @(posedge clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
if (rst) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule

View File

@ -74,9 +74,12 @@ reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+2{1'b0}};
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_read_data_reg = {DATA_WIDTH+KEEP_WIDTH+1{1'b0}};
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [DATA_WIDTH+KEEP_WIDTH+1-1:0] mem_write_data;
reg [DATA_WIDTH+KEEP_WIDTH+1-1:0] output_data_reg = {DATA_WIDTH+KEEP_WIDTH+1{1'b0}};
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
// full when first MSB different but rest same
@ -91,6 +94,7 @@ wire full_cur = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) &&
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0, drop_frame_next;
reg overflow_reg = 1'b0, overflow_next;
@ -102,7 +106,7 @@ assign input_axis_tready = (~full | DROP_WHEN_FULL);
assign output_axis_tvalid = output_axis_tvalid_reg;
assign mem_write_data = {input_axis_tlast, input_axis_tkeep, input_axis_tdata};
assign {output_axis_tlast, output_axis_tkeep, output_axis_tdata} = mem_read_data_reg;
assign {output_axis_tlast, output_axis_tkeep, output_axis_tdata} = output_data_reg;
assign overflow = overflow_reg;
assign bad_frame = bad_frame_reg;
@ -186,17 +190,18 @@ always @* begin
rd_ptr_next = rd_ptr_reg;
output_axis_tvalid_next = output_axis_tvalid_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
// output data not valid OR currently being transferred
if (~empty) begin
// not empty, perform read
read = 1'b1;
output_axis_tvalid_next = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
output_axis_tvalid_next = 1'b0;
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
@ -204,10 +209,10 @@ end
always @(posedge clk) begin
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
output_axis_tvalid_reg <= 1'b0;
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
output_axis_tvalid_reg <= output_axis_tvalid_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
@ -217,4 +222,28 @@ always @(posedge clk) begin
end
end
// Output register
always @* begin
store_output = 1'b0;
output_axis_tvalid_next = output_axis_tvalid_reg;
if (output_axis_tready | ~output_axis_tvalid) begin
store_output = 1'b1;
output_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
if (rst) begin
output_axis_tvalid_reg <= 1'b0;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_next;
end
if (store_output) begin
output_data_reg <= mem_read_data_reg;
end
end
endmodule