Add PTP clock module and testbench

This commit is contained in:
Alex Forencich 2019-06-03 19:00:28 -07:00
parent 352f52e159
commit e181ea5abc
3 changed files with 786 additions and 0 deletions

246
rtl/ptp_clock.v Normal file
View File

@ -0,0 +1,246 @@
/*
Copyright (c) 2015-2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PTP clock module
*/
module ptp_clock #
(
parameter PERIOD_NS_WIDTH = 4,
parameter OFFSET_NS_WIDTH = 4,
parameter DRIFT_NS_WIDTH = 4,
parameter FNS_WIDTH = 16,
parameter PERIOD_NS = 4'h6,
parameter PERIOD_FNS = 16'h6666,
parameter DRIFT_ENABLE = 1,
parameter DRIFT_NS = 4'h0,
parameter DRIFT_FNS = 16'h0002,
parameter DRIFT_RATE = 16'h0005
)
(
input wire clk,
input wire rst,
/*
* Timestamp inputs for synchronization
*/
input wire [95:0] input_ts_96,
input wire input_ts_96_valid,
input wire [63:0] input_ts_64,
input wire input_ts_64_valid,
/*
* Period adjustment
*/
input wire [PERIOD_NS_WIDTH-1:0] input_period_ns,
input wire [FNS_WIDTH-1:0] input_period_fns,
input wire input_period_valid,
/*
* Offset adjustment
*/
input wire [OFFSET_NS_WIDTH-1:0] input_adj_ns,
input wire [FNS_WIDTH-1:0] input_adj_fns,
input wire [15:0] input_adj_count,
input wire input_adj_valid,
output wire input_adj_active,
/*
* Drift adjustment
*/
input wire [DRIFT_NS_WIDTH-1:0] input_drift_ns,
input wire [FNS_WIDTH-1:0] input_drift_fns,
input wire [15:0] input_drift_rate,
input wire input_drift_valid,
/*
* Timestamp outputs
*/
output wire [95:0] output_ts_96,
output wire [63:0] output_ts_64,
output wire output_ts_step,
/*
* PPS output
*/
output wire output_pps
);
parameter INC_NS_WIDTH = $clog2(2**PERIOD_NS_WIDTH + 2**OFFSET_NS_WIDTH + 2**DRIFT_NS_WIDTH);
reg [PERIOD_NS_WIDTH-1:0] period_ns_reg = PERIOD_NS;
reg [FNS_WIDTH-1:0] period_fns_reg = PERIOD_FNS;
reg [OFFSET_NS_WIDTH-1:0] adj_ns_reg = 0;
reg [FNS_WIDTH-1:0] adj_fns_reg = 0;
reg [15:0] adj_count_reg = 0;
reg adj_active_reg = 0;
reg [DRIFT_NS_WIDTH-1:0] drift_ns_reg = DRIFT_NS;
reg [FNS_WIDTH-1:0] drift_fns_reg = DRIFT_FNS;
reg [15:0] drift_rate_reg = DRIFT_RATE;
reg [INC_NS_WIDTH-1:0] ts_inc_ns_reg = 0;
reg [FNS_WIDTH-1:0] ts_inc_fns_reg = 0;
reg [47:0] ts_96_s_reg = 0;
reg [29:0] ts_96_ns_reg = 0;
reg [FNS_WIDTH-1:0] ts_96_fns_reg = 0;
reg [29:0] ts_96_ns_inc_reg = 0;
reg [FNS_WIDTH-1:0] ts_96_fns_inc_reg = 0;
reg [30:0] ts_96_ns_ovf_reg = 31'h7fffffff;
reg [FNS_WIDTH-1:0] ts_96_fns_ovf_reg = 16'hffff;
reg [47:0] ts_64_ns_reg = 0;
reg [FNS_WIDTH-1:0] ts_64_fns_reg = 0;
reg ts_step_reg = 1'b0;
reg [15:0] drift_cnt = 0;
reg [47:0] temp;
reg pps_reg = 0;
assign input_adj_active = adj_active_reg;
assign output_ts_96[95:48] = ts_96_s_reg;
assign output_ts_96[47:46] = 2'b00;
assign output_ts_96[45:16] = ts_96_ns_reg;
assign output_ts_96[15:0] = FNS_WIDTH > 16 ? ts_96_fns_reg >> (FNS_WIDTH-16) : ts_96_fns_reg << (16-FNS_WIDTH);
assign output_ts_64[63:16] = ts_64_ns_reg;
assign output_ts_64[15:0] = FNS_WIDTH > 16 ? ts_64_fns_reg >> (FNS_WIDTH-16) : ts_64_fns_reg << (16-FNS_WIDTH);
assign output_ts_step = ts_step_reg;
assign output_pps = pps_reg;
always @(posedge clk) begin
ts_step_reg <= 0;
// latch parameters
if (input_period_valid) begin
period_ns_reg <= input_period_ns;
period_fns_reg <= input_period_fns;
end
if (input_adj_valid) begin
adj_ns_reg <= input_adj_ns;
adj_fns_reg <= input_adj_fns;
adj_count_reg <= input_adj_count;
end
if (DRIFT_ENABLE && input_drift_valid) begin
drift_ns_reg <= input_drift_ns;
drift_fns_reg <= input_drift_fns;
drift_rate_reg <= input_drift_rate;
end
// timestamp increment calculation
{ts_inc_ns_reg, ts_inc_fns_reg} <= $signed({period_ns_reg, period_fns_reg}) +
(adj_active_reg ? $signed({adj_ns_reg, adj_fns_reg}) : 0) +
((DRIFT_ENABLE && drift_cnt == 0) ? $signed({drift_ns_reg, drift_fns_reg}) : 0);
// offset adjust counter
if (adj_count_reg > 0) begin
adj_count_reg <= adj_count_reg - 1;
adj_active_reg <= 1;
ts_step_reg <= 1;
end else begin
adj_active_reg <= 0;
end
// drift counter
if (drift_cnt == 0) begin
drift_cnt <= drift_rate_reg-1;
end else begin
drift_cnt <= drift_cnt - 1;
end
// 96 bit timestamp
if (input_ts_96_valid) begin
// load timestamp
{ts_96_ns_inc_reg, ts_96_fns_inc_reg} <= (FNS_WIDTH > 16 ? input_ts_96[45:0] << (FNS_WIDTH-16) : input_ts_96[45:0] >> (16-FNS_WIDTH)) + {ts_inc_ns_reg, ts_inc_fns_reg};
{ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} <= (FNS_WIDTH > 16 ? input_ts_96[45:0] << (FNS_WIDTH-16) : input_ts_96[45:0] >> (16-FNS_WIDTH)) + {ts_inc_ns_reg, ts_inc_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
ts_96_s_reg <= input_ts_96[95:48];
ts_96_ns_reg <= input_ts_96[45:16];
ts_96_fns_reg <= FNS_WIDTH > 16 ? input_ts_96[15:0] << (FNS_WIDTH-16) : input_ts_96[15:0] >> (16-FNS_WIDTH);
ts_step_reg <= 1;
end else if (!ts_96_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
// increment seconds field, pre-compute both normal increment and overflow values
{ts_96_ns_inc_reg, ts_96_fns_inc_reg} <= {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} + {ts_inc_ns_reg, ts_inc_fns_reg};
{ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} <= {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} + {ts_inc_ns_reg, ts_inc_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
{ts_96_ns_reg, ts_96_fns_reg} <= {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg};
ts_96_s_reg <= ts_96_s_reg + 1;
end else begin
// no increment seconds field, pre-compute both normal increment and overflow values
{ts_96_ns_inc_reg, ts_96_fns_inc_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg} + {ts_inc_ns_reg, ts_inc_fns_reg};
{ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg} + {ts_inc_ns_reg, ts_inc_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
{ts_96_ns_reg, ts_96_fns_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg};
ts_96_s_reg <= ts_96_s_reg;
end
// 64 bit timestamp
if (input_ts_64_valid) begin
// load timestamp
{ts_64_ns_reg, ts_64_fns_reg} <= input_ts_64;
ts_step_reg <= 1;
end else begin
{ts_64_ns_reg, ts_64_fns_reg} <= {ts_64_ns_reg, ts_64_fns_reg} + {ts_inc_ns_reg, ts_inc_fns_reg};
end
pps_reg <= !ts_96_ns_ovf_reg[30];
if (rst) begin
period_ns_reg <= PERIOD_NS;
period_fns_reg <= PERIOD_FNS;
adj_ns_reg <= 0;
adj_fns_reg <= 0;
adj_count_reg <= 0;
adj_active_reg <= 0;
drift_ns_reg <= DRIFT_NS;
drift_fns_reg <= DRIFT_FNS;
drift_rate_reg <= DRIFT_RATE;
ts_inc_ns_reg <= 0;
ts_inc_fns_reg <= 0;
ts_96_s_reg <= 0;
ts_96_ns_reg <= 0;
ts_96_fns_reg <= 0;
ts_96_ns_inc_reg <= 0;
ts_96_fns_inc_reg <= 0;
ts_96_ns_ovf_reg <= 31'h7fffffff;
ts_96_fns_ovf_reg <= {FNS_WIDTH{1'b1}};
ts_64_ns_reg <= 0;
ts_64_fns_reg <= 0;
ts_step_reg <= 0;
drift_cnt <= 0;
pps_reg <= 0;
end
end
endmodule

394
tb/test_ptp_clock.py Executable file
View File

@ -0,0 +1,394 @@
#!/usr/bin/env python
"""
Copyright (c) 2015-2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
module = 'ptp_clock'
testbench = 'test_%s' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
PERIOD_NS_WIDTH = 4
OFFSET_NS_WIDTH = 4
DRIFT_NS_WIDTH = 4
FNS_WIDTH = 16
PERIOD_NS = 0x6
PERIOD_FNS = 0x6666
DRIFT_ENABLE = 1
DRIFT_NS = 0x0
DRIFT_FNS = 0x0002
DRIFT_RATE = 0x0005
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
input_ts_96 = Signal(intbv(0)[96:])
input_ts_96_valid = Signal(bool(0))
input_ts_64 = Signal(intbv(0)[64:])
input_ts_64_valid = Signal(bool(0))
input_period_ns = Signal(intbv(0)[PERIOD_NS_WIDTH:])
input_period_fns = Signal(intbv(0)[FNS_WIDTH:])
input_period_valid = Signal(bool(0))
input_adj_ns = Signal(intbv(0)[OFFSET_NS_WIDTH:])
input_adj_fns = Signal(intbv(0)[FNS_WIDTH:])
input_adj_count = Signal(intbv(0)[16:])
input_adj_valid = Signal(bool(0))
input_drift_ns = Signal(intbv(0)[DRIFT_NS_WIDTH:])
input_drift_fns = Signal(intbv(0)[FNS_WIDTH:])
input_drift_rate = Signal(intbv(0)[16:])
input_drift_valid = Signal(bool(0))
# Outputs
input_adj_active = Signal(bool(0))
output_ts_96 = Signal(intbv(0)[96:])
output_ts_64 = Signal(intbv(0)[64:])
output_ts_step = Signal(bool(0))
output_pps = Signal(bool(0))
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
input_ts_96=input_ts_96,
input_ts_96_valid=input_ts_96_valid,
input_ts_64=input_ts_64,
input_ts_64_valid=input_ts_64_valid,
input_period_ns=input_period_ns,
input_period_fns=input_period_fns,
input_period_valid=input_period_valid,
input_adj_ns=input_adj_ns,
input_adj_fns=input_adj_fns,
input_adj_count=input_adj_count,
input_adj_valid=input_adj_valid,
input_adj_active=input_adj_active,
input_drift_ns=input_drift_ns,
input_drift_fns=input_drift_fns,
input_drift_rate=input_drift_rate,
input_drift_valid=input_drift_valid,
output_ts_96=output_ts_96,
output_ts_64=output_ts_64,
output_ts_step=output_ts_step,
output_pps=output_pps
)
@always(delay(3200))
def clkgen():
clk.next = not clk
@instance
def check():
yield delay(100000)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100000)
yield clk.posedge
# testbench stimulus
yield clk.posedge
print("test 1: Default rate and drift")
current_test.next = 1
yield clk.posedge
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(10000):
yield clk.posedge
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96)) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64)) < 1e-12
yield delay(100000)
yield clk.posedge
print("test 2: Load timestamps")
current_test.next = 2
input_ts_96.next = 12345678
input_ts_96_valid.next = 1
input_ts_64.next = 87654321
input_ts_64_valid.next = 1
yield clk.posedge
input_ts_96_valid.next = 0
input_ts_64_valid.next = 0
yield clk.posedge
assert output_ts_96 == 12345678
assert output_ts_64 == 87654321
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(2000):
yield clk.posedge
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96)) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64)) < 1e-12
yield delay(100000)
yield clk.posedge
print("test 3: Seconds increment")
current_test.next = 3
input_ts_96.next = 999990000*2**16
input_ts_96_valid.next = 1
input_ts_64.next = 999990000*2**16
input_ts_64_valid.next = 1
yield clk.posedge
input_ts_96_valid.next = 0
input_ts_64_valid.next = 0
yield clk.posedge
assert output_ts_96 == 999990000*2**16
assert output_ts_64 == 999990000*2**16
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(3000):
yield clk.posedge
if output_pps:
assert output_ts_96[96:48] == 1
assert output_ts_96[48:0] < 10*2**16
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96)) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64)) < 1e-12
yield delay(100000)
yield clk.posedge
print("test 4: Offset adjust")
current_test.next = 4
input_ts_96.next = 0
input_ts_96_valid.next = 1
input_ts_64.next = 0
input_ts_64_valid.next = 1
yield clk.posedge
input_ts_96_valid.next = 0
input_ts_64_valid.next = 0
yield clk.posedge
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(2000):
yield clk.posedge
# 1 ns offset - 1024*64/65536 = 1
input_adj_ns.next = 0
input_adj_fns.next = 64
input_adj_count.next = 1024
input_adj_valid.next = 1
for i in range(2000):
yield clk.posedge
input_adj_valid.next = 0
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96) + 1e-9) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64) + 1e-9) < 1e-12
yield delay(100000)
yield clk.posedge
print("test 5: Frequency adjust")
current_test.next = 5
input_ts_96.next = 0
input_ts_96_valid.next = 1
input_ts_64.next = 0
input_ts_64_valid.next = 1
input_period_ns.next = 6
input_period_fns.next = 0x6624
input_period_valid.next = 1
# flush old period out of pipeline registers
yield clk.posedge
yield clk.posedge
yield clk.posedge
input_ts_96_valid.next = 0
input_ts_64_valid.next = 0
input_period_valid.next = 0
yield clk.posedge
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(10000):
yield clk.posedge
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96) * 6.4/(6+(0x6624+2/5)/2**16)) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64) * 6.4/(6+(0x6624+2/5)/2**16)) < 1e-12
yield delay(100000)
yield clk.posedge
print("test 6: Drift adjust")
current_test.next = 6
input_ts_96.next = 0
input_ts_96_valid.next = 1
input_ts_64.next = 0
input_ts_64_valid.next = 1
input_period_ns.next = 6
input_period_fns.next = 0x6666
input_period_valid.next = 1
input_drift_ns.next = 0
input_drift_fns.next = 20
input_drift_rate.next = 5
input_drift_valid.next = 1
# flush old period out of pipeline registers
yield clk.posedge
yield clk.posedge
yield clk.posedge
input_ts_96_valid.next = 0
input_ts_64_valid.next = 0
input_period_valid.next = 0
input_drift_valid.next = 0
yield clk.posedge
start_time = now()*1e-12
start_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
start_ts_64 = output_ts_64/2**16*1e-9
for i in range(10000):
yield clk.posedge
stop_time = now()*1e-12
stop_ts_96 = output_ts_96[96:48] + (output_ts_96[48:0]/2**16*1e-9)
stop_ts_64 = output_ts_64/2**16*1e-9
print(stop_time-start_time)
print(stop_ts_96-start_ts_96)
print(stop_ts_64-start_ts_64)
assert abs((stop_time-start_time) - (stop_ts_96-start_ts_96) * 6.4/(6+(0x6666+20/5)/2**16)) < 1e-12
assert abs((stop_time-start_time) - (stop_ts_64-start_ts_64) * 6.4/(6+(0x6666+20/5)/2**16)) < 1e-12
yield delay(100000)
raise StopSimulation
return dut, clkgen, check
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()

146
tb/test_ptp_clock.v Normal file
View File

@ -0,0 +1,146 @@
/*
Copyright (c) 2015-2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ps / 1fs
/*
* Testbench for ptp_clock
*/
module test_ptp_clock;
// Parameters
parameter PERIOD_NS_WIDTH = 4;
parameter OFFSET_NS_WIDTH = 4;
parameter DRIFT_NS_WIDTH = 4;
parameter FNS_WIDTH = 16;
parameter PERIOD_NS = 4'h6;
parameter PERIOD_FNS = 16'h6666;
parameter DRIFT_ENABLE = 1;
parameter DRIFT_NS = 4'h0;
parameter DRIFT_FNS = 16'h0002;
parameter DRIFT_RATE = 16'h0005;
// Inputs
reg clk = 0;
reg rst = 0;
reg [7:0] current_test = 0;
reg [95:0] input_ts_96 = 0;
reg input_ts_96_valid = 0;
reg [63:0] input_ts_64 = 0;
reg input_ts_64_valid = 0;
reg [PERIOD_NS_WIDTH-1:0] input_period_ns = 0;
reg [FNS_WIDTH-1:0] input_period_fns = 0;
reg input_period_valid = 0;
reg [OFFSET_NS_WIDTH-1:0] input_adj_ns = 0;
reg [FNS_WIDTH-1:0] input_adj_fns = 0;
reg [15:0] input_adj_count = 0;
reg input_adj_valid = 0;
reg [DRIFT_NS_WIDTH-1:0] input_drift_ns = 0;
reg [FNS_WIDTH-1:0] input_drift_fns = 0;
reg [15:0] input_drift_rate = 0;
reg input_drift_valid = 0;
// Outputs
wire input_adj_active;
wire [95:0] output_ts_96;
wire [63:0] output_ts_64;
wire output_ts_step;
wire output_pps;
initial begin
// myhdl integration
$from_myhdl(
clk,
rst,
current_test,
input_ts_96,
input_ts_96_valid,
input_ts_64,
input_ts_64_valid,
input_period_ns,
input_period_fns,
input_period_valid,
input_adj_ns,
input_adj_fns,
input_adj_count,
input_adj_valid,
input_drift_ns,
input_drift_fns,
input_drift_rate,
input_drift_valid
);
$to_myhdl(
input_adj_active,
output_ts_96,
output_ts_64,
output_ts_step,
output_pps
);
// dump file
$dumpfile("test_ptp_clock.lxt");
$dumpvars(0, test_ptp_clock);
end
ptp_clock #(
.PERIOD_NS_WIDTH(PERIOD_NS_WIDTH),
.OFFSET_NS_WIDTH(OFFSET_NS_WIDTH),
.DRIFT_NS_WIDTH (DRIFT_NS_WIDTH),
.FNS_WIDTH(FNS_WIDTH),
.PERIOD_NS(PERIOD_NS),
.PERIOD_FNS(PERIOD_FNS),
.DRIFT_ENABLE(DRIFT_ENABLE),
.DRIFT_NS(DRIFT_NS),
.DRIFT_FNS(DRIFT_FNS),
.DRIFT_RATE(DRIFT_RATE)
)
UUT (
.clk(clk),
.rst(rst),
.input_ts_96(input_ts_96),
.input_ts_96_valid(input_ts_96_valid),
.input_ts_64(input_ts_64),
.input_ts_64_valid(input_ts_64_valid),
.input_period_ns(input_period_ns),
.input_period_fns(input_period_fns),
.input_period_valid(input_period_valid),
.input_adj_ns(input_adj_ns),
.input_adj_fns(input_adj_fns),
.input_adj_count(input_adj_count),
.input_adj_valid(input_adj_valid),
.input_adj_active(input_adj_active),
.input_drift_ns(input_drift_ns),
.input_drift_fns(input_drift_fns),
.input_drift_rate(input_drift_rate),
.input_drift_valid(input_drift_valid),
.output_ts_96(output_ts_96),
.output_ts_64(output_ts_64),
.output_ts_step(output_ts_step),
.output_pps(output_pps)
);
endmodule