/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream 10GBASE-R frame transmitter (AXI in, 10GBASE-R out) */ module axis_baser_tx_64 # ( parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter HDR_WIDTH = 2, parameter ENABLE_PADDING = 1, parameter ENABLE_DIC = 1, parameter MIN_FRAME_LENGTH = 64, parameter PTP_TS_ENABLE = 0, parameter PTP_TS_FMT_TOD = 1, parameter PTP_TS_WIDTH = PTP_TS_FMT_TOD ? 96 : 64, parameter PTP_TS_CTRL_IN_TUSER = 0, parameter PTP_TAG_ENABLE = PTP_TS_ENABLE, parameter PTP_TAG_WIDTH = 16, parameter USER_WIDTH = (PTP_TS_ENABLE ? (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + (PTP_TS_CTRL_IN_TUSER ? 1 : 0) : 0) + 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * 10GBASE-R encoded interface */ output wire [DATA_WIDTH-1:0] encoded_tx_data, output wire [HDR_WIDTH-1:0] encoded_tx_hdr, /* * PTP */ input wire [PTP_TS_WIDTH-1:0] ptp_ts, output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts, output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag, output wire m_axis_ptp_ts_valid, /* * Configuration */ input wire [7:0] cfg_ifg, input wire cfg_tx_enable, /* * Status */ output wire [1:0] start_packet, output wire error_underflow ); parameter EMPTY_WIDTH = $clog2(KEEP_WIDTH); parameter MIN_LEN_WIDTH = $clog2(MIN_FRAME_LENGTH-4-KEEP_WIDTH+1); // bus width assertions initial begin if (DATA_WIDTH != 64) begin $error("Error: Interface width must be 64"); $finish; end if (KEEP_WIDTH * 8 != DATA_WIDTH) begin $error("Error: Interface requires byte (8-bit) granularity"); $finish; end if (HDR_WIDTH != 2) begin $error("Error: HDR_WIDTH must be 2"); $finish; end end localparam [7:0] ETH_PRE = 8'h55, ETH_SFD = 8'hD5; localparam [6:0] CTRL_IDLE = 7'h00, CTRL_LPI = 7'h06, CTRL_ERROR = 7'h1e, CTRL_RES_0 = 7'h2d, CTRL_RES_1 = 7'h33, CTRL_RES_2 = 7'h4b, CTRL_RES_3 = 7'h55, CTRL_RES_4 = 7'h66, CTRL_RES_5 = 7'h78; localparam [3:0] O_SEQ_OS = 4'h0, O_SIG_OS = 4'hf; localparam [1:0] SYNC_DATA = 2'b10, SYNC_CTRL = 2'b01; localparam [7:0] BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT localparam [3:0] OUTPUT_TYPE_IDLE = 4'd0, OUTPUT_TYPE_ERROR = 4'd1, OUTPUT_TYPE_START_0 = 4'd2, OUTPUT_TYPE_START_4 = 4'd3, OUTPUT_TYPE_DATA = 4'd4, OUTPUT_TYPE_TERM_0 = 4'd8, OUTPUT_TYPE_TERM_1 = 4'd9, OUTPUT_TYPE_TERM_2 = 4'd10, OUTPUT_TYPE_TERM_3 = 4'd11, OUTPUT_TYPE_TERM_4 = 4'd12, OUTPUT_TYPE_TERM_5 = 4'd13, OUTPUT_TYPE_TERM_6 = 4'd14, OUTPUT_TYPE_TERM_7 = 4'd15; localparam [2:0] STATE_IDLE = 3'd0, STATE_PAYLOAD = 3'd1, STATE_PAD = 3'd2, STATE_FCS_1 = 3'd3, STATE_FCS_2 = 3'd4, STATE_ERR = 3'd5, STATE_IFG = 3'd6; reg [2:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg update_crc; reg swap_lanes_reg = 1'b0, swap_lanes_next; reg [31:0] swap_data = 32'd0; reg delay_type_valid = 1'b0; reg [3:0] delay_type = OUTPUT_TYPE_IDLE; reg [DATA_WIDTH-1:0] s_axis_tdata_masked; reg [DATA_WIDTH-1:0] s_tdata_reg = 0, s_tdata_next; reg [EMPTY_WIDTH-1:0] s_empty_reg = 0, s_empty_next; reg [DATA_WIDTH-1:0] fcs_output_data_0; reg [DATA_WIDTH-1:0] fcs_output_data_1; reg [3:0] fcs_output_type_0; reg [3:0] fcs_output_type_1; reg [7:0] ifg_offset; reg frame_start_reg = 1'b0, frame_start_next; reg frame_reg = 1'b0, frame_next; reg frame_error_reg = 1'b0, frame_error_next; reg [MIN_LEN_WIDTH-1:0] frame_min_count_reg = 0, frame_min_count_next; reg [7:0] ifg_count_reg = 8'd0, ifg_count_next; reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next; reg s_axis_tready_reg = 1'b0, s_axis_tready_next; reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0; reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_adj_reg = 0; reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0; reg m_axis_ptp_ts_valid_reg = 1'b0; reg m_axis_ptp_ts_valid_int_reg = 1'b0; reg m_axis_ptp_ts_borrow_reg = 1'b0; reg [31:0] crc_state_reg[7:0]; wire [31:0] crc_state_next[7:0]; reg [DATA_WIDTH-1:0] encoded_tx_data_reg = {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; reg [HDR_WIDTH-1:0] encoded_tx_hdr_reg = SYNC_CTRL; reg [DATA_WIDTH-1:0] output_data_reg = {DATA_WIDTH{1'b0}}, output_data_next; reg [3:0] output_type_reg = OUTPUT_TYPE_IDLE, output_type_next; reg [1:0] start_packet_reg = 2'b00; reg error_underflow_reg = 1'b0, error_underflow_next; reg [4+16-1:0] last_ts_reg = 0; reg [4+16-1:0] ts_inc_reg = 0; assign s_axis_tready = s_axis_tready_reg; assign encoded_tx_data = encoded_tx_data_reg; assign encoded_tx_hdr = encoded_tx_hdr_reg; assign m_axis_ptp_ts = PTP_TS_ENABLE ? ((!PTP_TS_FMT_TOD || m_axis_ptp_ts_borrow_reg) ? m_axis_ptp_ts_reg : m_axis_ptp_ts_adj_reg) : 0; assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0; assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0; assign start_packet = start_packet_reg; assign error_underflow = error_underflow_reg; generate genvar n; for (n = 0; n < 8; n = n + 1) begin : crc lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(8*(n+1)), .STYLE("AUTO") ) eth_crc ( .data_in(s_tdata_reg[0 +: 8*(n+1)]), .state_in(crc_state_reg[7]), .data_out(), .state_out(crc_state_next[n]) ); end endgenerate function [2:0] keep2empty; input [7:0] k; casez (k) 8'bzzzzzzz0: keep2empty = 3'd7; 8'bzzzzzz01: keep2empty = 3'd7; 8'bzzzzz011: keep2empty = 3'd6; 8'bzzzz0111: keep2empty = 3'd5; 8'bzzz01111: keep2empty = 3'd4; 8'bzz011111: keep2empty = 3'd3; 8'bz0111111: keep2empty = 3'd2; 8'b01111111: keep2empty = 3'd1; 8'b11111111: keep2empty = 3'd0; endcase endfunction // Mask input data integer j; always @* begin for (j = 0; j < 8; j = j + 1) begin s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0; end end // FCS cycle calculation always @* begin casez (s_empty_reg) 3'd7: begin fcs_output_data_0 = {24'd0, ~crc_state_next[0][31:0], s_tdata_reg[7:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_5; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd3; end 3'd6: begin fcs_output_data_0 = {16'd0, ~crc_state_next[1][31:0], s_tdata_reg[15:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_6; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd2; end 3'd5: begin fcs_output_data_0 = {8'd0, ~crc_state_next[2][31:0], s_tdata_reg[23:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_7; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd1; end 3'd4: begin fcs_output_data_0 = {~crc_state_next[3][31:0], s_tdata_reg[31:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_0; ifg_offset = 8'd8; end 3'd3: begin fcs_output_data_0 = {~crc_state_next[4][23:0], s_tdata_reg[39:0]}; fcs_output_data_1 = {56'd0, ~crc_state_reg[4][31:24]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_1; ifg_offset = 8'd7; end 3'd2: begin fcs_output_data_0 = {~crc_state_next[5][15:0], s_tdata_reg[47:0]}; fcs_output_data_1 = {48'd0, ~crc_state_reg[5][31:16]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_2; ifg_offset = 8'd6; end 3'd1: begin fcs_output_data_0 = {~crc_state_next[6][7:0], s_tdata_reg[55:0]}; fcs_output_data_1 = {40'd0, ~crc_state_reg[6][31:8]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_3; ifg_offset = 8'd5; end 3'd0: begin fcs_output_data_0 = s_tdata_reg; fcs_output_data_1 = {32'd0, ~crc_state_reg[7][31:0]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_4; ifg_offset = 8'd4; end endcase end always @* begin state_next = STATE_IDLE; reset_crc = 1'b0; update_crc = 1'b0; swap_lanes_next = swap_lanes_reg; frame_start_next = 1'b0; frame_next = frame_reg; frame_error_next = frame_error_reg; frame_min_count_next = frame_min_count_reg; ifg_count_next = ifg_count_reg; deficit_idle_count_next = deficit_idle_count_reg; s_axis_tready_next = 1'b0; s_tdata_next = s_tdata_reg; s_empty_next = s_empty_reg; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_IDLE; error_underflow_next = 1'b0; if (s_axis_tvalid && s_axis_tready) begin frame_next = !s_axis_tlast; end case (state_reg) STATE_IDLE: begin // idle state - wait for data frame_error_next = 1'b0; frame_min_count_next = MIN_FRAME_LENGTH-4-KEEP_WIDTH; reset_crc = 1'b1; s_axis_tready_next = 1'b1; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_IDLE; s_tdata_next = s_axis_tdata_masked; s_empty_next = keep2empty(s_axis_tkeep); if (s_axis_tvalid && cfg_tx_enable) begin // Preamble and SFD output_data_next = {ETH_SFD, {7{ETH_PRE}}}; output_type_next = OUTPUT_TYPE_START_0; frame_start_next = 1'b1; s_axis_tready_next = 1'b1; state_next = STATE_PAYLOAD; end else begin swap_lanes_next = 1'b0; ifg_count_next = 8'd0; deficit_idle_count_next = 2'd0; state_next = STATE_IDLE; end end STATE_PAYLOAD: begin // transfer payload update_crc = 1'b1; s_axis_tready_next = 1'b1; if (frame_min_count_reg > KEEP_WIDTH) begin frame_min_count_next = frame_min_count_reg - KEEP_WIDTH; end else begin frame_min_count_next = 0; end output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_DATA; s_tdata_next = s_axis_tdata_masked; s_empty_next = keep2empty(s_axis_tkeep); if (!s_axis_tvalid || s_axis_tlast) begin s_axis_tready_next = frame_next; // drop frame frame_error_next = !s_axis_tvalid || s_axis_tuser[0]; error_underflow_next = !s_axis_tvalid; if (ENABLE_PADDING && frame_min_count_reg) begin if (frame_min_count_reg > KEEP_WIDTH) begin s_empty_next = 0; state_next = STATE_PAD; end else begin if (keep2empty(s_axis_tkeep) > KEEP_WIDTH-frame_min_count_reg) begin s_empty_next = KEEP_WIDTH-frame_min_count_reg; end if (frame_error_next) begin state_next = STATE_ERR; end else begin state_next = STATE_FCS_1; end end end else begin if (frame_error_next) begin state_next = STATE_ERR; end else begin state_next = STATE_FCS_1; end end end else begin state_next = STATE_PAYLOAD; end end STATE_PAD: begin // pad frame to MIN_FRAME_LENGTH s_axis_tready_next = frame_next; // drop frame output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_DATA; s_tdata_next = 64'd0; s_empty_next = 0; update_crc = 1'b1; if (frame_min_count_reg > KEEP_WIDTH) begin frame_min_count_next = frame_min_count_reg - KEEP_WIDTH; state_next = STATE_PAD; end else begin frame_min_count_next = 0; s_empty_next = KEEP_WIDTH-frame_min_count_reg; if (frame_error_reg) begin state_next = STATE_ERR; end else begin state_next = STATE_FCS_1; end end end STATE_FCS_1: begin // last cycle s_axis_tready_next = frame_next; // drop frame output_data_next = fcs_output_data_0; output_type_next = fcs_output_type_0; update_crc = 1'b1; ifg_count_next = (cfg_ifg > 8'd12 ? cfg_ifg : 8'd12) - ifg_offset + (swap_lanes_reg ? 8'd4 : 8'd0) + deficit_idle_count_reg; if (s_empty_reg <= 4) begin state_next = STATE_FCS_2; end else begin state_next = STATE_IFG; end end STATE_FCS_2: begin // last cycle s_axis_tready_next = frame_next; // drop frame output_data_next = fcs_output_data_1; output_type_next = fcs_output_type_1; reset_crc = 1'b1; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; swap_lanes_next = 1'b1; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; swap_lanes_next = 1'b0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; swap_lanes_next = ifg_count_next != 0; state_next = STATE_IDLE; end end end STATE_ERR: begin // terminate packet with error s_axis_tready_next = frame_next; // drop frame output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_ERROR; ifg_count_next = 8'd12; state_next = STATE_IFG; end STATE_IFG: begin // send IFG s_axis_tready_next = frame_next; // drop frame output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_IDLE; if (ifg_count_reg > 8'd8) begin ifg_count_next = ifg_count_reg - 8'd8; end else begin ifg_count_next = 8'd0; end reset_crc = 1'b1; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7 || frame_reg) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; swap_lanes_next = 1'b1; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; swap_lanes_next = 1'b0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4 || frame_reg) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; swap_lanes_next = ifg_count_next != 0; state_next = STATE_IDLE; end end end endcase end always @(posedge clk) begin state_reg <= state_next; swap_lanes_reg <= swap_lanes_next; frame_start_reg <= frame_start_next; frame_reg <= frame_next; frame_error_reg <= frame_error_next; frame_min_count_reg <= frame_min_count_next; ifg_count_reg <= ifg_count_next; deficit_idle_count_reg <= deficit_idle_count_next; s_tdata_reg <= s_tdata_next; s_empty_reg <= s_empty_next; s_axis_tready_reg <= s_axis_tready_next; m_axis_ptp_ts_valid_reg <= 1'b0; m_axis_ptp_ts_valid_int_reg <= 1'b0; start_packet_reg <= 2'b00; error_underflow_reg <= error_underflow_next; delay_type_valid <= 1'b0; delay_type <= output_type_next ^ 4'd4; swap_data <= output_data_next[63:32]; if (swap_lanes_reg) begin output_data_reg <= {output_data_next[31:0], swap_data}; if (delay_type_valid) begin output_type_reg <= delay_type; end else if (output_type_next == OUTPUT_TYPE_START_0) begin output_type_reg <= OUTPUT_TYPE_START_4; end else if (output_type_next[3]) begin // OUTPUT_TYPE_TERM_* if (output_type_next[2]) begin delay_type_valid <= 1'b1; output_type_reg <= OUTPUT_TYPE_DATA; end else begin output_type_reg <= output_type_next ^ 4'd4; end end else begin output_type_reg <= output_type_next; end end else begin output_data_reg <= output_data_next; output_type_reg <= output_type_next; end if (PTP_TS_ENABLE && PTP_TS_FMT_TOD) begin m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_int_reg; m_axis_ptp_ts_adj_reg[15:0] <= m_axis_ptp_ts_reg[15:0]; {m_axis_ptp_ts_borrow_reg, m_axis_ptp_ts_adj_reg[45:16]} <= $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000); m_axis_ptp_ts_adj_reg[47:46] <= 0; m_axis_ptp_ts_adj_reg[95:48] <= m_axis_ptp_ts_reg[95:48] + 1; end if (frame_start_reg) begin if (swap_lanes_reg) begin if (PTP_TS_ENABLE) begin if (PTP_TS_FMT_TOD) begin m_axis_ptp_ts_reg[45:0] <= ptp_ts[45:0] + (ts_inc_reg >> 1); m_axis_ptp_ts_reg[95:48] <= ptp_ts[95:48]; end else begin m_axis_ptp_ts_reg <= ptp_ts + (ts_inc_reg >> 1); end end start_packet_reg <= 2'b10; end else begin if (PTP_TS_ENABLE) begin m_axis_ptp_ts_reg <= ptp_ts; end start_packet_reg <= 2'b01; end if (PTP_TS_ENABLE) begin if (PTP_TS_CTRL_IN_TUSER) begin m_axis_ptp_ts_tag_reg <= s_axis_tuser >> 2; if (PTP_TS_FMT_TOD) begin m_axis_ptp_ts_valid_int_reg <= s_axis_tuser[1]; end else begin m_axis_ptp_ts_valid_reg <= s_axis_tuser[1]; end end else begin m_axis_ptp_ts_tag_reg <= s_axis_tuser >> 1; if (PTP_TS_FMT_TOD) begin m_axis_ptp_ts_valid_int_reg <= 1'b1; end else begin m_axis_ptp_ts_valid_reg <= 1'b1; end end end end case (output_type_reg) OUTPUT_TYPE_IDLE: begin encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_ERROR: begin encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_START_0: begin encoded_tx_data_reg <= {output_data_reg[63:8], BLOCK_TYPE_START_0}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_START_4: begin encoded_tx_data_reg <= {output_data_reg[63:40], 4'd0, {4{CTRL_IDLE}}, BLOCK_TYPE_START_4}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_DATA: begin encoded_tx_data_reg <= output_data_reg; encoded_tx_hdr_reg <= SYNC_DATA; end OUTPUT_TYPE_TERM_0: begin encoded_tx_data_reg <= {{7{CTRL_IDLE}}, 7'd0, BLOCK_TYPE_TERM_0}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_1: begin encoded_tx_data_reg <= {{6{CTRL_IDLE}}, 6'd0, output_data_reg[7:0], BLOCK_TYPE_TERM_1}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_2: begin encoded_tx_data_reg <= {{5{CTRL_IDLE}}, 5'd0, output_data_reg[15:0], BLOCK_TYPE_TERM_2}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_3: begin encoded_tx_data_reg <= {{4{CTRL_IDLE}}, 4'd0, output_data_reg[23:0], BLOCK_TYPE_TERM_3}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_4: begin encoded_tx_data_reg <= {{3{CTRL_IDLE}}, 3'd0, output_data_reg[31:0], BLOCK_TYPE_TERM_4}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_5: begin encoded_tx_data_reg <= {{2{CTRL_IDLE}}, 2'd0, output_data_reg[39:0], BLOCK_TYPE_TERM_5}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_6: begin encoded_tx_data_reg <= {{1{CTRL_IDLE}}, 1'd0, output_data_reg[47:0], BLOCK_TYPE_TERM_6}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_7: begin encoded_tx_data_reg <= {output_data_reg[55:0], BLOCK_TYPE_TERM_7}; encoded_tx_hdr_reg <= SYNC_CTRL; end default: begin encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end endcase crc_state_reg[0] <= crc_state_next[0]; crc_state_reg[1] <= crc_state_next[1]; crc_state_reg[2] <= crc_state_next[2]; crc_state_reg[3] <= crc_state_next[3]; crc_state_reg[4] <= crc_state_next[4]; crc_state_reg[5] <= crc_state_next[5]; crc_state_reg[6] <= crc_state_next[6]; if (update_crc) begin crc_state_reg[7] <= crc_state_next[7]; end if (reset_crc) begin crc_state_reg[7] <= 32'hFFFFFFFF; end last_ts_reg <= ptp_ts; ts_inc_reg <= ptp_ts - last_ts_reg; if (rst) begin state_reg <= STATE_IDLE; frame_start_reg <= 1'b0; frame_reg <= 1'b0; swap_lanes_reg <= 1'b0; ifg_count_reg <= 8'd0; deficit_idle_count_reg <= 2'd0; s_axis_tready_reg <= 1'b0; m_axis_ptp_ts_valid_reg <= 1'b0; m_axis_ptp_ts_valid_int_reg <= 1'b0; encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; output_data_reg <= {DATA_WIDTH{1'b0}}; output_type_reg <= OUTPUT_TYPE_IDLE; start_packet_reg <= 2'b00; error_underflow_reg <= 1'b0; delay_type_valid <= 1'b0; delay_type <= OUTPUT_TYPE_IDLE; end end endmodule `resetall