/* Copyright (c) 2013-2018 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream FIFO */ module axis_fifo # ( // FIFO depth in words // KEEP_WIDTH words per cycle if KEEP_ENABLE set // Rounded up to nearest power of 2 cycles parameter DEPTH = 4096, // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal // If disabled, tkeep assumed to be 1'b1 parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = (DATA_WIDTH/8), // Propagate tlast signal parameter LAST_ENABLE = 1, // Propagate tid signal parameter ID_ENABLE = 0, // tid signal width parameter ID_WIDTH = 8, // Propagate tdest signal parameter DEST_ENABLE = 0, // tdest signal width parameter DEST_WIDTH = 8, // Propagate tuser signal parameter USER_ENABLE = 1, // tuser signal width parameter USER_WIDTH = 1, // Frame FIFO mode - operate on frames instead of cycles // When set, m_axis_tvalid will not be deasserted within a frame // Requires LAST_ENABLE set parameter FRAME_FIFO = 0, // tuser value for bad frame marker parameter USER_BAD_FRAME_VALUE = 1'b1, // tuser mask for bad frame marker parameter USER_BAD_FRAME_MASK = 1'b1, // Drop frames marked bad // Requires FRAME_FIFO set parameter DROP_BAD_FRAME = 0, // Drop incoming frames when full // When set, s_axis_tready is always asserted // Requires FRAME_FIFO set parameter DROP_WHEN_FULL = 0 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [ID_WIDTH-1:0] s_axis_tid, input wire [DEST_WIDTH-1:0] s_axis_tdest, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire [ID_WIDTH-1:0] m_axis_tid, output wire [DEST_WIDTH-1:0] m_axis_tdest, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * Status */ output wire status_overflow, output wire status_bad_frame, output wire status_good_frame ); parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH); // check configuration initial begin if (FRAME_FIFO && !LAST_ENABLE) begin $error("Error: FRAME_FIFO set requires LAST_ENABLE set"); $finish; end if (DROP_BAD_FRAME && !FRAME_FIFO) begin $error("Error: DROP_BAD_FRAME set requires FRAME_FIFO set"); $finish; end if (DROP_WHEN_FULL && !FRAME_FIFO) begin $error("Error: DROP_WHEN_FULL set requires FRAME_FIFO set"); $finish; end if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin $error("Error: Invalid USER_BAD_FRAME_MASK value"); $finish; end end localparam KEEP_OFFSET = DATA_WIDTH; localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0); localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0); localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0); localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0); localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0); reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next; reg [ADDR_WIDTH:0] wr_ptr_cur_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_cur_next; reg [ADDR_WIDTH:0] wr_addr_reg = {ADDR_WIDTH+1{1'b0}}; reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next; reg [ADDR_WIDTH:0] rd_addr_reg = {ADDR_WIDTH+1{1'b0}}; reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0]; reg [WIDTH-1:0] mem_read_data_reg; reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next; wire [WIDTH-1:0] s_axis; reg [WIDTH-1:0] m_axis_reg; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; // full when first MSB different but rest same wire full = ((wr_ptr_reg[ADDR_WIDTH] != rd_ptr_reg[ADDR_WIDTH]) && (wr_ptr_reg[ADDR_WIDTH-1:0] == rd_ptr_reg[ADDR_WIDTH-1:0])); wire full_cur = ((wr_ptr_cur_reg[ADDR_WIDTH] != rd_ptr_reg[ADDR_WIDTH]) && (wr_ptr_cur_reg[ADDR_WIDTH-1:0] == rd_ptr_reg[ADDR_WIDTH-1:0])); // empty when pointers match exactly wire empty = wr_ptr_reg == rd_ptr_reg; // overflow within packet wire full_wr = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) && (wr_ptr_reg[ADDR_WIDTH-1:0] == wr_ptr_cur_reg[ADDR_WIDTH-1:0])); // control signals reg write; reg read; reg store_output; reg drop_frame_reg = 1'b0, drop_frame_next; reg overflow_reg = 1'b0, overflow_next; reg bad_frame_reg = 1'b0, bad_frame_next; reg good_frame_reg = 1'b0, good_frame_next; assign s_axis_tready = FRAME_FIFO ? (!full_cur || full_wr || DROP_WHEN_FULL) : !full; generate assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata; if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep; if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast; if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid; if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest; if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser; endgenerate assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tdata = m_axis_reg[DATA_WIDTH-1:0]; assign m_axis_tkeep = KEEP_ENABLE ? m_axis_reg[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}}; assign m_axis_tlast = LAST_ENABLE ? m_axis_reg[LAST_OFFSET] : 1'b1; assign m_axis_tid = ID_ENABLE ? m_axis_reg[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}}; assign m_axis_tdest = DEST_ENABLE ? m_axis_reg[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}}; assign m_axis_tuser = USER_ENABLE ? m_axis_reg[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}}; assign status_overflow = overflow_reg; assign status_bad_frame = bad_frame_reg; assign status_good_frame = good_frame_reg; // Write logic always @* begin write = 1'b0; drop_frame_next = 1'b0; overflow_next = 1'b0; bad_frame_next = 1'b0; good_frame_next = 1'b0; wr_ptr_next = wr_ptr_reg; wr_ptr_cur_next = wr_ptr_cur_reg; if (s_axis_tready && s_axis_tvalid) begin // transfer in if (!FRAME_FIFO) begin // normal FIFO mode write = 1'b1; wr_ptr_next = wr_ptr_reg + 1; end else if (full_cur || full_wr || drop_frame_reg) begin // full, packet overflow, or currently dropping frame // drop frame drop_frame_next = 1'b1; if (s_axis_tlast) begin // end of frame, reset write pointer wr_ptr_cur_next = wr_ptr_reg; drop_frame_next = 1'b0; overflow_next = 1'b1; end end else begin write = 1'b1; wr_ptr_cur_next = wr_ptr_cur_reg + 1; if (s_axis_tlast) begin // end of frame if (DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin // bad packet, reset write pointer wr_ptr_cur_next = wr_ptr_reg; bad_frame_next = 1'b1; end else begin // good packet, update write pointer wr_ptr_next = wr_ptr_cur_reg + 1; good_frame_next = 1'b1; end end end end end always @(posedge clk) begin if (rst) begin wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; wr_ptr_cur_reg <= {ADDR_WIDTH+1{1'b0}}; drop_frame_reg <= 1'b0; overflow_reg <= 1'b0; bad_frame_reg <= 1'b0; good_frame_reg <= 1'b0; end else begin wr_ptr_reg <= wr_ptr_next; wr_ptr_cur_reg <= wr_ptr_cur_next; drop_frame_reg <= drop_frame_next; overflow_reg <= overflow_next; bad_frame_reg <= bad_frame_next; good_frame_reg <= good_frame_next; end if (FRAME_FIFO) begin wr_addr_reg <= wr_ptr_cur_next; end else begin wr_addr_reg <= wr_ptr_next; end if (write) begin mem[wr_addr_reg[ADDR_WIDTH-1:0]] <= s_axis; end end // Read logic always @* begin read = 1'b0; rd_ptr_next = rd_ptr_reg; mem_read_data_valid_next = mem_read_data_valid_reg; if (store_output || !mem_read_data_valid_reg) begin // output data not valid OR currently being transferred if (!empty) begin // not empty, perform read read = 1'b1; mem_read_data_valid_next = 1'b1; rd_ptr_next = rd_ptr_reg + 1; end else begin // empty, invalidate mem_read_data_valid_next = 1'b0; end end end always @(posedge clk) begin if (rst) begin rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}}; mem_read_data_valid_reg <= 1'b0; end else begin rd_ptr_reg <= rd_ptr_next; mem_read_data_valid_reg <= mem_read_data_valid_next; end rd_addr_reg <= rd_ptr_next; if (read) begin mem_read_data_reg <= mem[rd_addr_reg[ADDR_WIDTH-1:0]]; end end // Output register always @* begin store_output = 1'b0; m_axis_tvalid_next = m_axis_tvalid_reg; if (m_axis_tready || !m_axis_tvalid) begin store_output = 1'b1; m_axis_tvalid_next = mem_read_data_valid_reg; end end always @(posedge clk) begin if (rst) begin m_axis_tvalid_reg <= 1'b0; end else begin m_axis_tvalid_reg <= m_axis_tvalid_next; end if (store_output) begin m_axis_reg <= mem_read_data_reg; end end endmodule