/* Copyright (c) 2015-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream XGMII frame transmitter (AXI in, XGMII out) */ module axis_xgmii_tx_64 # ( parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter CTRL_WIDTH = (DATA_WIDTH/8), parameter ENABLE_PADDING = 1, parameter ENABLE_DIC = 1, parameter MIN_FRAME_LENGTH = 64, parameter PTP_PERIOD_NS = 4'h6, parameter PTP_PERIOD_FNS = 16'h6666, parameter PTP_TS_ENABLE = 0, parameter PTP_TS_WIDTH = 96, parameter PTP_TAG_ENABLE = PTP_TS_ENABLE, parameter PTP_TAG_WIDTH = 16, parameter USER_WIDTH = (PTP_TAG_ENABLE ? PTP_TAG_WIDTH : 0) + 1 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire [USER_WIDTH-1:0] s_axis_tuser, /* * XGMII output */ output wire [DATA_WIDTH-1:0] xgmii_txd, output wire [CTRL_WIDTH-1:0] xgmii_txc, /* * PTP */ input wire [PTP_TS_WIDTH-1:0] ptp_ts, output wire [PTP_TS_WIDTH-1:0] m_axis_ptp_ts, output wire [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag, output wire m_axis_ptp_ts_valid, /* * Configuration */ input wire [7:0] ifg_delay, /* * Status */ output wire [1:0] start_packet, output wire error_underflow ); // bus width assertions initial begin if (DATA_WIDTH != 64) begin $error("Error: Interface width must be 64"); $finish; end if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin $error("Error: Interface requires byte (8-bit) granularity"); $finish; end end localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4; localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfff8; localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0007; localparam [7:0] ETH_PRE = 8'h55, ETH_SFD = 8'hD5; localparam [7:0] XGMII_IDLE = 8'h07, XGMII_START = 8'hfb, XGMII_TERM = 8'hfd, XGMII_ERROR = 8'hfe; localparam [2:0] STATE_IDLE = 3'd0, STATE_PAYLOAD = 3'd1, STATE_PAD = 3'd2, STATE_FCS_1 = 3'd3, STATE_FCS_2 = 3'd4, STATE_IFG = 3'd5, STATE_WAIT_END = 3'd6; reg [2:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg update_crc; reg swap_lanes; reg unswap_lanes; reg lanes_swapped = 1'b0; reg [31:0] swap_txd = 32'd0; reg [3:0] swap_txc = 4'd0; reg [DATA_WIDTH-1:0] s_axis_tdata_masked; reg [DATA_WIDTH-1:0] s_tdata_reg = {DATA_WIDTH{1'b0}}, s_tdata_next; reg [KEEP_WIDTH-1:0] s_tkeep_reg = {KEEP_WIDTH{1'b0}}, s_tkeep_next; reg [DATA_WIDTH-1:0] fcs_output_txd_0; reg [DATA_WIDTH-1:0] fcs_output_txd_1; reg [CTRL_WIDTH-1:0] fcs_output_txc_0; reg [CTRL_WIDTH-1:0] fcs_output_txc_1; reg [7:0] ifg_offset; reg extra_cycle; reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next; reg [7:0] ifg_count_reg = 8'd0, ifg_count_next; reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next; reg s_axis_tready_reg = 1'b0, s_axis_tready_next; reg [PTP_TS_WIDTH-1:0] m_axis_ptp_ts_reg = 0, m_axis_ptp_ts_next; reg [PTP_TAG_WIDTH-1:0] m_axis_ptp_ts_tag_reg = 0, m_axis_ptp_ts_tag_next; reg m_axis_ptp_ts_valid_reg = 1'b0, m_axis_ptp_ts_valid_next; reg m_axis_ptp_ts_valid_int_reg = 1'b0, m_axis_ptp_ts_valid_int_next; reg [31:0] crc_state = 32'hFFFFFFFF; wire [31:0] crc_next0; wire [31:0] crc_next1; wire [31:0] crc_next2; wire [31:0] crc_next3; wire [31:0] crc_next4; wire [31:0] crc_next5; wire [31:0] crc_next6; wire [31:0] crc_next7; reg [DATA_WIDTH-1:0] xgmii_txd_reg = {CTRL_WIDTH{XGMII_IDLE}}, xgmii_txd_next; reg [CTRL_WIDTH-1:0] xgmii_txc_reg = {CTRL_WIDTH{1'b1}}, xgmii_txc_next; reg start_packet_reg = 2'b00, start_packet_next; reg error_underflow_reg = 1'b0, error_underflow_next; assign s_axis_tready = s_axis_tready_reg; assign xgmii_txd = xgmii_txd_reg; assign xgmii_txc = xgmii_txc_reg; assign m_axis_ptp_ts = PTP_TS_ENABLE ? m_axis_ptp_ts_reg : 0; assign m_axis_ptp_ts_tag = PTP_TAG_ENABLE ? m_axis_ptp_ts_tag_reg : 0; assign m_axis_ptp_ts_valid = PTP_TS_ENABLE || PTP_TAG_ENABLE ? m_axis_ptp_ts_valid_reg : 1'b0; assign start_packet = start_packet_reg; assign error_underflow = error_underflow_reg; lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(8), .STYLE("AUTO") ) eth_crc_8 ( .data_in(s_tdata_reg[7:0]), .state_in(crc_state), .data_out(), .state_out(crc_next0) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(16), .STYLE("AUTO") ) eth_crc_16 ( .data_in(s_tdata_reg[15:0]), .state_in(crc_state), .data_out(), .state_out(crc_next1) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(24), .STYLE("AUTO") ) eth_crc_24 ( .data_in(s_tdata_reg[23:0]), .state_in(crc_state), .data_out(), .state_out(crc_next2) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(32), .STYLE("AUTO") ) eth_crc_32 ( .data_in(s_tdata_reg[31:0]), .state_in(crc_state), .data_out(), .state_out(crc_next3) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(40), .STYLE("AUTO") ) eth_crc_40 ( .data_in(s_tdata_reg[39:0]), .state_in(crc_state), .data_out(), .state_out(crc_next4) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(48), .STYLE("AUTO") ) eth_crc_48 ( .data_in(s_tdata_reg[47:0]), .state_in(crc_state), .data_out(), .state_out(crc_next5) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(56), .STYLE("AUTO") ) eth_crc_56 ( .data_in(s_tdata_reg[55:0]), .state_in(crc_state), .data_out(), .state_out(crc_next6) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(64), .STYLE("AUTO") ) eth_crc_64 ( .data_in(s_tdata_reg[63:0]), .state_in(crc_state), .data_out(), .state_out(crc_next7) ); function [3:0] keep2count; input [7:0] k; casez (k) 8'bzzzzzzz0: keep2count = 4'd0; 8'bzzzzzz01: keep2count = 4'd1; 8'bzzzzz011: keep2count = 4'd2; 8'bzzzz0111: keep2count = 4'd3; 8'bzzz01111: keep2count = 4'd4; 8'bzz011111: keep2count = 4'd5; 8'bz0111111: keep2count = 4'd6; 8'b01111111: keep2count = 4'd7; 8'b11111111: keep2count = 4'd8; endcase endfunction // Mask input data integer j; always @* begin for (j = 0; j < 8; j = j + 1) begin s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0; end end // FCS cycle calculation always @* begin casez (s_tkeep_reg) 8'bzzzzzz01: begin fcs_output_txd_0 = {{2{XGMII_IDLE}}, XGMII_TERM, ~crc_next0[31:0], s_tdata_reg[7:0]}; fcs_output_txd_1 = {8{XGMII_IDLE}}; fcs_output_txc_0 = 8'b11100000; fcs_output_txc_1 = 8'b11111111; ifg_offset = 8'd3; extra_cycle = 1'b0; end 8'bzzzzz011: begin fcs_output_txd_0 = {XGMII_IDLE, XGMII_TERM, ~crc_next1[31:0], s_tdata_reg[15:0]}; fcs_output_txd_1 = {8{XGMII_IDLE}}; fcs_output_txc_0 = 8'b11000000; fcs_output_txc_1 = 8'b11111111; ifg_offset = 8'd2; extra_cycle = 1'b0; end 8'bzzzz0111: begin fcs_output_txd_0 = {XGMII_TERM, ~crc_next2[31:0], s_tdata_reg[23:0]}; fcs_output_txd_1 = {8{XGMII_IDLE}}; fcs_output_txc_0 = 8'b10000000; fcs_output_txc_1 = 8'b11111111; ifg_offset = 8'd1; extra_cycle = 1'b0; end 8'bzzz01111: begin fcs_output_txd_0 = {~crc_next3[31:0], s_tdata_reg[31:0]}; fcs_output_txd_1 = {{7{XGMII_IDLE}}, XGMII_TERM}; fcs_output_txc_0 = 8'b00000000; fcs_output_txc_1 = 8'b11111111; ifg_offset = 8'd8; extra_cycle = 1'b1; end 8'bzz011111: begin fcs_output_txd_0 = {~crc_next4[23:0], s_tdata_reg[39:0]}; fcs_output_txd_1 = {{6{XGMII_IDLE}}, XGMII_TERM, ~crc_next4[31:24]}; fcs_output_txc_0 = 8'b00000000; fcs_output_txc_1 = 8'b11111110; ifg_offset = 8'd7; extra_cycle = 1'b1; end 8'bz0111111: begin fcs_output_txd_0 = {~crc_next5[15:0], s_tdata_reg[47:0]}; fcs_output_txd_1 = {{5{XGMII_IDLE}}, XGMII_TERM, ~crc_next5[31:16]}; fcs_output_txc_0 = 8'b00000000; fcs_output_txc_1 = 8'b11111100; ifg_offset = 8'd6; extra_cycle = 1'b1; end 8'b01111111: begin fcs_output_txd_0 = {~crc_next6[7:0], s_tdata_reg[55:0]}; fcs_output_txd_1 = {{4{XGMII_IDLE}}, XGMII_TERM, ~crc_next6[31:8]}; fcs_output_txc_0 = 8'b00000000; fcs_output_txc_1 = 8'b11111000; ifg_offset = 8'd5; extra_cycle = 1'b1; end 8'b11111111: begin fcs_output_txd_0 = s_tdata_reg; fcs_output_txd_1 = {{3{XGMII_IDLE}}, XGMII_TERM, ~crc_next7[31:0]}; fcs_output_txc_0 = 8'b00000000; fcs_output_txc_1 = 8'b11110000; ifg_offset = 8'd4; extra_cycle = 1'b1; end default: begin fcs_output_txd_0 = {CTRL_WIDTH{XGMII_ERROR}}; fcs_output_txd_1 = {CTRL_WIDTH{XGMII_ERROR}}; fcs_output_txc_0 = {CTRL_WIDTH{1'b1}}; fcs_output_txc_1 = {CTRL_WIDTH{1'b1}}; ifg_offset = 8'd0; extra_cycle = 1'b1; end endcase end always @* begin state_next = STATE_IDLE; reset_crc = 1'b0; update_crc = 1'b0; swap_lanes = 1'b0; unswap_lanes = 1'b0; frame_ptr_next = frame_ptr_reg; ifg_count_next = ifg_count_reg; deficit_idle_count_next = deficit_idle_count_reg; s_axis_tready_next = 1'b0; s_tdata_next = s_tdata_reg; s_tkeep_next = s_tkeep_reg; m_axis_ptp_ts_next = m_axis_ptp_ts_reg; m_axis_ptp_ts_tag_next = m_axis_ptp_ts_tag_reg; m_axis_ptp_ts_valid_next = 1'b0; m_axis_ptp_ts_valid_int_next = 1'b0; // XGMII idle xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}}; xgmii_txc_next = {CTRL_WIDTH{1'b1}}; start_packet_next = 2'b00; error_underflow_next = 1'b0; if (m_axis_ptp_ts_valid_int_reg) begin m_axis_ptp_ts_valid_next = 1'b1; if (PTP_TS_WIDTH == 96 && $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin // ns field rollover m_axis_ptp_ts_next[45:16] = $signed({1'b0, m_axis_ptp_ts_reg[45:16]}) - $signed(31'd1000000000); m_axis_ptp_ts_next[95:48] = m_axis_ptp_ts_reg[95:48] + 1; end end case (state_reg) STATE_IDLE: begin // idle state - wait for data frame_ptr_next = 16'd8; reset_crc = 1'b1; s_axis_tready_next = 1'b1; // XGMII idle xgmii_txd_next = {CTRL_WIDTH{XGMII_IDLE}}; xgmii_txc_next = {CTRL_WIDTH{1'b1}}; s_tdata_next = s_axis_tdata_masked; s_tkeep_next = s_axis_tkeep; if (s_axis_tvalid) begin // XGMII start and preamble if (ifg_count_reg > 8'd0) begin // need to send more idles - swap lanes swap_lanes = 1'b1; if (PTP_TS_WIDTH == 96) begin m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1); m_axis_ptp_ts_next[95:48] = ptp_ts[95:48]; end else begin m_axis_ptp_ts_next = ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1); end m_axis_ptp_ts_tag_next = s_axis_tuser >> 1; m_axis_ptp_ts_valid_int_next = 1'b1; start_packet_next = 2'b10; end else begin // no more idles - unswap unswap_lanes = 1'b1; if (PTP_TS_WIDTH == 96) begin m_axis_ptp_ts_next[45:0] = ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS); m_axis_ptp_ts_next[95:48] = ptp_ts[95:48]; end else begin m_axis_ptp_ts_next = ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS); end m_axis_ptp_ts_tag_next = s_axis_tuser >> 1; m_axis_ptp_ts_valid_int_next = 1'b1; start_packet_next = 2'b01; end xgmii_txd_next = {ETH_SFD, {6{ETH_PRE}}, XGMII_START}; xgmii_txc_next = 8'b00000001; s_axis_tready_next = 1'b1; state_next = STATE_PAYLOAD; end else begin ifg_count_next = 8'd0; deficit_idle_count_next = 2'd0; unswap_lanes = 1'b1; state_next = STATE_IDLE; end end STATE_PAYLOAD: begin // transfer payload update_crc = 1'b1; s_axis_tready_next = 1'b1; frame_ptr_next = frame_ptr_reg + 16'd8; xgmii_txd_next = s_tdata_reg; xgmii_txc_next = 8'b00000000; s_tdata_next = s_axis_tdata_masked; s_tkeep_next = s_axis_tkeep; if (s_axis_tvalid) begin if (s_axis_tlast) begin frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep); s_axis_tready_next = 1'b0; if (s_axis_tuser[0]) begin xgmii_txd_next = {{3{XGMII_IDLE}}, XGMII_TERM, {4{XGMII_ERROR}}}; xgmii_txc_next = 8'b11111111; frame_ptr_next = 16'd0; ifg_count_next = 8'd8; state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b0; if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(s_axis_tkeep) < MIN_FL_NOCRC_LS))) begin s_tkeep_next = 8'hff; frame_ptr_next = frame_ptr_reg + 16'd8; if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin state_next = STATE_PAD; end else begin s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8); state_next = STATE_FCS_1; end end else begin state_next = STATE_FCS_1; end end end else begin state_next = STATE_PAYLOAD; end end else begin // tvalid deassert, fail frame xgmii_txd_next = {{3{XGMII_IDLE}}, XGMII_TERM, {4{XGMII_ERROR}}}; xgmii_txc_next = 8'b11111111; frame_ptr_next = 16'd0; ifg_count_next = 8'd8; error_underflow_next = 1'b1; state_next = STATE_WAIT_END; end end STATE_PAD: begin // pad frame to MIN_FRAME_LENGTH s_axis_tready_next = 1'b0; xgmii_txd_next = s_tdata_reg; xgmii_txc_next = {CTRL_WIDTH{1'b0}}; s_tdata_next = 64'd0; s_tkeep_next = 8'hff; update_crc = 1'b1; frame_ptr_next = frame_ptr_reg + 16'd8; if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin state_next = STATE_PAD; end else begin s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8); state_next = STATE_FCS_1; end end STATE_FCS_1: begin // last cycle s_axis_tready_next = 1'b0; xgmii_txd_next = fcs_output_txd_0; xgmii_txc_next = fcs_output_txc_0; frame_ptr_next = 16'd0; ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (lanes_swapped ? 8'd4 : 8'd0) + deficit_idle_count_reg; if (extra_cycle) begin state_next = STATE_FCS_2; end else begin state_next = STATE_IFG; end end STATE_FCS_2: begin // last cycle s_axis_tready_next = 1'b0; xgmii_txd_next = fcs_output_txd_1; xgmii_txc_next = fcs_output_txc_1; reset_crc = 1'b1; frame_ptr_next = 16'd0; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end STATE_IFG: begin // send IFG if (ifg_count_reg > 8'd8) begin ifg_count_next = ifg_count_reg - 8'd8; end else begin ifg_count_next = 8'd0; end reset_crc = 1'b1; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end STATE_WAIT_END: begin // wait for end of frame s_axis_tready_next = 1'b1; if (ifg_count_reg > 8'd8) begin ifg_count_next = ifg_count_reg - 8'd8; end else begin ifg_count_next = 8'd0; end reset_crc = 1'b1; if (s_axis_tvalid) begin if (s_axis_tlast) begin s_axis_tready_next = 1'b0; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end else begin state_next = STATE_WAIT_END; end end else begin state_next = STATE_WAIT_END; end end endcase end always @(posedge clk) begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; ifg_count_reg <= ifg_count_next; deficit_idle_count_reg <= deficit_idle_count_next; s_tdata_reg <= s_tdata_next; s_tkeep_reg <= s_tkeep_next; s_axis_tready_reg <= s_axis_tready_next; m_axis_ptp_ts_reg <= m_axis_ptp_ts_next; m_axis_ptp_ts_tag_reg <= m_axis_ptp_ts_tag_next; m_axis_ptp_ts_valid_reg <= m_axis_ptp_ts_valid_next; m_axis_ptp_ts_valid_int_reg <= m_axis_ptp_ts_valid_int_next; if (reset_crc) begin crc_state <= 32'hFFFFFFFF; end else if (update_crc) begin crc_state <= crc_next7; end swap_txd <= xgmii_txd_next[63:32]; swap_txc <= xgmii_txc_next[7:4]; if (swap_lanes || (lanes_swapped && !unswap_lanes)) begin lanes_swapped <= 1'b1; xgmii_txd_reg <= {xgmii_txd_next[31:0], swap_txd}; xgmii_txc_reg <= {xgmii_txc_next[3:0], swap_txc}; end else begin lanes_swapped <= 1'b0; xgmii_txd_reg <= xgmii_txd_next; xgmii_txc_reg <= xgmii_txc_next; end start_packet_reg <= start_packet_next; error_underflow_reg <= error_underflow_next; if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 16'd0; ifg_count_reg <= 8'd0; deficit_idle_count_reg <= 2'd0; s_axis_tready_reg <= 1'b0; m_axis_ptp_ts_valid_reg <= 1'b0; m_axis_ptp_ts_valid_int_reg <= 1'b0; xgmii_txd_reg <= {CTRL_WIDTH{XGMII_IDLE}}; xgmii_txc_reg <= {CTRL_WIDTH{1'b1}}; start_packet_reg <= 2'b00; error_underflow_reg <= 1'b0; crc_state <= 32'hFFFFFFFF; lanes_swapped <= 1'b0; end end endmodule