/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream 10GBASE-R frame transmitter (AXI in, 10GBASE-R out) */ module axis_baser_tx_64 # ( parameter DATA_WIDTH = 64, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter HDR_WIDTH = 2, parameter ENABLE_PADDING = 1, parameter ENABLE_DIC = 1, parameter MIN_FRAME_LENGTH = 64 ) ( input wire clk, input wire rst, /* * AXI input */ input wire [DATA_WIDTH-1:0] s_axis_tdata, input wire [KEEP_WIDTH-1:0] s_axis_tkeep, input wire s_axis_tvalid, output wire s_axis_tready, input wire s_axis_tlast, input wire s_axis_tuser, /* * 10GBASE-R encoded interface */ output wire [DATA_WIDTH-1:0] encoded_tx_data, output wire [HDR_WIDTH-1:0] encoded_tx_hdr, /* * Configuration */ input wire [7:0] ifg_delay, /* * Status */ output wire start_packet_0, output wire start_packet_4, output wire error_underflow ); // bus width assertions initial begin if (DATA_WIDTH != 64) begin $error("Error: Interface width must be 64"); $finish; end if (KEEP_WIDTH * 8 != DATA_WIDTH) begin $error("Error: Interface requires byte (8-bit) granularity"); $finish; end if (HDR_WIDTH != 2) begin $error("Error: HDR_WIDTH must be 2"); $finish; end end localparam MIN_FL_NOCRC = MIN_FRAME_LENGTH-4; localparam MIN_FL_NOCRC_MS = MIN_FL_NOCRC & 16'hfff8; localparam MIN_FL_NOCRC_LS = MIN_FL_NOCRC & 16'h0007; localparam [7:0] ETH_PRE = 8'h55, ETH_SFD = 8'hD5; localparam [6:0] CTRL_IDLE = 7'h00, CTRL_LPI = 7'h06, CTRL_ERROR = 7'h1e, CTRL_RES_0 = 7'h2d, CTRL_RES_1 = 7'h33, CTRL_RES_2 = 7'h4b, CTRL_RES_3 = 7'h55, CTRL_RES_4 = 7'h66, CTRL_RES_5 = 7'h78; localparam [3:0] O_SEQ_OS = 4'h0, O_SIG_OS = 4'hf; localparam [1:0] SYNC_DATA = 2'b10, SYNC_CTRL = 2'b01; localparam [7:0] BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT localparam [3:0] OUTPUT_TYPE_IDLE = 4'd0, OUTPUT_TYPE_ERROR = 4'd1, OUTPUT_TYPE_START_0 = 4'd2, OUTPUT_TYPE_START_4 = 4'd3, OUTPUT_TYPE_DATA = 4'd4, OUTPUT_TYPE_TERM_0 = 4'd8, OUTPUT_TYPE_TERM_1 = 4'd9, OUTPUT_TYPE_TERM_2 = 4'd10, OUTPUT_TYPE_TERM_3 = 4'd11, OUTPUT_TYPE_TERM_4 = 4'd12, OUTPUT_TYPE_TERM_5 = 4'd13, OUTPUT_TYPE_TERM_6 = 4'd14, OUTPUT_TYPE_TERM_7 = 4'd15; localparam [2:0] STATE_IDLE = 3'd0, STATE_PAYLOAD = 3'd1, STATE_PAD = 3'd2, STATE_FCS_1 = 3'd3, STATE_FCS_2 = 3'd4, STATE_IFG = 3'd5, STATE_WAIT_END = 3'd6; reg [2:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg update_crc; reg swap_lanes; reg unswap_lanes; reg lanes_swapped = 1'b0; reg [31:0] swap_data = 32'd0; reg delay_type_valid = 1'b0; reg [3:0] delay_type = OUTPUT_TYPE_IDLE; reg [DATA_WIDTH-1:0] s_axis_tdata_masked; reg [DATA_WIDTH-1:0] s_tdata_reg = {DATA_WIDTH{1'b0}}, s_tdata_next; reg [7:0] s_tkeep_reg = 8'd0, s_tkeep_next; reg [DATA_WIDTH-1:0] fcs_output_data_0; reg [DATA_WIDTH-1:0] fcs_output_data_1; reg [3:0] fcs_output_type_0; reg [3:0] fcs_output_type_1; reg [7:0] ifg_offset; reg extra_cycle; reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next; reg [7:0] ifg_count_reg = 8'd0, ifg_count_next; reg [1:0] deficit_idle_count_reg = 2'd0, deficit_idle_count_next; reg s_axis_tready_reg = 1'b0, s_axis_tready_next; reg [31:0] crc_state = 32'hFFFFFFFF; wire [31:0] crc_next0; wire [31:0] crc_next1; wire [31:0] crc_next2; wire [31:0] crc_next3; wire [31:0] crc_next4; wire [31:0] crc_next5; wire [31:0] crc_next6; wire [31:0] crc_next7; reg [DATA_WIDTH-1:0] encoded_tx_data_reg = {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; reg [HDR_WIDTH-1:0] encoded_tx_hdr_reg = SYNC_CTRL; reg [DATA_WIDTH-1:0] output_data_reg = {DATA_WIDTH{1'b0}}, output_data_next; reg [3:0] output_type_reg = OUTPUT_TYPE_IDLE, output_type_next; reg start_packet_0_reg = 1'b0, start_packet_0_next; reg start_packet_4_reg = 1'b0, start_packet_4_next; reg error_underflow_reg = 1'b0, error_underflow_next; assign s_axis_tready = s_axis_tready_reg; assign encoded_tx_data = encoded_tx_data_reg; assign encoded_tx_hdr = encoded_tx_hdr_reg; assign start_packet_0 = start_packet_0_reg; assign start_packet_4 = start_packet_4_reg; assign error_underflow = error_underflow_reg; lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(8), .STYLE("AUTO") ) eth_crc_8 ( .data_in(s_tdata_reg[7:0]), .state_in(crc_state), .data_out(), .state_out(crc_next0) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(16), .STYLE("AUTO") ) eth_crc_16 ( .data_in(s_tdata_reg[15:0]), .state_in(crc_state), .data_out(), .state_out(crc_next1) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(24), .STYLE("AUTO") ) eth_crc_24 ( .data_in(s_tdata_reg[23:0]), .state_in(crc_state), .data_out(), .state_out(crc_next2) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(32), .STYLE("AUTO") ) eth_crc_32 ( .data_in(s_tdata_reg[31:0]), .state_in(crc_state), .data_out(), .state_out(crc_next3) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(40), .STYLE("AUTO") ) eth_crc_40 ( .data_in(s_tdata_reg[39:0]), .state_in(crc_state), .data_out(), .state_out(crc_next4) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(48), .STYLE("AUTO") ) eth_crc_48 ( .data_in(s_tdata_reg[47:0]), .state_in(crc_state), .data_out(), .state_out(crc_next5) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(56), .STYLE("AUTO") ) eth_crc_56 ( .data_in(s_tdata_reg[55:0]), .state_in(crc_state), .data_out(), .state_out(crc_next6) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(64), .STYLE("AUTO") ) eth_crc_64 ( .data_in(s_tdata_reg[63:0]), .state_in(crc_state), .data_out(), .state_out(crc_next7) ); function [3:0] keep2count; input [7:0] k; casez (k) 8'bzzzzzzz0: keep2count = 4'd0; 8'bzzzzzz01: keep2count = 4'd1; 8'bzzzzz011: keep2count = 4'd2; 8'bzzzz0111: keep2count = 4'd3; 8'bzzz01111: keep2count = 4'd4; 8'bzz011111: keep2count = 4'd5; 8'bz0111111: keep2count = 4'd6; 8'b01111111: keep2count = 4'd7; 8'b11111111: keep2count = 4'd8; endcase endfunction // Mask input data integer j; always @* begin for (j = 0; j < 8; j = j + 1) begin s_axis_tdata_masked[j*8 +: 8] = s_axis_tkeep[j] ? s_axis_tdata[j*8 +: 8] : 8'd0; end end // FCS cycle calculation always @* begin casez (s_tkeep_reg) 8'bzzzzzz01: begin fcs_output_data_0 = {24'd0, ~crc_next0[31:0], s_tdata_reg[7:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_5; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd3; extra_cycle = 1'b0; end 8'bzzzzz011: begin fcs_output_data_0 = {16'd0, ~crc_next1[31:0], s_tdata_reg[15:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_6; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd2; extra_cycle = 1'b0; end 8'bzzzz0111: begin fcs_output_data_0 = {8'd0, ~crc_next2[31:0], s_tdata_reg[23:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_TERM_7; fcs_output_type_1 = OUTPUT_TYPE_IDLE; ifg_offset = 8'd1; extra_cycle = 1'b0; end 8'bzzz01111: begin fcs_output_data_0 = {~crc_next3[31:0], s_tdata_reg[31:0]}; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_0; ifg_offset = 8'd8; extra_cycle = 1'b1; end 8'bzz011111: begin fcs_output_data_0 = {~crc_next4[23:0], s_tdata_reg[39:0]}; fcs_output_data_1 = {56'd0, ~crc_next4[31:24]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_1; ifg_offset = 8'd7; extra_cycle = 1'b1; end 8'bz0111111: begin fcs_output_data_0 = {~crc_next5[15:0], s_tdata_reg[47:0]}; fcs_output_data_1 = {48'd0, ~crc_next5[31:16]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_2; ifg_offset = 8'd6; extra_cycle = 1'b1; end 8'b01111111: begin fcs_output_data_0 = {~crc_next6[7:0], s_tdata_reg[55:0]}; fcs_output_data_1 = {40'd0, ~crc_next6[31:8]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_3; ifg_offset = 8'd5; extra_cycle = 1'b1; end 8'b11111111: begin fcs_output_data_0 = s_tdata_reg; fcs_output_data_1 = {32'd0, ~crc_next7[31:0]}; fcs_output_type_0 = OUTPUT_TYPE_DATA; fcs_output_type_1 = OUTPUT_TYPE_TERM_4; ifg_offset = 8'd4; extra_cycle = 1'b1; end default: begin fcs_output_data_0 = 64'd0; fcs_output_data_1 = 64'd0; fcs_output_type_0 = OUTPUT_TYPE_ERROR; fcs_output_type_1 = OUTPUT_TYPE_ERROR; ifg_offset = 8'd0; extra_cycle = 1'b1; end endcase end always @* begin state_next = STATE_IDLE; reset_crc = 1'b0; update_crc = 1'b0; swap_lanes = 1'b0; unswap_lanes = 1'b0; frame_ptr_next = frame_ptr_reg; ifg_count_next = ifg_count_reg; deficit_idle_count_next = deficit_idle_count_reg; s_axis_tready_next = 1'b0; s_tdata_next = s_tdata_reg; s_tkeep_next = s_tkeep_reg; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_IDLE; start_packet_0_next = 1'b0; start_packet_4_next = 1'b0; error_underflow_next = 1'b0; case (state_reg) STATE_IDLE: begin // idle state - wait for data frame_ptr_next = 16'd8; reset_crc = 1'b1; s_axis_tready_next = 1'b1; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_IDLE; s_tdata_next = s_axis_tdata_masked; s_tkeep_next = s_axis_tkeep; if (s_axis_tvalid) begin // XGMII start and preamble if (ifg_count_reg > 8'd0) begin // need to send more idles - swap lanes swap_lanes = 1'b1; start_packet_4_next = 1'b1; end else begin // no more idles - unswap unswap_lanes = 1'b1; start_packet_0_next = 1'b1; end output_data_next = {ETH_SFD, {7{ETH_PRE}}}; output_type_next = OUTPUT_TYPE_START_0; s_axis_tready_next = 1'b1; state_next = STATE_PAYLOAD; end else begin ifg_count_next = 8'd0; deficit_idle_count_next = 2'd0; unswap_lanes = 1'b1; state_next = STATE_IDLE; end end STATE_PAYLOAD: begin // transfer payload update_crc = 1'b1; s_axis_tready_next = 1'b1; frame_ptr_next = frame_ptr_reg + 16'd8; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_DATA; s_tdata_next = s_axis_tdata_masked; s_tkeep_next = s_axis_tkeep; if (s_axis_tvalid) begin if (s_axis_tlast) begin frame_ptr_next = frame_ptr_reg + keep2count(s_axis_tkeep); s_axis_tready_next = 1'b0; if (s_axis_tuser) begin output_type_next = OUTPUT_TYPE_ERROR; frame_ptr_next = 16'd0; ifg_count_next = 8'd8; state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b0; if (ENABLE_PADDING && (frame_ptr_reg < MIN_FL_NOCRC_MS || (frame_ptr_reg == MIN_FL_NOCRC_MS && keep2count(s_axis_tkeep) < MIN_FL_NOCRC_LS))) begin s_tkeep_next = 8'hff; frame_ptr_next = frame_ptr_reg + 16'd8; if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin state_next = STATE_PAD; end else begin s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8); state_next = STATE_FCS_1; end end else begin state_next = STATE_FCS_1; end end end else begin state_next = STATE_PAYLOAD; end end else begin // tvalid deassert, fail frame output_type_next = OUTPUT_TYPE_ERROR; frame_ptr_next = 16'd0; ifg_count_next = 8'd8; error_underflow_next = 1'b1; state_next = STATE_WAIT_END; end end STATE_PAD: begin // pad frame to MIN_FRAME_LENGTH s_axis_tready_next = 1'b0; output_data_next = s_tdata_reg; output_type_next = OUTPUT_TYPE_DATA; s_tdata_next = 64'd0; s_tkeep_next = 8'hff; update_crc = 1'b1; frame_ptr_next = frame_ptr_reg + 16'd8; if (frame_ptr_reg < (MIN_FL_NOCRC_LS > 0 ? MIN_FL_NOCRC_MS : MIN_FL_NOCRC_MS-8)) begin state_next = STATE_PAD; end else begin s_tkeep_next = 8'hff >> ((8-MIN_FL_NOCRC_LS) % 8); state_next = STATE_FCS_1; end end STATE_FCS_1: begin // last cycle s_axis_tready_next = 1'b0; output_data_next = fcs_output_data_0; output_type_next = fcs_output_type_0; frame_ptr_next = 16'd0; ifg_count_next = (ifg_delay > 8'd12 ? ifg_delay : 8'd12) - ifg_offset + (lanes_swapped ? 8'd4 : 8'd0) + deficit_idle_count_reg; if (extra_cycle) begin state_next = STATE_FCS_2; end else begin state_next = STATE_IFG; end end STATE_FCS_2: begin // last cycle s_axis_tready_next = 1'b0; output_data_next = fcs_output_data_1; output_type_next = fcs_output_type_1; reset_crc = 1'b1; frame_ptr_next = 16'd0; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end STATE_IFG: begin // send IFG if (ifg_count_reg > 8'd8) begin ifg_count_next = ifg_count_reg - 8'd8; end else begin ifg_count_next = 8'd0; end reset_crc = 1'b1; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end STATE_WAIT_END: begin // wait for end of frame s_axis_tready_next = 1'b1; if (ifg_count_reg > 8'd4) begin ifg_count_next = ifg_count_reg - 8'd4; end else begin ifg_count_next = 8'd0; end reset_crc = 1'b1; if (s_axis_tvalid) begin if (s_axis_tlast) begin s_axis_tready_next = 1'b0; if (ENABLE_DIC) begin if (ifg_count_next > 8'd7) begin state_next = STATE_IFG; end else begin if (ifg_count_next >= 8'd4) begin deficit_idle_count_next = ifg_count_next - 8'd4; end else begin deficit_idle_count_next = ifg_count_next; ifg_count_next = 8'd0; end s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end else begin if (ifg_count_next > 8'd4) begin state_next = STATE_IFG; end else begin s_axis_tready_next = 1'b1; state_next = STATE_IDLE; end end end else begin state_next = STATE_WAIT_END; end end else begin state_next = STATE_WAIT_END; end end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 16'd0; ifg_count_reg <= 8'd0; deficit_idle_count_reg <= 2'd0; s_axis_tready_reg <= 1'b0; encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; output_data_reg <= {DATA_WIDTH{1'b0}}; output_type_reg <= OUTPUT_TYPE_IDLE; start_packet_0_reg <= 1'b0; start_packet_4_reg <= 1'b0; error_underflow_reg <= 1'b0; crc_state <= 32'hFFFFFFFF; lanes_swapped <= 1'b0; delay_type_valid <= 1'b0; delay_type <= OUTPUT_TYPE_IDLE; end else begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; ifg_count_reg <= ifg_count_next; deficit_idle_count_reg <= deficit_idle_count_next; s_axis_tready_reg <= s_axis_tready_next; start_packet_0_reg <= start_packet_0_next; start_packet_4_reg <= start_packet_4_next; error_underflow_reg <= error_underflow_next; delay_type_valid <= 1'b0; if (swap_lanes || (lanes_swapped && !unswap_lanes)) begin lanes_swapped <= 1'b1; output_data_reg <= {output_data_next[31:0], swap_data}; if (delay_type_valid) begin output_type_reg <= delay_type; end else if (output_type_next == OUTPUT_TYPE_START_0) begin output_type_reg <= OUTPUT_TYPE_START_4; end else if (output_type_next[3]) begin // OUTPUT_TYPE_TERM_* if (output_type_next[2]) begin delay_type_valid <= 1'b1; output_type_reg <= OUTPUT_TYPE_DATA; end else begin output_type_reg <= output_type_next ^ 4'd4; end end else begin output_type_reg <= output_type_next; end end else begin lanes_swapped <= 1'b0; output_data_reg <= output_data_next; output_type_reg <= output_type_next; end case (output_type_reg) OUTPUT_TYPE_IDLE: begin encoded_tx_data_reg <= {{8{CTRL_IDLE}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_ERROR: begin encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_START_0: begin encoded_tx_data_reg <= {output_data_reg[63:8], BLOCK_TYPE_START_0}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_START_4: begin encoded_tx_data_reg <= {output_data_reg[63:40], 4'd0, {4{CTRL_IDLE}}, BLOCK_TYPE_START_4}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_DATA: begin encoded_tx_data_reg <= output_data_reg; encoded_tx_hdr_reg <= SYNC_DATA; end OUTPUT_TYPE_TERM_0: begin encoded_tx_data_reg <= {{7{CTRL_IDLE}}, 7'd0, BLOCK_TYPE_TERM_0}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_1: begin encoded_tx_data_reg <= {{6{CTRL_IDLE}}, 6'd0, output_data_reg[7:0], BLOCK_TYPE_TERM_1}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_2: begin encoded_tx_data_reg <= {{5{CTRL_IDLE}}, 5'd0, output_data_reg[15:0], BLOCK_TYPE_TERM_2}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_3: begin encoded_tx_data_reg <= {{4{CTRL_IDLE}}, 4'd0, output_data_reg[23:0], BLOCK_TYPE_TERM_3}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_4: begin encoded_tx_data_reg <= {{3{CTRL_IDLE}}, 3'd0, output_data_reg[31:0], BLOCK_TYPE_TERM_4}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_5: begin encoded_tx_data_reg <= {{2{CTRL_IDLE}}, 2'd0, output_data_reg[39:0], BLOCK_TYPE_TERM_5}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_6: begin encoded_tx_data_reg <= {{1{CTRL_IDLE}}, 1'd0, output_data_reg[47:0], BLOCK_TYPE_TERM_6}; encoded_tx_hdr_reg <= SYNC_CTRL; end OUTPUT_TYPE_TERM_7: begin encoded_tx_data_reg <= {output_data_reg[55:0], BLOCK_TYPE_TERM_7}; encoded_tx_hdr_reg <= SYNC_CTRL; end default: begin encoded_tx_data_reg <= {{8{CTRL_ERROR}}, BLOCK_TYPE_CTRL}; encoded_tx_hdr_reg <= SYNC_CTRL; end endcase // datapath if (reset_crc) begin crc_state <= 32'hFFFFFFFF; end else if (update_crc) begin crc_state <= crc_next7; end end s_tdata_reg <= s_tdata_next; s_tkeep_reg <= s_tkeep_next; swap_data <= output_data_next[63:32]; delay_type <= output_type_next ^ 4'd4; end endmodule