/* Copyright (c) 2015-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream XGMII frame receiver (XGMII in, AXI out) */ module axis_xgmii_rx_32 # ( parameter DATA_WIDTH = 32, parameter KEEP_WIDTH = (DATA_WIDTH/8), parameter CTRL_WIDTH = (DATA_WIDTH/8), parameter PTP_TS_ENABLE = 0, parameter PTP_TS_WIDTH = 96, parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1 ) ( input wire clk, input wire rst, /* * XGMII input */ input wire [DATA_WIDTH-1:0] xgmii_rxd, input wire [CTRL_WIDTH-1:0] xgmii_rxc, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, output wire m_axis_tlast, output wire [USER_WIDTH-1:0] m_axis_tuser, /* * PTP */ input wire [PTP_TS_WIDTH-1:0] ptp_ts, /* * Status */ output wire start_packet, output wire error_bad_frame, output wire error_bad_fcs ); // bus width assertions initial begin if (DATA_WIDTH != 32) begin $error("Error: Interface width must be 32"); $finish; end if (KEEP_WIDTH * 8 != DATA_WIDTH || CTRL_WIDTH * 8 != DATA_WIDTH) begin $error("Error: Interface requires byte (8-bit) granularity"); $finish; end end localparam [7:0] ETH_PRE = 8'h55, ETH_SFD = 8'hD5; localparam [7:0] XGMII_IDLE = 8'h07, XGMII_START = 8'hfb, XGMII_TERM = 8'hfd, XGMII_ERROR = 8'hfe; localparam [1:0] STATE_IDLE = 2'd0, STATE_PREAMBLE = 2'd1, STATE_PAYLOAD = 2'd2, STATE_LAST = 2'd3; reg [1:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg [3:0] last_cycle_tkeep_reg = 4'd0, last_cycle_tkeep_next; reg [DATA_WIDTH-1:0] xgmii_rxd_d0 = {DATA_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] xgmii_rxd_d1 = {DATA_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] xgmii_rxd_d2 = {DATA_WIDTH{1'b0}}; reg [CTRL_WIDTH-1:0] xgmii_rxc_d0 = {CTRL_WIDTH{1'b0}}; reg [CTRL_WIDTH-1:0] xgmii_rxc_d1 = {CTRL_WIDTH{1'b0}}; reg [CTRL_WIDTH-1:0] xgmii_rxc_d2 = {CTRL_WIDTH{1'b0}}; reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next; reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next; reg start_packet_reg = 1'b0, start_packet_next; reg error_bad_frame_reg = 1'b0, error_bad_frame_next; reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next; reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0, ptp_ts_next; reg [31:0] crc_state = 32'hFFFFFFFF; wire [31:0] crc_next0; wire [31:0] crc_next1; wire [31:0] crc_next2; wire [31:0] crc_next3; wire crc_valid0 = crc_next0 == ~32'h2144df1c; wire crc_valid1 = crc_next1 == ~32'h2144df1c; wire crc_valid2 = crc_next2 == ~32'h2144df1c; wire crc_valid3 = crc_next3 == ~32'h2144df1c; reg crc_valid0_save = 1'b0; reg crc_valid1_save = 1'b0; reg crc_valid2_save = 1'b0; reg crc_valid3_save = 1'b0; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = m_axis_tkeep_reg; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg; assign start_packet = start_packet_reg; assign error_bad_frame = error_bad_frame_reg; assign error_bad_fcs = error_bad_fcs_reg; wire last_cycle = state_reg == STATE_LAST; lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(8), .STYLE("AUTO") ) eth_crc_8 ( .data_in(xgmii_rxd_d0[7:0]), .state_in(crc_state), .data_out(), .state_out(crc_next0) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(16), .STYLE("AUTO") ) eth_crc_16 ( .data_in(xgmii_rxd_d0[15:0]), .state_in(crc_state), .data_out(), .state_out(crc_next1) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(24), .STYLE("AUTO") ) eth_crc_24 ( .data_in(xgmii_rxd_d0[23:0]), .state_in(crc_state), .data_out(), .state_out(crc_next2) ); lfsr #( .LFSR_WIDTH(32), .LFSR_POLY(32'h4c11db7), .LFSR_CONFIG("GALOIS"), .LFSR_FEED_FORWARD(0), .REVERSE(1), .DATA_WIDTH(32), .STYLE("AUTO") ) eth_crc_32 ( .data_in(xgmii_rxd_d0[31:0]), .state_in(crc_state), .data_out(), .state_out(crc_next3) ); // detect control characters reg [3:0] detect_term = 4'd0; reg [3:0] detect_term_save; integer i; // mask errors to within packet reg [3:0] control_masked; reg [3:0] tkeep_mask; always @* begin casez (detect_term) 4'b0000: begin control_masked = xgmii_rxc_d0; tkeep_mask = 4'b1111; end 4'bzzz1: begin control_masked = 0; tkeep_mask = 4'b0000; end 4'bzz10: begin control_masked = xgmii_rxc_d0[0]; tkeep_mask = 4'b0001; end 4'bz100: begin control_masked = xgmii_rxc_d0[1:0]; tkeep_mask = 4'b0011; end 4'b1000: begin control_masked = xgmii_rxc_d0[2:0]; tkeep_mask = 4'b0111; end default: begin control_masked = xgmii_rxc_d0; tkeep_mask = 4'b1111; end endcase end always @* begin state_next = STATE_IDLE; reset_crc = 1'b0; last_cycle_tkeep_next = last_cycle_tkeep_reg; m_axis_tdata_next = {DATA_WIDTH{1'b0}}; m_axis_tkeep_next = {KEEP_WIDTH{1'b1}}; m_axis_tvalid_next = 1'b0; m_axis_tlast_next = 1'b0; m_axis_tuser_next = 1'b0; start_packet_next = 1'b0; error_bad_frame_next = 1'b0; error_bad_fcs_next = 1'b0; ptp_ts_next = ptp_ts_reg; case (state_reg) STATE_IDLE: begin // idle state - wait for packet reset_crc = 1'b1; if (xgmii_rxc_d2[0] && xgmii_rxd_d2[7:0] == XGMII_START) begin // start condition if (control_masked) begin // control or error characters in first data word m_axis_tdata_next = {DATA_WIDTH{1'b0}}; m_axis_tkeep_next = 4'h1; m_axis_tvalid_next = 1'b1; m_axis_tlast_next = 1'b1; m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; state_next = STATE_IDLE; end else begin reset_crc = 1'b0; state_next = STATE_PREAMBLE; end end else begin state_next = STATE_IDLE; end end STATE_PREAMBLE: begin // drop preamble ptp_ts_next = ptp_ts; start_packet_next = 1'b1; state_next = STATE_PAYLOAD; end STATE_PAYLOAD: begin // read payload m_axis_tdata_next = xgmii_rxd_d2; m_axis_tkeep_next = {KEEP_WIDTH{1'b1}}; m_axis_tvalid_next = 1'b1; m_axis_tlast_next = 1'b0; m_axis_tuser_next = 1'b0; last_cycle_tkeep_next = tkeep_mask; if (control_masked) begin // control or error characters in packet m_axis_tlast_next = 1'b1; m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; reset_crc = 1'b1; state_next = STATE_IDLE; end else if (detect_term) begin if (detect_term[0]) begin // end this cycle reset_crc = 1'b1; m_axis_tkeep_next = 4'b1111; m_axis_tlast_next = 1'b1; if (detect_term[0] && crc_valid3_save) begin // CRC valid end else begin m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; error_bad_fcs_next = 1'b1; end state_next = STATE_IDLE; end else begin // need extra cycle state_next = STATE_LAST; end end else begin state_next = STATE_PAYLOAD; end end STATE_LAST: begin // last cycle of packet m_axis_tdata_next = xgmii_rxd_d2; m_axis_tkeep_next = last_cycle_tkeep_reg; m_axis_tvalid_next = 1'b1; m_axis_tlast_next = 1'b1; m_axis_tuser_next = 1'b0; reset_crc = 1'b1; if ((detect_term_save[1] && crc_valid0_save) || (detect_term_save[2] && crc_valid1_save) || (detect_term_save[3] && crc_valid2_save)) begin // CRC valid end else begin m_axis_tuser_next = 1'b1; error_bad_frame_next = 1'b1; error_bad_fcs_next = 1'b1; end state_next = STATE_IDLE; end endcase end always @(posedge clk) begin if (rst) begin state_reg <= STATE_IDLE; m_axis_tvalid_reg <= 1'b0; start_packet_reg <= 1'b0; error_bad_frame_reg <= 1'b0; error_bad_fcs_reg <= 1'b0; crc_state <= 32'hFFFFFFFF; xgmii_rxc_d0 <= {CTRL_WIDTH{1'b0}}; xgmii_rxc_d1 <= {CTRL_WIDTH{1'b0}}; end else begin state_reg <= state_next; m_axis_tvalid_reg <= m_axis_tvalid_next; start_packet_reg <= start_packet_next; error_bad_frame_reg <= error_bad_frame_next; error_bad_fcs_reg <= error_bad_fcs_next; xgmii_rxc_d0 <= xgmii_rxc; xgmii_rxc_d1 <= xgmii_rxc_d0; xgmii_rxc_d2 <= xgmii_rxc_d1; // datapath if (reset_crc) begin crc_state <= 32'hFFFFFFFF; end else begin crc_state <= crc_next3; end end m_axis_tdata_reg <= m_axis_tdata_next; m_axis_tkeep_reg <= m_axis_tkeep_next; m_axis_tlast_reg <= m_axis_tlast_next; m_axis_tuser_reg <= m_axis_tuser_next; ptp_ts_reg <= ptp_ts_next; last_cycle_tkeep_reg <= last_cycle_tkeep_next; for (i = 0; i < 4; i = i + 1) begin detect_term[i] <= xgmii_rxc[i] && (xgmii_rxd[i*8 +: 8] == XGMII_TERM); end detect_term_save <= detect_term; crc_valid0_save <= crc_valid0; crc_valid1_save <= crc_valid1; crc_valid2_save <= crc_valid2; crc_valid3_save <= crc_valid3; xgmii_rxd_d0 <= xgmii_rxd; xgmii_rxd_d1 <= xgmii_rxd_d0; xgmii_rxd_d2 <= xgmii_rxd_d1; end endmodule