/* Copyright (c) 2014-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * FPGA top-level module */ module fpga ( /* * Clock: 200MHz * Reset: Push button, active high */ input wire sys_clk_p, input wire sys_clk_n, input wire reset, /* * GPIO */ input wire btnu, input wire btnl, input wire btnd, input wire btnr, input wire btnc, input wire [7:0] sw, output wire ledu, output wire ledl, output wire ledd, output wire ledr, output wire ledc, output wire [7:0] led, /* * Ethernet: 1000BASE-T GMII */ input wire phy_rx_clk, input wire [7:0] phy_rxd, input wire phy_rx_dv, input wire phy_rx_er, output wire phy_gtx_clk, output wire [7:0] phy_txd, output wire phy_tx_en, output wire phy_tx_er, output wire phy_reset_n, /* * Silicon Labs CP2103 USB UART */ output wire uart_rxd, input wire uart_txd, input wire uart_rts, output wire uart_cts ); // Clock and reset wire sys_clk_ibufg; wire sys_clk_bufg; wire clk_125mhz_mmcm_out; // Internal 125 MHz clock wire clk_125mhz_int; wire rst_125mhz_int; wire mmcm_rst = reset; wire mmcm_locked; wire mmcm_clkfb; IBUFGDS clk_ibufgds_inst( .I(sys_clk_p), .IB(sys_clk_n), .O(sys_clk_ibufg) ); // MMCM instance // 200 MHz in, 125 MHz out // PFD range: 10 MHz to 450 MHz // VCO range: 600 MHz to 1200 MHz // M = 5, D = 1 sets Fvco = 1000 MHz (in range) // Divide by 8 to get output frequency of 125 MHz MMCM_BASE #( .BANDWIDTH("OPTIMIZED"), .CLKOUT0_DIVIDE_F(8), .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0), .CLKOUT1_DIVIDE(1), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT1_PHASE(0), .CLKOUT2_DIVIDE(1), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT2_PHASE(0), .CLKOUT3_DIVIDE(1), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT3_PHASE(0), .CLKOUT4_DIVIDE(1), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT4_PHASE(0), .CLKOUT5_DIVIDE(1), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT5_PHASE(0), .CLKOUT6_DIVIDE(1), .CLKOUT6_DUTY_CYCLE(0.5), .CLKOUT6_PHASE(0), .CLKFBOUT_MULT_F(5), .CLKFBOUT_PHASE(0), .DIVCLK_DIVIDE(1), .REF_JITTER1(0.100), .CLKIN1_PERIOD(5.0), .STARTUP_WAIT("FALSE"), .CLKOUT4_CASCADE("FALSE") ) clk_mmcm_inst ( .CLKIN1(sys_clk_ibufg), .CLKFBIN(mmcm_clkfb), .RST(mmcm_rst), .PWRDWN(1'b0), .CLKOUT0(clk_125mhz_mmcm_out), .CLKOUT0B(), .CLKOUT1(), .CLKOUT1B(), .CLKOUT2(), .CLKOUT2B(), .CLKOUT3(), .CLKOUT3B(), .CLKOUT4(), .CLKOUT5(), .CLKOUT6(), .CLKFBOUT(mmcm_clkfb), .CLKFBOUTB(), .LOCKED(mmcm_locked) ); BUFG clk_125mhz_bufg_inst ( .I(clk_125mhz_mmcm_out), .O(clk_125mhz_int) ); sync_reset #( .N(4) ) sync_reset_125mhz_inst ( .clk(clk_125mhz_int), .rst(~mmcm_locked), .sync_reset_out(rst_125mhz_int) ); // GPIO wire btnu_int; wire btnl_int; wire btnd_int; wire btnr_int; wire btnc_int; wire [7:0] sw_int; wire ledu_int; wire ledl_int; wire ledd_int; wire ledr_int; wire ledc_int; wire [7:0] led_int; wire uart_rxd_int; wire uart_txd_int; wire uart_rts_int; wire uart_cts_int; debounce_switch #( .WIDTH(13), .N(4), .RATE(125000) ) debounce_switch_inst ( .clk(clk_125mhz_int), .rst(rst_125mhz_int), .in({btnu, btnl, btnd, btnr, btnc, sw}), .out({btnu_int, btnl_int, btnd_int, btnr_int, btnc_int, sw_int}) ); sync_signal #( .WIDTH(2), .N(2) ) sync_signal_inst ( .clk(clk_125mhz_int), .in({uart_txd, uart_rts}), .out({uart_txd_int, uart_rts_int}) ); assign ledu = ledu_int; assign ledl = ledl_int; assign ledd = ledd_int; assign ledr = ledr_int; assign ledc = ledc_int; assign led = led_int; assign uart_rxd = uart_rxd_int; assign uart_cts = uart_cts_int; fpga_core core_inst ( /* * Clock: 125MHz * Synchronous reset */ .clk_125mhz(clk_125mhz_int), .rst_125mhz(rst_125mhz_int), /* * GPIO */ .btnu(btnu_int), .btnl(btnl_int), .btnd(btnd_int), .btnr(btnr_int), .btnc(btnc_int), .sw(sw_int), .ledu(ledu_int), .ledl(ledl_int), .ledd(ledd_int), .ledr(ledr_int), .ledc(ledc_int), .led(led_int), /* * Ethernet: 1000BASE-T GMII */ .phy_rx_clk(phy_rx_clk), .phy_rxd(phy_rxd), .phy_rx_dv(phy_rx_dv), .phy_rx_er(phy_rx_er), .phy_gtx_clk(phy_gtx_clk), .phy_txd(phy_txd), .phy_tx_en(phy_tx_en), .phy_tx_er(phy_tx_er), .phy_reset_n(phy_reset_n), /* * UART: 115200 bps, 8N1 */ .uart_rxd(uart_rxd_int), .uart_txd(uart_txd_int), .uart_rts(uart_rts_int), .uart_cts(uart_cts_int) ); endmodule