/* Copyright (c) 2014-2020 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * AXI4-Stream ethernet frame transmitter (Ethernet frame in, AXI out) */ module eth_axis_tx # ( // Width of AXI stream interfaces in bits parameter DATA_WIDTH = 8, // Propagate tkeep signal // If disabled, tkeep assumed to be 1'b1 parameter KEEP_ENABLE = (DATA_WIDTH>8), // tkeep signal width (words per cycle) parameter KEEP_WIDTH = (DATA_WIDTH/8) ) ( input wire clk, input wire rst, /* * Ethernet frame input */ input wire s_eth_hdr_valid, output wire s_eth_hdr_ready, input wire [47:0] s_eth_dest_mac, input wire [47:0] s_eth_src_mac, input wire [15:0] s_eth_type, input wire [DATA_WIDTH-1:0] s_eth_payload_axis_tdata, input wire [KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep, input wire s_eth_payload_axis_tvalid, output wire s_eth_payload_axis_tready, input wire s_eth_payload_axis_tlast, input wire s_eth_payload_axis_tuser, /* * AXI output */ output wire [DATA_WIDTH-1:0] m_axis_tdata, output wire [KEEP_WIDTH-1:0] m_axis_tkeep, output wire m_axis_tvalid, input wire m_axis_tready, output wire m_axis_tlast, output wire m_axis_tuser, /* * Status signals */ output wire busy ); parameter BYTE_LANES = KEEP_ENABLE ? KEEP_WIDTH : 1; parameter HDR_SIZE = 14; parameter CYCLE_COUNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES; parameter PTR_WIDTH = $clog2(CYCLE_COUNT); parameter OFFSET = HDR_SIZE % BYTE_LANES; // bus width assertions initial begin if (BYTE_LANES * 8 != DATA_WIDTH) begin $error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)"); $finish; end end /* Ethernet frame Field Length Destination MAC address 6 octets Source MAC address 6 octets Ethertype 2 octets This module receives an Ethernet frame with header fields in parallel along with the payload in an AXI stream, combines the header with the payload, and transmits the complete Ethernet frame on the output AXI stream interface. */ // datapath control signals reg store_eth_hdr; reg send_eth_header_reg = 1'b0, send_eth_header_next; reg send_eth_payload_reg = 1'b0, send_eth_payload_next; reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next; reg flush_save; reg transfer_in_save; reg [47:0] eth_dest_mac_reg = 48'd0; reg [47:0] eth_src_mac_reg = 48'd0; reg [15:0] eth_type_reg = 16'd0; reg s_eth_hdr_ready_reg = 1'b0, s_eth_hdr_ready_next; reg s_eth_payload_axis_tready_reg = 1'b0, s_eth_payload_axis_tready_next; reg busy_reg = 1'b0; reg [DATA_WIDTH-1:0] save_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] save_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg save_eth_payload_axis_tlast_reg = 1'b0; reg save_eth_payload_axis_tuser_reg = 1'b0; reg [DATA_WIDTH-1:0] shift_eth_payload_axis_tdata; reg [KEEP_WIDTH-1:0] shift_eth_payload_axis_tkeep; reg shift_eth_payload_axis_tvalid; reg shift_eth_payload_axis_tlast; reg shift_eth_payload_axis_tuser; reg shift_eth_payload_axis_input_tready; reg shift_eth_payload_axis_extra_cycle_reg = 1'b0; // internal datapath reg [DATA_WIDTH-1:0] m_axis_tdata_int; reg [KEEP_WIDTH-1:0] m_axis_tkeep_int; reg m_axis_tvalid_int; reg m_axis_tready_int_reg = 1'b0; reg m_axis_tlast_int; reg m_axis_tuser_int; wire m_axis_tready_int_early; assign s_eth_hdr_ready = s_eth_hdr_ready_reg; assign s_eth_payload_axis_tready = s_eth_payload_axis_tready_reg; assign busy = busy_reg; always @* begin if (OFFSET == 0) begin // passthrough if no overlap shift_eth_payload_axis_tdata = s_eth_payload_axis_tdata; shift_eth_payload_axis_tkeep = s_eth_payload_axis_tkeep; shift_eth_payload_axis_tvalid = s_eth_payload_axis_tvalid; shift_eth_payload_axis_tlast = s_eth_payload_axis_tlast; shift_eth_payload_axis_tuser = s_eth_payload_axis_tuser; shift_eth_payload_axis_input_tready = 1'b1; end else if (shift_eth_payload_axis_extra_cycle_reg) begin shift_eth_payload_axis_tdata = {s_eth_payload_axis_tdata, save_eth_payload_axis_tdata_reg} >> ((KEEP_WIDTH-OFFSET)*8); shift_eth_payload_axis_tkeep = {{KEEP_WIDTH{1'b0}}, save_eth_payload_axis_tkeep_reg} >> (KEEP_WIDTH-OFFSET); shift_eth_payload_axis_tvalid = 1'b1; shift_eth_payload_axis_tlast = save_eth_payload_axis_tlast_reg; shift_eth_payload_axis_tuser = save_eth_payload_axis_tuser_reg; shift_eth_payload_axis_input_tready = flush_save; end else begin shift_eth_payload_axis_tdata = {s_eth_payload_axis_tdata, save_eth_payload_axis_tdata_reg} >> ((KEEP_WIDTH-OFFSET)*8); shift_eth_payload_axis_tkeep = {s_eth_payload_axis_tkeep, save_eth_payload_axis_tkeep_reg} >> (KEEP_WIDTH-OFFSET); shift_eth_payload_axis_tvalid = s_eth_payload_axis_tvalid; shift_eth_payload_axis_tlast = (s_eth_payload_axis_tlast && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) == 0)); shift_eth_payload_axis_tuser = (s_eth_payload_axis_tuser && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) == 0)); shift_eth_payload_axis_input_tready = !(s_eth_payload_axis_tlast && s_eth_payload_axis_tready && s_eth_payload_axis_tvalid); end end always @* begin send_eth_header_next = send_eth_header_reg; send_eth_payload_next = send_eth_payload_reg; ptr_next = ptr_reg; s_eth_hdr_ready_next = 1'b0; s_eth_payload_axis_tready_next = 1'b0; store_eth_hdr = 1'b0; flush_save = 1'b0; transfer_in_save = 1'b0; m_axis_tdata_int = {DATA_WIDTH{1'b0}}; m_axis_tkeep_int = {KEEP_WIDTH{1'b0}}; m_axis_tvalid_int = 1'b0; m_axis_tlast_int = 1'b0; m_axis_tuser_int = 1'b0; if (s_eth_hdr_ready && s_eth_hdr_valid) begin store_eth_hdr = 1'b1; ptr_next = 0; send_eth_header_next = 1'b1; send_eth_payload_next = (OFFSET != 0) && (CYCLE_COUNT == 1); s_eth_payload_axis_tready_next = send_eth_payload_next && m_axis_tready_int_early; end if (send_eth_payload_reg) begin s_eth_payload_axis_tready_next = m_axis_tready_int_early && shift_eth_payload_axis_input_tready; m_axis_tdata_int = shift_eth_payload_axis_tdata; m_axis_tkeep_int = shift_eth_payload_axis_tkeep; m_axis_tlast_int = shift_eth_payload_axis_tlast; m_axis_tuser_int = shift_eth_payload_axis_tuser; if ((s_eth_payload_axis_tready && s_eth_payload_axis_tvalid) || (m_axis_tready_int_reg && shift_eth_payload_axis_extra_cycle_reg)) begin transfer_in_save = 1'b1; m_axis_tvalid_int = 1'b1; if (shift_eth_payload_axis_tlast) begin flush_save = 1'b1; s_eth_payload_axis_tready_next = 1'b0; ptr_next = 0; send_eth_payload_next = 1'b0; end end end if (m_axis_tready_int_reg && (!OFFSET || !send_eth_payload_reg || m_axis_tvalid_int)) begin if (send_eth_header_reg) begin ptr_next = ptr_reg + 1; if ((OFFSET != 0) && (CYCLE_COUNT == 1 || ptr_next == CYCLE_COUNT-1) && !send_eth_payload_reg) begin send_eth_payload_next = 1'b1; s_eth_payload_axis_tready_next = m_axis_tready_int_early && shift_eth_payload_axis_input_tready; end m_axis_tvalid_int = 1'b1; `define _HEADER_FIELD_(offset, field) \ if (ptr_reg == offset/BYTE_LANES) begin \ m_axis_tdata_int[(offset%BYTE_LANES)*8 +: 8] = field; \ m_axis_tkeep_int[offset%BYTE_LANES] = 1'b1; \ end `_HEADER_FIELD_(0, eth_dest_mac_reg[5*8 +: 8]) `_HEADER_FIELD_(1, eth_dest_mac_reg[4*8 +: 8]) `_HEADER_FIELD_(2, eth_dest_mac_reg[3*8 +: 8]) `_HEADER_FIELD_(3, eth_dest_mac_reg[2*8 +: 8]) `_HEADER_FIELD_(4, eth_dest_mac_reg[1*8 +: 8]) `_HEADER_FIELD_(5, eth_dest_mac_reg[0*8 +: 8]) `_HEADER_FIELD_(6, eth_src_mac_reg[5*8 +: 8]) `_HEADER_FIELD_(7, eth_src_mac_reg[4*8 +: 8]) `_HEADER_FIELD_(8, eth_src_mac_reg[3*8 +: 8]) `_HEADER_FIELD_(9, eth_src_mac_reg[2*8 +: 8]) `_HEADER_FIELD_(10, eth_src_mac_reg[1*8 +: 8]) `_HEADER_FIELD_(11, eth_src_mac_reg[0*8 +: 8]) `_HEADER_FIELD_(12, eth_type_reg[1*8 +: 8]) `_HEADER_FIELD_(13, eth_type_reg[0*8 +: 8]) if (ptr_reg == 13/BYTE_LANES) begin if (!send_eth_payload_reg) begin s_eth_payload_axis_tready_next = m_axis_tready_int_early; send_eth_payload_next = 1'b1; end send_eth_header_next = 1'b0; end `undef _HEADER_FIELD_ end end s_eth_hdr_ready_next = !(send_eth_header_next || send_eth_payload_next); end always @(posedge clk) begin send_eth_header_reg <= send_eth_header_next; send_eth_payload_reg <= send_eth_payload_next; ptr_reg <= ptr_next; s_eth_hdr_ready_reg <= s_eth_hdr_ready_next; s_eth_payload_axis_tready_reg <= s_eth_payload_axis_tready_next; busy_reg <= send_eth_header_next || send_eth_payload_next; if (store_eth_hdr) begin eth_dest_mac_reg <= s_eth_dest_mac; eth_src_mac_reg <= s_eth_src_mac; eth_type_reg <= s_eth_type; end if (transfer_in_save) begin save_eth_payload_axis_tdata_reg <= s_eth_payload_axis_tdata; save_eth_payload_axis_tkeep_reg <= s_eth_payload_axis_tkeep; save_eth_payload_axis_tuser_reg <= s_eth_payload_axis_tuser; end if (flush_save) begin save_eth_payload_axis_tlast_reg <= 1'b0; shift_eth_payload_axis_extra_cycle_reg <= 1'b0; end else if (transfer_in_save) begin save_eth_payload_axis_tlast_reg <= s_eth_payload_axis_tlast; shift_eth_payload_axis_extra_cycle_reg <= OFFSET ? s_eth_payload_axis_tlast && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) != 0) : 1'b0; end if (rst) begin send_eth_header_reg <= 1'b0; send_eth_payload_reg <= 1'b0; ptr_reg <= 0; s_eth_hdr_ready_reg <= 1'b0; s_eth_payload_axis_tready_reg <= 1'b0; busy_reg <= 1'b0; end end // output datapath logic reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next; reg m_axis_tlast_reg = 1'b0; reg m_axis_tuser_reg = 1'b0; reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}}; reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}; reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next; reg temp_m_axis_tlast_reg = 1'b0; reg temp_m_axis_tuser_reg = 1'b0; // datapath control reg store_axis_int_to_output; reg store_axis_int_to_temp; reg store_axis_temp_to_output; assign m_axis_tdata = m_axis_tdata_reg; assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}}; assign m_axis_tvalid = m_axis_tvalid_reg; assign m_axis_tlast = m_axis_tlast_reg; assign m_axis_tuser = m_axis_tuser_reg; // enable ready input next cycle if output is ready or if both output registers are empty assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg); always @* begin // transfer sink ready state to source m_axis_tvalid_next = m_axis_tvalid_reg; temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg; store_axis_int_to_output = 1'b0; store_axis_int_to_temp = 1'b0; store_axis_temp_to_output = 1'b0; if (m_axis_tready_int_reg) begin // input is ready if (m_axis_tready || !m_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_tvalid_next = m_axis_tvalid_int; store_axis_int_to_temp = 1'b1; end end else if (m_axis_tready) begin // input is not ready, but output is ready m_axis_tvalid_next = temp_m_axis_tvalid_reg; temp_m_axis_tvalid_next = 1'b0; store_axis_temp_to_output = 1'b1; end end always @(posedge clk) begin m_axis_tvalid_reg <= m_axis_tvalid_next; m_axis_tready_int_reg <= m_axis_tready_int_early; temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next; // datapath if (store_axis_int_to_output) begin m_axis_tdata_reg <= m_axis_tdata_int; m_axis_tkeep_reg <= m_axis_tkeep_int; m_axis_tlast_reg <= m_axis_tlast_int; m_axis_tuser_reg <= m_axis_tuser_int; end else if (store_axis_temp_to_output) begin m_axis_tdata_reg <= temp_m_axis_tdata_reg; m_axis_tkeep_reg <= temp_m_axis_tkeep_reg; m_axis_tlast_reg <= temp_m_axis_tlast_reg; m_axis_tuser_reg <= temp_m_axis_tuser_reg; end if (store_axis_int_to_temp) begin temp_m_axis_tdata_reg <= m_axis_tdata_int; temp_m_axis_tkeep_reg <= m_axis_tkeep_int; temp_m_axis_tlast_reg <= m_axis_tlast_int; temp_m_axis_tuser_reg <= m_axis_tuser_int; end if (rst) begin m_axis_tvalid_reg <= 1'b0; m_axis_tready_int_reg <= 1'b0; temp_m_axis_tvalid_reg <= 1'b0; end end endmodule `resetall