/* Copyright (c) 2015 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * AXI4-Stream Ethernet FCS checker */ module axis_eth_fcs_check ( input wire clk, input wire rst, /* * AXI input */ input wire [7:0] input_axis_tdata, input wire input_axis_tvalid, output wire input_axis_tready, input wire input_axis_tlast, input wire input_axis_tuser, /* * AXI output */ output wire [7:0] output_axis_tdata, output wire output_axis_tvalid, input wire output_axis_tready, output wire output_axis_tlast, output wire output_axis_tuser, /* * Status */ output wire busy, output wire error_bad_fcs ); localparam [1:0] STATE_IDLE = 2'd0, STATE_PAYLOAD = 2'd1; reg [1:0] state_reg = STATE_IDLE, state_next; // datapath control signals reg reset_crc; reg update_crc; reg shift_in; reg shift_reset; reg [7:0] frame_ptr_reg = 0, frame_ptr_next; reg [7:0] input_axis_tdata_d0 = 0; reg [7:0] input_axis_tdata_d1 = 0; reg [7:0] input_axis_tdata_d2 = 0; reg [7:0] input_axis_tdata_d3 = 0; reg input_axis_tvalid_d0 = 0; reg input_axis_tvalid_d1 = 0; reg input_axis_tvalid_d2 = 0; reg input_axis_tvalid_d3 = 0; reg busy_reg = 0; reg error_bad_fcs_reg = 0, error_bad_fcs_next; reg input_axis_tready_reg = 0, input_axis_tready_next; reg [31:0] crc_state = 32'hFFFFFFFF; wire [31:0] crc_next; // internal datapath reg [7:0] output_axis_tdata_int; reg output_axis_tvalid_int; reg output_axis_tready_int = 0; reg output_axis_tlast_int; reg output_axis_tuser_int; wire output_axis_tready_int_early; assign input_axis_tready = input_axis_tready_reg; assign busy = busy_reg; assign error_bad_fcs = error_bad_fcs_reg; eth_crc_8 eth_crc_8_inst ( .data_in(input_axis_tdata_d3), .crc_state(crc_state), .crc_next(crc_next) ); always @* begin state_next = STATE_IDLE; reset_crc = 0; update_crc = 0; shift_in = 0; shift_reset = 0; frame_ptr_next = frame_ptr_reg; input_axis_tready_next = 0; output_axis_tdata_int = 0; output_axis_tvalid_int = 0; output_axis_tlast_int = 0; output_axis_tuser_int = 0; error_bad_fcs_next = 0; case (state_reg) STATE_IDLE: begin // idle state - wait for data input_axis_tready_next = output_axis_tready_int_early; frame_ptr_next = 0; reset_crc = 1; output_axis_tdata_int = input_axis_tdata_d3; output_axis_tvalid_int = input_axis_tvalid_d3 & input_axis_tvalid; output_axis_tlast_int = 0; output_axis_tuser_int = 0; if (input_axis_tready & input_axis_tvalid) begin shift_in = 1; if (input_axis_tvalid_d3) begin frame_ptr_next = 1; reset_crc = 0; update_crc = 1; state_next = STATE_PAYLOAD; end else begin state_next = STATE_IDLE; end end else begin state_next = STATE_IDLE; end end STATE_PAYLOAD: begin // transfer payload input_axis_tready_next = output_axis_tready_int_early; output_axis_tdata_int = input_axis_tdata_d3; output_axis_tvalid_int = input_axis_tvalid_d3 & input_axis_tvalid; output_axis_tlast_int = 0; output_axis_tuser_int = 0; if (input_axis_tready & input_axis_tvalid) begin frame_ptr_next = frame_ptr_reg + 1; shift_in = 1; update_crc = 1; if (input_axis_tlast) begin shift_reset = 1; reset_crc = 1; output_axis_tlast_int = 1; output_axis_tuser_int = input_axis_tuser; if ({input_axis_tdata, input_axis_tdata_d0, input_axis_tdata_d1, input_axis_tdata_d2} != ~crc_next) begin output_axis_tuser_int = 1; error_bad_fcs_next = 1; end input_axis_tready_next = output_axis_tready_int_early; state_next = STATE_IDLE; end else begin state_next = STATE_PAYLOAD; end end else begin state_next = STATE_PAYLOAD; end end endcase end always @(posedge clk or posedge rst) begin if (rst) begin state_reg <= STATE_IDLE; frame_ptr_reg <= 0; input_axis_tready_reg <= 0; busy_reg <= 0; error_bad_fcs_reg <= 0; crc_state <= 32'hFFFFFFFF; end else begin state_reg <= state_next; frame_ptr_reg <= frame_ptr_next; input_axis_tready_reg <= input_axis_tready_next; busy_reg <= state_next != STATE_IDLE; error_bad_fcs_reg <= error_bad_fcs_next; // datapath if (reset_crc) begin crc_state <= 32'hFFFFFFFF; end else if (update_crc) begin crc_state <= crc_next; end if (shift_reset) begin input_axis_tvalid_d0 <= 0; input_axis_tvalid_d1 <= 0; input_axis_tvalid_d2 <= 0; input_axis_tvalid_d3 <= 0; end else if (shift_in) begin input_axis_tdata_d0 <= input_axis_tdata; input_axis_tdata_d1 <= input_axis_tdata_d0; input_axis_tdata_d2 <= input_axis_tdata_d1; input_axis_tdata_d3 <= input_axis_tdata_d2; input_axis_tvalid_d0 <= input_axis_tvalid; input_axis_tvalid_d1 <= input_axis_tvalid_d0; input_axis_tvalid_d2 <= input_axis_tvalid_d1; input_axis_tvalid_d3 <= input_axis_tvalid_d2; end end end // output datapath logic reg [7:0] output_axis_tdata_reg = 0; reg output_axis_tvalid_reg = 0; reg output_axis_tlast_reg = 0; reg output_axis_tuser_reg = 0; reg [7:0] temp_axis_tdata_reg = 0; reg temp_axis_tvalid_reg = 0; reg temp_axis_tlast_reg = 0; reg temp_axis_tuser_reg = 0; assign output_axis_tdata = output_axis_tdata_reg; assign output_axis_tvalid = output_axis_tvalid_reg; assign output_axis_tlast = output_axis_tlast_reg; assign output_axis_tuser = output_axis_tuser_reg; // enable ready input next cycle if output is ready or if there is space in both output registers or if there is space in the temp register that will not be filled next cycle assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & ~output_axis_tvalid_reg) | (~temp_axis_tvalid_reg & ~output_axis_tvalid_int); always @(posedge clk or posedge rst) begin if (rst) begin output_axis_tdata_reg <= 0; output_axis_tvalid_reg <= 0; output_axis_tlast_reg <= 0; output_axis_tuser_reg <= 0; output_axis_tready_int <= 0; temp_axis_tdata_reg <= 0; temp_axis_tvalid_reg <= 0; temp_axis_tlast_reg <= 0; temp_axis_tuser_reg <= 0; end else begin // transfer sink ready state to source output_axis_tready_int <= output_axis_tready_int_early; if (output_axis_tready_int) begin // input is ready if (output_axis_tready | ~output_axis_tvalid_reg) begin // output is ready or currently not valid, transfer data to output output_axis_tdata_reg <= output_axis_tdata_int; output_axis_tvalid_reg <= output_axis_tvalid_int; output_axis_tlast_reg <= output_axis_tlast_int; output_axis_tuser_reg <= output_axis_tuser_int; end else begin // output is not ready and currently valid, store input in temp temp_axis_tdata_reg <= output_axis_tdata_int; temp_axis_tvalid_reg <= output_axis_tvalid_int; temp_axis_tlast_reg <= output_axis_tlast_int; temp_axis_tuser_reg <= output_axis_tuser_int; end end else if (output_axis_tready) begin // input is not ready, but output is ready output_axis_tdata_reg <= temp_axis_tdata_reg; output_axis_tvalid_reg <= temp_axis_tvalid_reg; output_axis_tlast_reg <= temp_axis_tlast_reg; output_axis_tuser_reg <= temp_axis_tuser_reg; temp_axis_tdata_reg <= 0; temp_axis_tvalid_reg <= 0; temp_axis_tlast_reg <= 0; temp_axis_tuser_reg <= 0; end end end endmodule