/* Copyright (c) 2015-2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `resetall `timescale 1ns / 1ps `default_nettype none /* * PTP clock module */ module ptp_clock # ( parameter PERIOD_NS_WIDTH = 4, parameter OFFSET_NS_WIDTH = 4, parameter DRIFT_NS_WIDTH = 4, parameter FNS_WIDTH = 16, parameter PERIOD_NS = 4'h6, parameter PERIOD_FNS = 16'h6666, parameter DRIFT_ENABLE = 1, parameter DRIFT_NS = 4'h0, parameter DRIFT_FNS = 16'h0002, parameter DRIFT_RATE = 16'h0005, parameter PIPELINE_OUTPUT = 0 ) ( input wire clk, input wire rst, /* * Timestamp inputs for synchronization */ input wire [95:0] input_ts_96, input wire input_ts_96_valid, input wire [63:0] input_ts_64, input wire input_ts_64_valid, /* * Period adjustment */ input wire [PERIOD_NS_WIDTH-1:0] input_period_ns, input wire [FNS_WIDTH-1:0] input_period_fns, input wire input_period_valid, /* * Offset adjustment */ input wire [OFFSET_NS_WIDTH-1:0] input_adj_ns, input wire [FNS_WIDTH-1:0] input_adj_fns, input wire [15:0] input_adj_count, input wire input_adj_valid, output wire input_adj_active, /* * Drift adjustment */ input wire [DRIFT_NS_WIDTH-1:0] input_drift_ns, input wire [FNS_WIDTH-1:0] input_drift_fns, input wire [15:0] input_drift_rate, input wire input_drift_valid, /* * Timestamp outputs */ output wire [95:0] output_ts_96, output wire [63:0] output_ts_64, output wire output_ts_step, /* * PPS output */ output wire output_pps ); parameter INC_NS_WIDTH = $clog2(2**PERIOD_NS_WIDTH + 2**OFFSET_NS_WIDTH + 2**DRIFT_NS_WIDTH); localparam [30:0] NS_PER_S = 31'd1_000_000_000; reg [PERIOD_NS_WIDTH-1:0] period_ns_reg = PERIOD_NS; reg [FNS_WIDTH-1:0] period_fns_reg = PERIOD_FNS; reg [OFFSET_NS_WIDTH-1:0] adj_ns_reg = 0; reg [FNS_WIDTH-1:0] adj_fns_reg = 0; reg [15:0] adj_count_reg = 0; reg adj_active_reg = 0; reg [DRIFT_NS_WIDTH-1:0] drift_ns_reg = DRIFT_NS; reg [FNS_WIDTH-1:0] drift_fns_reg = DRIFT_FNS; reg [15:0] drift_rate_reg = DRIFT_RATE; reg [INC_NS_WIDTH-1:0] ts_inc_ns_reg = 0; reg [FNS_WIDTH-1:0] ts_inc_fns_reg = 0; reg [INC_NS_WIDTH-1:0] ts_inc_ns_delay_reg = 0; reg [FNS_WIDTH-1:0] ts_inc_fns_delay_reg = 0; reg [30:0] ts_inc_ns_ovf_reg = 0; reg [FNS_WIDTH-1:0] ts_inc_fns_ovf_reg = 0; reg [47:0] ts_96_s_reg = 0; reg [29:0] ts_96_ns_reg = 0; reg [FNS_WIDTH-1:0] ts_96_fns_reg = 0; reg [29:0] ts_96_ns_inc_reg = 0; reg [FNS_WIDTH-1:0] ts_96_fns_inc_reg = 0; reg [30:0] ts_96_ns_ovf_reg = 31'h7fffffff; reg [FNS_WIDTH-1:0] ts_96_fns_ovf_reg = 16'hffff; reg [47:0] ts_64_ns_reg = 0; reg [FNS_WIDTH-1:0] ts_64_fns_reg = 0; reg ts_step_reg = 1'b0; reg [15:0] drift_cnt = 0; reg [47:0] temp; reg pps_reg = 0; assign input_adj_active = adj_active_reg; generate if (PIPELINE_OUTPUT > 0) begin // pipeline (* shreg_extract = "no" *) reg [95:0] output_ts_96_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) reg [63:0] output_ts_64_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) reg output_ts_step_reg[0:PIPELINE_OUTPUT-1]; (* shreg_extract = "no" *) reg output_pps_reg[0:PIPELINE_OUTPUT-1]; assign output_ts_96 = output_ts_96_reg[PIPELINE_OUTPUT-1]; assign output_ts_64 = output_ts_64_reg[PIPELINE_OUTPUT-1]; assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1]; assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1]; integer i; initial begin for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin output_ts_96_reg[i] = 96'd0; output_ts_64_reg[i] = 64'd0; output_ts_step_reg[i] = 1'b0; output_pps_reg[i] = 1'b0; end end always @(posedge clk) begin output_ts_96_reg[0][95:48] <= ts_96_s_reg; output_ts_96_reg[0][47:46] <= 2'b00; output_ts_96_reg[0][45:16] <= ts_96_ns_reg; output_ts_96_reg[0][15:0] <= {ts_96_fns_reg, 16'd0} >> FNS_WIDTH; output_ts_64_reg[0][63:16] <= ts_64_ns_reg; output_ts_64_reg[0][15:0] <= {ts_64_fns_reg, 16'd0} >> FNS_WIDTH; output_ts_step_reg[0] <= ts_step_reg; output_pps_reg[0] <= pps_reg; for (i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin output_ts_96_reg[i+1] <= output_ts_96_reg[i]; output_ts_64_reg[i+1] <= output_ts_64_reg[i]; output_ts_step_reg[i+1] <= output_ts_step_reg[i]; output_pps_reg[i+1] <= output_pps_reg[i]; end if (rst) begin for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin output_ts_96_reg[i] <= 96'd0; output_ts_64_reg[i] <= 64'd0; output_ts_step_reg[i] <= 1'b0; output_pps_reg[i] <= 1'b0; end end end end else begin assign output_ts_96[95:48] = ts_96_s_reg; assign output_ts_96[47:46] = 2'b00; assign output_ts_96[45:16] = ts_96_ns_reg; assign output_ts_96[15:0] = {ts_96_fns_reg, 16'd0} >> FNS_WIDTH; assign output_ts_64[63:16] = ts_64_ns_reg; assign output_ts_64[15:0] = {ts_64_fns_reg, 16'd0} >> FNS_WIDTH; assign output_ts_step = ts_step_reg; assign output_pps = pps_reg; end endgenerate always @(posedge clk) begin ts_step_reg <= 0; // latch parameters if (input_period_valid) begin period_ns_reg <= input_period_ns; period_fns_reg <= input_period_fns; end if (input_adj_valid) begin adj_ns_reg <= input_adj_ns; adj_fns_reg <= input_adj_fns; adj_count_reg <= input_adj_count; end if (DRIFT_ENABLE && input_drift_valid) begin drift_ns_reg <= input_drift_ns; drift_fns_reg <= input_drift_fns; drift_rate_reg <= input_drift_rate; end // timestamp increment calculation {ts_inc_ns_reg, ts_inc_fns_reg} <= $signed({1'b0, period_ns_reg, period_fns_reg}) + (adj_active_reg ? $signed({adj_ns_reg, adj_fns_reg}) : 0) + ((DRIFT_ENABLE && drift_cnt == 0) ? $signed({drift_ns_reg, drift_fns_reg}) : 0); // offset adjust counter if (adj_count_reg > 0) begin adj_count_reg <= adj_count_reg - 1; adj_active_reg <= 1; ts_step_reg <= 1; end else begin adj_active_reg <= 0; end // drift counter if (drift_cnt == 0) begin drift_cnt <= drift_rate_reg-1; end else begin drift_cnt <= drift_cnt - 1; end // 96 bit timestamp {ts_inc_ns_delay_reg, ts_inc_fns_delay_reg} <= {ts_inc_ns_reg, ts_inc_fns_reg}; {ts_inc_ns_ovf_reg, ts_inc_fns_ovf_reg} <= {NS_PER_S, {FNS_WIDTH{1'b0}}} - {ts_inc_ns_reg, ts_inc_fns_reg}; {ts_96_ns_inc_reg, ts_96_fns_inc_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg} + {ts_inc_ns_delay_reg, ts_inc_fns_delay_reg}; {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg} - {ts_inc_ns_ovf_reg, ts_inc_fns_ovf_reg}; {ts_96_ns_reg, ts_96_fns_reg} <= {ts_96_ns_inc_reg, ts_96_fns_inc_reg}; if (!ts_96_ns_ovf_reg[30]) begin // if the overflow lookahead did not borrow, one second has elapsed // increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set {ts_96_ns_inc_reg, ts_96_fns_inc_reg} <= {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg} + {ts_inc_ns_delay_reg, ts_inc_fns_delay_reg}; ts_96_ns_ovf_reg[30] <= 1'b1; {ts_96_ns_reg, ts_96_fns_reg} <= {ts_96_ns_ovf_reg, ts_96_fns_ovf_reg}; ts_96_s_reg <= ts_96_s_reg + 1; end if (input_ts_96_valid) begin // load timestamp ts_96_s_reg <= input_ts_96[95:48]; ts_96_ns_reg <= input_ts_96[45:16]; ts_96_ns_inc_reg <= input_ts_96[45:16]; ts_96_ns_ovf_reg[30] <= 1'b1; ts_96_fns_reg <= FNS_WIDTH > 16 ? input_ts_96[15:0] << (FNS_WIDTH-16) : input_ts_96[15:0] >> (16-FNS_WIDTH); ts_96_fns_inc_reg <= FNS_WIDTH > 16 ? input_ts_96[15:0] << (FNS_WIDTH-16) : input_ts_96[15:0] >> (16-FNS_WIDTH); ts_step_reg <= 1; end // 64 bit timestamp {ts_64_ns_reg, ts_64_fns_reg} <= {ts_64_ns_reg, ts_64_fns_reg} + {ts_inc_ns_reg, ts_inc_fns_reg}; if (input_ts_64_valid) begin // load timestamp {ts_64_ns_reg, ts_64_fns_reg} <= input_ts_64; ts_step_reg <= 1; end pps_reg <= !ts_96_ns_ovf_reg[30]; if (rst) begin period_ns_reg <= PERIOD_NS; period_fns_reg <= PERIOD_FNS; adj_ns_reg <= 0; adj_fns_reg <= 0; adj_count_reg <= 0; adj_active_reg <= 0; drift_ns_reg <= DRIFT_NS; drift_fns_reg <= DRIFT_FNS; drift_rate_reg <= DRIFT_RATE; ts_inc_ns_reg <= 0; ts_inc_fns_reg <= 0; ts_inc_ns_delay_reg <= 0; ts_inc_fns_delay_reg <= 0; ts_inc_ns_ovf_reg <= 0; ts_inc_fns_ovf_reg <= 0; ts_96_s_reg <= 0; ts_96_ns_reg <= 0; ts_96_fns_reg <= 0; ts_96_ns_inc_reg <= 0; ts_96_fns_inc_reg <= 0; ts_96_ns_ovf_reg[30] <= 1'b1; ts_64_ns_reg <= 0; ts_64_fns_reg <= 0; ts_step_reg <= 0; drift_cnt <= 0; pps_reg <= 0; end end endmodule `resetall