verilog-ethernet/rtl/mac_ctrl_tx.v
Alex Forencich 6d5cda5986 Add MAC control layer modules
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-07-22 00:47:15 -07:00

422 lines
15 KiB
Verilog

/*
Copyright (c) 2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MAC control transmit
*/
module mac_ctrl_tx #
(
parameter DATA_WIDTH = 8,
parameter KEEP_ENABLE = DATA_WIDTH>8,
parameter KEEP_WIDTH = DATA_WIDTH/8,
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1,
parameter MCF_PARAMS_SIZE = 18
)
(
input wire clk,
input wire rst,
/*
* AXI stream input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI stream output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* MAC control frame interface
*/
input wire mcf_valid,
output wire mcf_ready,
input wire [47:0] mcf_eth_dst,
input wire [47:0] mcf_eth_src,
input wire [15:0] mcf_eth_type,
input wire [15:0] mcf_opcode,
input wire [MCF_PARAMS_SIZE*8-1:0] mcf_params,
input wire [ID_WIDTH-1:0] mcf_id,
input wire [DEST_WIDTH-1:0] mcf_dest,
input wire [USER_WIDTH-1:0] mcf_user,
/*
* Pause interface
*/
input wire tx_pause_req,
output wire tx_pause_ack,
/*
* Status
*/
output wire stat_tx_mcf
);
parameter BYTE_LANES = KEEP_ENABLE ? KEEP_WIDTH : 1;
parameter HDR_SIZE = 60;
parameter CYCLE_COUNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = HDR_SIZE % BYTE_LANES;
// check configuration
initial begin
if (BYTE_LANES * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (MCF_PARAMS_SIZE > 44) begin
$error("Error: Maximum MCF_PARAMS_SIZE is 44 bytes (instance %m)");
$finish;
end
end
/*
MAC control frame
Field Length
Destination MAC address 6 octets [01:80:C2:00:00:01]
Source MAC address 6 octets
Ethertype 2 octets [0x8808]
Opcode 2 octets
Parameters 0-44 octets
This module manages the transmission of MAC control frames. Control frames
are accepted in parallel, serialized, and merged at a higher priority with
data traffic.
*/
reg send_data_reg = 1'b0, send_data_next;
reg send_mcf_reg = 1'b0, send_mcf_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg mcf_ready_reg = 1'b0, mcf_ready_next;
reg tx_pause_ack_reg = 1'b0, tx_pause_ack_next;
reg stat_tx_mcf_reg = 1'b0, stat_tx_mcf_next;
// internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign mcf_ready = mcf_ready_reg;
assign tx_pause_ack = tx_pause_ack_reg;
assign stat_tx_mcf = stat_tx_mcf_reg;
integer k;
always @* begin
send_data_next = send_data_reg;
send_mcf_next = send_mcf_reg;
ptr_next = ptr_reg;
s_axis_tready_next = 1'b0;
mcf_ready_next = 1'b0;
tx_pause_ack_next = tx_pause_ack_reg;
stat_tx_mcf_next = 1'b0;
m_axis_tdata_int = 0;
m_axis_tkeep_int = 0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tid_int = 0;
m_axis_tdest_int = 0;
m_axis_tuser_int = 0;
if (!send_data_reg && !send_mcf_reg) begin
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = s_axis_tkeep;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
tx_pause_ack_next = tx_pause_req;
if (s_axis_tvalid && s_axis_tready) begin
s_axis_tready_next = m_axis_tready_int_early;
tx_pause_ack_next = 1'b0;
m_axis_tvalid_int = 1'b1;
if (s_axis_tlast) begin
s_axis_tready_next = m_axis_tready_int_early && !mcf_valid && !mcf_ready;
send_data_next = 1'b0;
end else begin
send_data_next = 1'b1;
end
end else if (mcf_valid) begin
s_axis_tready_next = 1'b0;
ptr_next = 0;
send_mcf_next = 1'b1;
mcf_ready_next = (CYCLE_COUNT == 1) && m_axis_tready_int_early;
end
end
if (send_data_reg) begin
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = s_axis_tkeep;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis_tvalid && s_axis_tready) begin
m_axis_tvalid_int = 1'b1;
if (s_axis_tlast) begin
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
send_data_next = 1'b0;
if (mcf_valid) begin
s_axis_tready_next = 1'b0;
ptr_next = 0;
send_mcf_next = 1'b1;
mcf_ready_next = (CYCLE_COUNT == 1) && m_axis_tready_int_early;
end
end else begin
send_data_next = 1'b1;
end
end
end
if (send_mcf_reg) begin
mcf_ready_next = (CYCLE_COUNT == 1 || ptr_reg == CYCLE_COUNT-1) && m_axis_tready_int_early;
if (m_axis_tready_int_reg) begin
ptr_next = ptr_reg + 1;
m_axis_tvalid_int = 1'b1;
m_axis_tid_int = mcf_id;
m_axis_tdest_int = mcf_dest;
m_axis_tuser_int = mcf_user;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/BYTE_LANES) begin \
m_axis_tdata_int[(offset%BYTE_LANES)*8 +: 8] = field; \
m_axis_tkeep_int[offset%BYTE_LANES] = 1'b1; \
end
`_HEADER_FIELD_(0, mcf_eth_dst[5*8 +: 8])
`_HEADER_FIELD_(1, mcf_eth_dst[4*8 +: 8])
`_HEADER_FIELD_(2, mcf_eth_dst[3*8 +: 8])
`_HEADER_FIELD_(3, mcf_eth_dst[2*8 +: 8])
`_HEADER_FIELD_(4, mcf_eth_dst[1*8 +: 8])
`_HEADER_FIELD_(5, mcf_eth_dst[0*8 +: 8])
`_HEADER_FIELD_(6, mcf_eth_src[5*8 +: 8])
`_HEADER_FIELD_(7, mcf_eth_src[4*8 +: 8])
`_HEADER_FIELD_(8, mcf_eth_src[3*8 +: 8])
`_HEADER_FIELD_(9, mcf_eth_src[2*8 +: 8])
`_HEADER_FIELD_(10, mcf_eth_src[1*8 +: 8])
`_HEADER_FIELD_(11, mcf_eth_src[0*8 +: 8])
`_HEADER_FIELD_(12, mcf_eth_type[1*8 +: 8])
`_HEADER_FIELD_(13, mcf_eth_type[0*8 +: 8])
`_HEADER_FIELD_(14, mcf_opcode[1*8 +: 8])
`_HEADER_FIELD_(15, mcf_opcode[0*8 +: 8])
for (k = 0; k < HDR_SIZE-16; k = k + 1) begin
if (ptr_reg == (16+k)/BYTE_LANES) begin
if (k < MCF_PARAMS_SIZE) begin
m_axis_tdata_int[((16+k)%BYTE_LANES)*8 +: 8] = mcf_params[k*8 +: 8];
end else begin
m_axis_tdata_int[((16+k)%BYTE_LANES)*8 +: 8] = 0;
end
m_axis_tkeep_int[(16+k)%BYTE_LANES] = 1'b1;
end
end
if (ptr_reg == (HDR_SIZE-1)/BYTE_LANES) begin
s_axis_tready_next = m_axis_tready_int_early && !tx_pause_req;
mcf_ready_next = 1'b0;
m_axis_tlast_int = 1'b1;
send_mcf_next = 1'b0;
stat_tx_mcf_next = 1'b1;
end else begin
mcf_ready_next = (ptr_next == CYCLE_COUNT-1) && m_axis_tready_int_early;
end
`undef _HEADER_FIELD_
end
end
end
always @(posedge clk) begin
send_data_reg <= send_data_next;
send_mcf_reg <= send_mcf_next;
ptr_reg <= ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
mcf_ready_reg <= mcf_ready_next;
tx_pause_ack_reg <= tx_pause_ack_next;
stat_tx_mcf_reg <= stat_tx_mcf_next;
if (rst) begin
send_data_reg <= 1'b0;
send_mcf_reg <= 1'b0;
ptr_reg <= 0;
s_axis_tready_reg <= 1'b0;
mcf_ready_reg <= 1'b0;
tx_pause_ack_reg <= 1'b0;
stat_tx_mcf_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall