mirror of
https://github.com/alexforencich/verilog-ethernet.git
synced 2025-01-14 06:43:18 +08:00
479 lines
19 KiB
Verilog
479 lines
19 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2014-2015 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* AXI4-Stream bus width adapter
|
|
*/
|
|
module axis_adapter #
|
|
(
|
|
parameter INPUT_DATA_WIDTH = 8,
|
|
parameter INPUT_KEEP_WIDTH = (INPUT_DATA_WIDTH/8),
|
|
parameter OUTPUT_DATA_WIDTH = 8,
|
|
parameter OUTPUT_KEEP_WIDTH = (OUTPUT_DATA_WIDTH/8)
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI input
|
|
*/
|
|
input wire [INPUT_DATA_WIDTH-1:0] input_axis_tdata,
|
|
input wire [INPUT_KEEP_WIDTH-1:0] input_axis_tkeep,
|
|
input wire input_axis_tvalid,
|
|
output wire input_axis_tready,
|
|
input wire input_axis_tlast,
|
|
input wire input_axis_tuser,
|
|
|
|
/*
|
|
* AXI output
|
|
*/
|
|
output wire [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata,
|
|
output wire [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep,
|
|
output wire output_axis_tvalid,
|
|
input wire output_axis_tready,
|
|
output wire output_axis_tlast,
|
|
output wire output_axis_tuser
|
|
);
|
|
|
|
// bus word widths (must be identical)
|
|
localparam INPUT_DATA_WORD_WIDTH = INPUT_DATA_WIDTH / INPUT_KEEP_WIDTH;
|
|
localparam OUTPUT_DATA_WORD_WIDTH = OUTPUT_DATA_WIDTH / OUTPUT_KEEP_WIDTH;
|
|
// output bus is wider
|
|
localparam EXPAND_BUS = OUTPUT_KEEP_WIDTH > INPUT_KEEP_WIDTH;
|
|
// total data and keep widths
|
|
localparam DATA_WIDTH = EXPAND_BUS ? OUTPUT_DATA_WIDTH : INPUT_DATA_WIDTH;
|
|
localparam KEEP_WIDTH = EXPAND_BUS ? OUTPUT_KEEP_WIDTH : INPUT_KEEP_WIDTH;
|
|
// required number of cycles to match widths
|
|
localparam CYCLE_COUNT = EXPAND_BUS ? (OUTPUT_KEEP_WIDTH / INPUT_KEEP_WIDTH) : (INPUT_KEEP_WIDTH / OUTPUT_KEEP_WIDTH);
|
|
// data width and keep width per cycle
|
|
localparam CYCLE_DATA_WIDTH = DATA_WIDTH / CYCLE_COUNT;
|
|
localparam CYCLE_KEEP_WIDTH = KEEP_WIDTH / CYCLE_COUNT;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (INPUT_DATA_WORD_WIDTH * INPUT_KEEP_WIDTH != INPUT_DATA_WIDTH) begin
|
|
$error("Error: input data width not evenly divisble");
|
|
$finish;
|
|
end
|
|
|
|
if (OUTPUT_DATA_WORD_WIDTH * OUTPUT_KEEP_WIDTH != OUTPUT_DATA_WIDTH) begin
|
|
$error("Error: output data width not evenly divisble");
|
|
$finish;
|
|
end
|
|
|
|
if (INPUT_DATA_WORD_WIDTH != OUTPUT_DATA_WORD_WIDTH) begin
|
|
$error("Error: word width mismatch");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
// state register
|
|
localparam [2:0]
|
|
STATE_IDLE = 3'd0,
|
|
STATE_TRANSFER_IN = 3'd1,
|
|
STATE_TRANSFER_OUT = 3'd2;
|
|
|
|
reg [2:0] state_reg = STATE_IDLE, state_next;
|
|
|
|
reg [7:0] cycle_count_reg = 8'd0, cycle_count_next;
|
|
|
|
reg last_cycle;
|
|
|
|
reg [DATA_WIDTH-1:0] temp_tdata_reg = {DATA_WIDTH{1'b0}}, temp_tdata_next;
|
|
reg [KEEP_WIDTH-1:0] temp_tkeep_reg = {KEEP_WIDTH{1'b0}}, temp_tkeep_next;
|
|
reg temp_tlast_reg = 1'b0, temp_tlast_next;
|
|
reg temp_tuser_reg = 1'b0, temp_tuser_next;
|
|
|
|
// internal datapath
|
|
reg [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata_int;
|
|
reg [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep_int;
|
|
reg output_axis_tvalid_int;
|
|
reg output_axis_tready_int_reg = 1'b0;
|
|
reg output_axis_tlast_int;
|
|
reg output_axis_tuser_int;
|
|
wire output_axis_tready_int_early;
|
|
|
|
reg input_axis_tready_reg = 1'b0, input_axis_tready_next;
|
|
|
|
assign input_axis_tready = input_axis_tready_reg;
|
|
|
|
always @* begin
|
|
state_next = STATE_IDLE;
|
|
|
|
cycle_count_next = cycle_count_reg;
|
|
|
|
temp_tdata_next = temp_tdata_reg;
|
|
temp_tkeep_next = temp_tkeep_reg;
|
|
temp_tlast_next = temp_tlast_reg;
|
|
temp_tuser_next = temp_tuser_reg;
|
|
|
|
output_axis_tdata_int = {OUTPUT_DATA_WIDTH{1'b0}};
|
|
output_axis_tkeep_int = {OUTPUT_KEEP_WIDTH{1'b0}};
|
|
output_axis_tvalid_int = 1'b0;
|
|
output_axis_tlast_int = 1'b0;
|
|
output_axis_tuser_int = 1'b0;
|
|
|
|
input_axis_tready_next = 1'b0;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state - no data in registers
|
|
if (CYCLE_COUNT == 1) begin
|
|
// output and input same width - just act like a register
|
|
|
|
// accept data next cycle if output register ready next cycle
|
|
input_axis_tready_next = output_axis_tready_int_early;
|
|
|
|
// transfer through
|
|
output_axis_tdata_int = input_axis_tdata;
|
|
output_axis_tkeep_int = input_axis_tkeep;
|
|
output_axis_tvalid_int = input_axis_tvalid;
|
|
output_axis_tlast_int = input_axis_tlast;
|
|
output_axis_tuser_int = input_axis_tuser;
|
|
|
|
state_next = STATE_IDLE;
|
|
end else if (EXPAND_BUS) begin
|
|
// output bus is wider
|
|
|
|
// accept new data
|
|
input_axis_tready_next = 1'b1;
|
|
|
|
if (input_axis_tready & input_axis_tvalid) begin
|
|
// word transfer in - store it in data register
|
|
|
|
// pass complete input word, zero-extended to temp register
|
|
temp_tdata_next = input_axis_tdata;
|
|
temp_tkeep_next = input_axis_tkeep;
|
|
temp_tlast_next = input_axis_tlast;
|
|
temp_tuser_next = input_axis_tuser;
|
|
|
|
// first input cycle complete
|
|
cycle_count_next = 8'd1;
|
|
|
|
if (input_axis_tlast) begin
|
|
// got last signal on first cycle, so output it
|
|
input_axis_tready_next = 1'b0;
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end else begin
|
|
// otherwise, transfer in the rest of the words
|
|
input_axis_tready_next = 1'b1;
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end else begin
|
|
// output bus is narrower
|
|
|
|
// accept new data
|
|
input_axis_tready_next = 1'b1;
|
|
|
|
if (input_axis_tready & input_axis_tvalid) begin
|
|
// word transfer in - store it in data register
|
|
cycle_count_next = 8'd0;
|
|
|
|
// is this the last cycle?
|
|
if (CYCLE_COUNT == 1) begin
|
|
// last cycle by counter value
|
|
last_cycle = 1'b1;
|
|
end else if (input_axis_tkeep[CYCLE_KEEP_WIDTH-1:0] != {CYCLE_KEEP_WIDTH{1'b1}}) begin
|
|
// last cycle by tkeep fall in current cycle
|
|
last_cycle = 1'b1;
|
|
end else if (input_axis_tkeep[(CYCLE_KEEP_WIDTH*2)-1:CYCLE_KEEP_WIDTH] == {CYCLE_KEEP_WIDTH{1'b0}}) begin
|
|
// last cycle by tkeep fall at end of current cycle
|
|
last_cycle = 1'b1;
|
|
end else begin
|
|
last_cycle = 1'b0;
|
|
end
|
|
|
|
// pass complete input word, zero-extended to temp register
|
|
temp_tdata_next = input_axis_tdata;
|
|
temp_tkeep_next = input_axis_tkeep;
|
|
temp_tlast_next = input_axis_tlast;
|
|
temp_tuser_next = input_axis_tuser;
|
|
|
|
// short-circuit and get first word out the door
|
|
output_axis_tdata_int = input_axis_tdata[CYCLE_DATA_WIDTH-1:0];
|
|
output_axis_tkeep_int = input_axis_tkeep[CYCLE_KEEP_WIDTH-1:0];
|
|
output_axis_tvalid_int = 1'b1;
|
|
output_axis_tlast_int = input_axis_tlast & last_cycle;
|
|
output_axis_tuser_int = input_axis_tuser & last_cycle;
|
|
|
|
if (output_axis_tready_int_reg) begin
|
|
// if output register is ready for first word, then move on to the next one
|
|
cycle_count_next = 8'd1;
|
|
end
|
|
|
|
if (!last_cycle || !output_axis_tready_int_reg) begin
|
|
// continue outputting words
|
|
input_axis_tready_next = 1'b0;
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
end
|
|
STATE_TRANSFER_IN: begin
|
|
// transfer word to temp registers
|
|
// only used when output is wider
|
|
|
|
// accept new data
|
|
input_axis_tready_next = 1'b1;
|
|
|
|
if (input_axis_tready & input_axis_tvalid) begin
|
|
// word transfer in - store in data register
|
|
|
|
temp_tdata_next[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH] = input_axis_tdata;
|
|
temp_tkeep_next[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] = input_axis_tkeep;
|
|
temp_tlast_next = input_axis_tlast;
|
|
temp_tuser_next = input_axis_tuser;
|
|
|
|
cycle_count_next = cycle_count_reg + 1;
|
|
|
|
if ((cycle_count_reg == CYCLE_COUNT-1) | input_axis_tlast) begin
|
|
// terminated by counter or tlast signal, output complete word
|
|
// read input word next cycle if output will be ready
|
|
input_axis_tready_next = output_axis_tready_int_early;
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end else begin
|
|
// more words to read
|
|
input_axis_tready_next = 1'b1;
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end
|
|
STATE_TRANSFER_OUT: begin
|
|
// transfer word to output registers
|
|
|
|
if (EXPAND_BUS) begin
|
|
// output bus is wider
|
|
|
|
// do not accept new data
|
|
input_axis_tready_next = 1'b0;
|
|
|
|
// single-cycle output of entire stored word (output wider)
|
|
output_axis_tdata_int = temp_tdata_reg;
|
|
output_axis_tkeep_int = temp_tkeep_reg;
|
|
output_axis_tvalid_int = 1'b1;
|
|
output_axis_tlast_int = temp_tlast_reg;
|
|
output_axis_tuser_int = temp_tuser_reg;
|
|
|
|
if (output_axis_tready_int_reg) begin
|
|
// word transfer out
|
|
|
|
if (input_axis_tready & input_axis_tvalid) begin
|
|
// word transfer in
|
|
|
|
// pass complete input word, zero-extended to temp register
|
|
temp_tdata_next = input_axis_tdata;
|
|
temp_tkeep_next = input_axis_tkeep;
|
|
temp_tlast_next = input_axis_tlast;
|
|
temp_tuser_next = input_axis_tuser;
|
|
|
|
// first input cycle complete
|
|
cycle_count_next = 8'd1;
|
|
|
|
if (input_axis_tlast) begin
|
|
// got last signal on first cycle, so output it
|
|
input_axis_tready_next = 1'b0;
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end else begin
|
|
// otherwise, transfer in the rest of the words
|
|
input_axis_tready_next = 1'b1;
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end else begin
|
|
input_axis_tready_next = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end
|
|
end else begin
|
|
// output bus is narrower
|
|
|
|
// do not accept new data
|
|
input_axis_tready_next = 1'b0;
|
|
|
|
// is this the last cycle?
|
|
if (cycle_count_reg == CYCLE_COUNT-1) begin
|
|
// last cycle by counter value
|
|
last_cycle = 1'b1;
|
|
end else if (temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] != {CYCLE_KEEP_WIDTH{1'b1}}) begin
|
|
// last cycle by tkeep fall in current cycle
|
|
last_cycle = 1'b1;
|
|
end else if (temp_tkeep_reg[(cycle_count_reg+1)*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] == {CYCLE_KEEP_WIDTH{1'b0}}) begin
|
|
// last cycle by tkeep fall at end of current cycle
|
|
last_cycle = 1'b1;
|
|
end else begin
|
|
last_cycle = 1'b0;
|
|
end
|
|
|
|
// output current part of stored word (output narrower)
|
|
output_axis_tdata_int = temp_tdata_reg[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH];
|
|
output_axis_tkeep_int = temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH];
|
|
output_axis_tvalid_int = 1'b1;
|
|
output_axis_tlast_int = temp_tlast_reg & last_cycle;
|
|
output_axis_tuser_int = temp_tuser_reg & last_cycle;
|
|
|
|
if (output_axis_tready_int_reg) begin
|
|
// word transfer out
|
|
|
|
cycle_count_next = cycle_count_reg + 1;
|
|
|
|
if (last_cycle) begin
|
|
// terminated by counter or tlast signal
|
|
|
|
input_axis_tready_next = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
// more words to write
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
state_reg <= STATE_IDLE;
|
|
cycle_count_reg <= 8'd0;
|
|
input_axis_tready_reg <= 1'b0;
|
|
end else begin
|
|
state_reg <= state_next;
|
|
|
|
input_axis_tready_reg <= input_axis_tready_next;
|
|
|
|
cycle_count_reg <= cycle_count_next;
|
|
end
|
|
|
|
temp_tdata_reg <= temp_tdata_next;
|
|
temp_tkeep_reg <= temp_tkeep_next;
|
|
temp_tlast_reg <= temp_tlast_next;
|
|
temp_tuser_reg <= temp_tuser_next;
|
|
end
|
|
|
|
// output datapath logic
|
|
reg [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata_reg = {OUTPUT_DATA_WIDTH{1'b0}};
|
|
reg [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep_reg = {OUTPUT_KEEP_WIDTH{1'b0}};
|
|
reg output_axis_tvalid_reg = 1'b0, output_axis_tvalid_next;
|
|
reg output_axis_tlast_reg = 1'b0;
|
|
reg output_axis_tuser_reg = 1'b0;
|
|
|
|
reg [OUTPUT_DATA_WIDTH-1:0] temp_axis_tdata_reg = {OUTPUT_DATA_WIDTH{1'b0}};
|
|
reg [OUTPUT_KEEP_WIDTH-1:0] temp_axis_tkeep_reg = {OUTPUT_KEEP_WIDTH{1'b0}};
|
|
reg temp_axis_tvalid_reg = 1'b0, temp_axis_tvalid_next;
|
|
reg temp_axis_tlast_reg = 1'b0;
|
|
reg temp_axis_tuser_reg = 1'b0;
|
|
|
|
// datapath control
|
|
reg store_axis_int_to_output;
|
|
reg store_axis_int_to_temp;
|
|
reg store_axis_temp_to_output;
|
|
|
|
assign output_axis_tdata = output_axis_tdata_reg;
|
|
assign output_axis_tkeep = output_axis_tkeep_reg;
|
|
assign output_axis_tvalid = output_axis_tvalid_reg;
|
|
assign output_axis_tlast = output_axis_tlast_reg;
|
|
assign output_axis_tuser = output_axis_tuser_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & (~output_axis_tvalid_reg | ~output_axis_tvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
output_axis_tvalid_next = output_axis_tvalid_reg;
|
|
temp_axis_tvalid_next = temp_axis_tvalid_reg;
|
|
|
|
store_axis_int_to_output = 1'b0;
|
|
store_axis_int_to_temp = 1'b0;
|
|
store_axis_temp_to_output = 1'b0;
|
|
|
|
if (output_axis_tready_int_reg) begin
|
|
// input is ready
|
|
if (output_axis_tready | ~output_axis_tvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
output_axis_tvalid_next = output_axis_tvalid_int;
|
|
store_axis_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_axis_tvalid_next = output_axis_tvalid_int;
|
|
store_axis_int_to_temp = 1'b1;
|
|
end
|
|
end else if (output_axis_tready) begin
|
|
// input is not ready, but output is ready
|
|
output_axis_tvalid_next = temp_axis_tvalid_reg;
|
|
temp_axis_tvalid_next = 1'b0;
|
|
store_axis_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
output_axis_tvalid_reg <= 1'b0;
|
|
output_axis_tready_int_reg <= 1'b0;
|
|
temp_axis_tvalid_reg <= 1'b0;
|
|
end else begin
|
|
output_axis_tvalid_reg <= output_axis_tvalid_next;
|
|
output_axis_tready_int_reg <= output_axis_tready_int_early;
|
|
temp_axis_tvalid_reg <= temp_axis_tvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axis_int_to_output) begin
|
|
output_axis_tdata_reg <= output_axis_tdata_int;
|
|
output_axis_tkeep_reg <= output_axis_tkeep_int;
|
|
output_axis_tlast_reg <= output_axis_tlast_int;
|
|
output_axis_tuser_reg <= output_axis_tuser_int;
|
|
end else if (store_axis_temp_to_output) begin
|
|
output_axis_tdata_reg <= temp_axis_tdata_reg;
|
|
output_axis_tkeep_reg <= temp_axis_tkeep_reg;
|
|
output_axis_tlast_reg <= temp_axis_tlast_reg;
|
|
output_axis_tuser_reg <= temp_axis_tuser_reg;
|
|
end
|
|
|
|
if (store_axis_int_to_temp) begin
|
|
temp_axis_tdata_reg <= output_axis_tdata_int;
|
|
temp_axis_tkeep_reg <= output_axis_tkeep_int;
|
|
temp_axis_tlast_reg <= output_axis_tlast_int;
|
|
temp_axis_tuser_reg <= output_axis_tuser_int;
|
|
end
|
|
end
|
|
|
|
endmodule
|