verilog-ethernet/rtl/axis_xgmii_rx_64.v

513 lines
14 KiB
Verilog

/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream XGMII frame receiver (XGMII in, AXI out)
*/
module axis_xgmii_rx_64
(
input wire clk,
input wire rst,
/*
* XGMII input
*/
input wire [63:0] xgmii_rxd,
input wire [7:0] xgmii_rxc,
/*
* AXI output
*/
output wire [63:0] m_axis_tdata,
output wire [7:0] m_axis_tkeep,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire start_packet_0,
output wire start_packet_4,
output wire error_bad_frame,
output wire error_bad_fcs
);
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_PAYLOAD = 3'd1,
STATE_LAST = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [7:0] last_cycle_tkeep_reg = 8'd0, last_cycle_tkeep_next;
reg lanes_swapped = 1'b0;
reg [31:0] swap_rxd = 32'd0;
reg [3:0] swap_rxc = 4'd0;
reg [63:0] xgmii_rxd_d0 = 32'd0;
reg [63:0] xgmii_rxd_d1 = 32'd0;
reg [63:0] xgmii_rxd_crc = 32'd0;
reg [7:0] xgmii_rxc_d0 = 8'd0;
reg [7:0] xgmii_rxc_d1 = 8'd0;
reg [63:0] m_axis_tdata_reg = 64'd0, m_axis_tdata_next;
reg [7:0] m_axis_tkeep_reg = 8'd0, m_axis_tkeep_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg start_packet_0_reg = 1'b0;
reg start_packet_4_reg = 1'b0;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
wire crc_valid7 = crc_next7 == ~32'h2144df1c;
reg crc_valid7_save = 1'b0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
assign start_packet_0 = start_packet_0_reg;
assign start_packet_4 = start_packet_4_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
wire last_cycle = state_reg == STATE_LAST;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(xgmii_rxd_crc[7:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(xgmii_rxd_crc[15:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(xgmii_rxd_crc[23:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(xgmii_rxd_crc[31:0]),
.state_in(last_cycle ? crc_state3 : crc_state),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(xgmii_rxd_d0[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
// detect control characters
reg [7:0] detect_start;
reg [7:0] detect_term;
reg [7:0] detect_error;
reg [7:0] detect_term_save = 8'd0;
integer i;
always @* begin
for (i = 0; i < 8; i = i + 1) begin
detect_start[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == XGMII_START);
detect_term[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == XGMII_TERM);
detect_error[i] = xgmii_rxc_d0[i] && (xgmii_rxd_d0[i*8 +: 8] == XGMII_ERROR);
end
end
// mask errors to within packet
reg [7:0] detect_error_masked;
reg [7:0] control_masked;
reg [7:0] tkeep_mask;
always @* begin
casez (detect_term)
8'b00000000: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
8'bzzzzzzz1: begin
detect_error_masked = 0;
control_masked = 0;
tkeep_mask = 8'b00000000;
end
8'bzzzzzz10: begin
detect_error_masked = detect_error[0];
control_masked = xgmii_rxc_d0[0];
tkeep_mask = 8'b00000001;
end
8'bzzzzz100: begin
detect_error_masked = detect_error[1:0];
control_masked = xgmii_rxc_d0[1:0];
tkeep_mask = 8'b00000011;
end
8'bzzzz1000: begin
detect_error_masked = detect_error[2:0];
control_masked = xgmii_rxc_d0[2:0];
tkeep_mask = 8'b00000111;
end
8'bzzz10000: begin
detect_error_masked = detect_error[3:0];
control_masked = xgmii_rxc_d0[3:0];
tkeep_mask = 8'b00001111;
end
8'bzz100000: begin
detect_error_masked = detect_error[4:0];
control_masked = xgmii_rxc_d0[4:0];
tkeep_mask = 8'b00011111;
end
8'bz1000000: begin
detect_error_masked = detect_error[5:0];
control_masked = xgmii_rxc_d0[5:0];
tkeep_mask = 8'b00111111;
end
8'b10000000: begin
detect_error_masked = detect_error[6:0];
control_masked = xgmii_rxc_d0[6:0];
tkeep_mask = 8'b01111111;
end
default: begin
detect_error_masked = detect_error;
control_masked = xgmii_rxc_d0;
tkeep_mask = 8'b11111111;
end
endcase
end
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
last_cycle_tkeep_next = last_cycle_tkeep_reg;
m_axis_tdata_next = 64'd0;
m_axis_tkeep_next = 8'd0;
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == XGMII_START) begin
// start condition
if (control_masked) begin
// control or error characters in first data word
m_axis_tdata_next = 64'd0;
m_axis_tkeep_next = 8'h01;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
update_crc = 1'b1;
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
update_crc = 1'b1;
m_axis_tdata_next = xgmii_rxd_d1;
m_axis_tkeep_next = ~xgmii_rxc_d1;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
if (control_masked) begin
// control or error characters in packet
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end else if (detect_term) begin
if (detect_term[4:0]) begin
// end this cycle
reset_crc = 1'b1;
m_axis_tkeep_next = {tkeep_mask[3:0], 4'b1111};
m_axis_tlast_next = 1'b1;
if ((detect_term[0] && crc_valid7_save) ||
(detect_term[1] && crc_valid0) ||
(detect_term[2] && crc_valid1) ||
(detect_term[3] && crc_valid2) ||
(detect_term[4] && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
last_cycle_tkeep_next = {4'b0000, tkeep_mask[7:4]};
state_next = STATE_LAST;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_tdata_next = xgmii_rxd_d1;
m_axis_tkeep_next = last_cycle_tkeep_reg;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
if ((detect_term_save[5] && crc_valid0) ||
(detect_term_save[6] && crc_valid1) ||
(detect_term_save[7] && crc_valid2)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
if (xgmii_rxc_d1[0] && xgmii_rxd_d1[7:0] == XGMII_START) begin
// start condition
if (control_masked) begin
// control or error characters in first data word
m_axis_tdata_next = 64'd0;
m_axis_tkeep_next = 8'h01;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
state_next = STATE_IDLE;
end else begin
reset_crc = 1'b0;
update_crc = 1'b1;
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_0_reg <= 1'b0;
start_packet_4_reg <= 1'b0;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
crc_valid7_save <= 1'b0;
xgmii_rxc_d0 <= 8'd0;
xgmii_rxc_d1 <= 8'd0;
lanes_swapped <= 1'b0;
end else begin
state_reg <= state_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
start_packet_0_reg <= 1'b0;
start_packet_4_reg <= 1'b0;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
if (xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START) begin
lanes_swapped <= 1'b0;
start_packet_0_reg <= 1'b1;
xgmii_rxc_d0 <= xgmii_rxc;
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == XGMII_START) begin
lanes_swapped <= 1'b1;
start_packet_4_reg <= 1'b1;
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else if (lanes_swapped) begin
xgmii_rxc_d0 <= {xgmii_rxc[3:0], swap_rxc};
end else begin
xgmii_rxc_d0 <= xgmii_rxc;
end
xgmii_rxc_d1 <= xgmii_rxc_d0;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
crc_valid7_save <= 1'b0;
end else if (update_crc) begin
crc_state <= crc_next7;
crc_state3 <= crc_next3;
crc_valid7_save <= crc_valid7;
end
end
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tkeep_reg <= m_axis_tkeep_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
last_cycle_tkeep_reg <= last_cycle_tkeep_next;
detect_term_save <= detect_term;
swap_rxd <= xgmii_rxd[63:32];
swap_rxc <= xgmii_rxc[7:4];
if (xgmii_rxc[0] && xgmii_rxd[7:0] == XGMII_START) begin
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_crc <= xgmii_rxd;
end else if (xgmii_rxc[4] && xgmii_rxd[39:32] == XGMII_START) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
xgmii_rxd_crc <= {xgmii_rxd[31:0], swap_rxd};
end else if (lanes_swapped) begin
xgmii_rxd_d0 <= {xgmii_rxd[31:0], swap_rxd};
xgmii_rxd_crc <= {xgmii_rxd[31:0], swap_rxd};
end else begin
xgmii_rxd_d0 <= xgmii_rxd;
xgmii_rxd_crc <= xgmii_rxd;
end
if (state_next == STATE_LAST) begin
xgmii_rxd_crc[31:0] <= xgmii_rxd_crc[63:32];
end
xgmii_rxd_d1 <= xgmii_rxd_d0;
end
endmodule