verilog-ethernet/rtl/axis_baser_rx_64.v
2021-10-15 23:33:35 -07:00

606 lines
19 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream 10GBASE-R frame receiver (10GBASE-R in, AXI out)
*/
module axis_baser_rx_64 #
(
parameter DATA_WIDTH = 64,
parameter KEEP_WIDTH = (DATA_WIDTH/8),
parameter HDR_WIDTH = 2,
parameter PTP_PERIOD_NS = 4'h6,
parameter PTP_PERIOD_FNS = 16'h6666,
parameter PTP_TS_ENABLE = 0,
parameter PTP_TS_WIDTH = 96,
parameter USER_WIDTH = (PTP_TS_ENABLE ? PTP_TS_WIDTH : 0) + 1
)
(
input wire clk,
input wire rst,
/*
* 10GBASE-R encoded input
*/
input wire [DATA_WIDTH-1:0] encoded_rx_data,
input wire [HDR_WIDTH-1:0] encoded_rx_hdr,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
output wire m_axis_tlast,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* PTP
*/
input wire [PTP_TS_WIDTH-1:0] ptp_ts,
/*
* Status
*/
output wire [1:0] start_packet,
output wire error_bad_frame,
output wire error_bad_fcs,
output wire rx_bad_block
);
// bus width assertions
initial begin
if (DATA_WIDTH != 64) begin
$error("Error: Interface width must be 64");
$finish;
end
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: Interface requires byte (8-bit) granularity");
$finish;
end
if (HDR_WIDTH != 2) begin
$error("Error: HDR_WIDTH must be 2");
$finish;
end
end
localparam [7:0]
ETH_PRE = 8'h55,
ETH_SFD = 8'hD5;
localparam [7:0]
XGMII_IDLE = 8'h07,
XGMII_START = 8'hfb,
XGMII_TERM = 8'hfd,
XGMII_ERROR = 8'hfe;
localparam [6:0]
CTRL_IDLE = 7'h00,
CTRL_LPI = 7'h06,
CTRL_ERROR = 7'h1e,
CTRL_RES_0 = 7'h2d,
CTRL_RES_1 = 7'h33,
CTRL_RES_2 = 7'h4b,
CTRL_RES_3 = 7'h55,
CTRL_RES_4 = 7'h66,
CTRL_RES_5 = 7'h78;
localparam [3:0]
O_SEQ_OS = 4'h0,
O_SIG_OS = 4'hf;
localparam [1:0]
SYNC_DATA = 2'b10,
SYNC_CTRL = 2'b01;
localparam [7:0]
BLOCK_TYPE_CTRL = 8'h1e, // C7 C6 C5 C4 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_4 = 8'h2d, // D7 D6 D5 O4 C3 C2 C1 C0 BT
BLOCK_TYPE_START_4 = 8'h33, // D7 D6 D5 C3 C2 C1 C0 BT
BLOCK_TYPE_OS_START = 8'h66, // D7 D6 D5 O0 D3 D2 D1 BT
BLOCK_TYPE_OS_04 = 8'h55, // D7 D6 D5 O4 O0 D3 D2 D1 BT
BLOCK_TYPE_START_0 = 8'h78, // D7 D6 D5 D4 D3 D2 D1 BT
BLOCK_TYPE_OS_0 = 8'h4b, // C7 C6 C5 C4 O0 D3 D2 D1 BT
BLOCK_TYPE_TERM_0 = 8'h87, // C7 C6 C5 C4 C3 C2 C1 BT
BLOCK_TYPE_TERM_1 = 8'h99, // C7 C6 C5 C4 C3 C2 D0 BT
BLOCK_TYPE_TERM_2 = 8'haa, // C7 C6 C5 C4 C3 D1 D0 BT
BLOCK_TYPE_TERM_3 = 8'hb4, // C7 C6 C5 C4 D2 D1 D0 BT
BLOCK_TYPE_TERM_4 = 8'hcc, // C7 C6 C5 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_5 = 8'hd2, // C7 C6 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_6 = 8'he1, // C7 D5 D4 D3 D2 D1 D0 BT
BLOCK_TYPE_TERM_7 = 8'hff; // D6 D5 D4 D3 D2 D1 D0 BT
localparam [3:0]
INPUT_TYPE_IDLE = 4'd0,
INPUT_TYPE_ERROR = 4'd1,
INPUT_TYPE_START_0 = 4'd2,
INPUT_TYPE_START_4 = 4'd3,
INPUT_TYPE_DATA = 4'd4,
INPUT_TYPE_TERM_0 = 4'd8,
INPUT_TYPE_TERM_1 = 4'd9,
INPUT_TYPE_TERM_2 = 4'd10,
INPUT_TYPE_TERM_3 = 4'd11,
INPUT_TYPE_TERM_4 = 4'd12,
INPUT_TYPE_TERM_5 = 4'd13,
INPUT_TYPE_TERM_6 = 4'd14,
INPUT_TYPE_TERM_7 = 4'd15;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_LAST = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc_last;
reg lanes_swapped = 1'b0;
reg [31:0] swap_data = 32'd0;
reg delay_type_valid = 1'b0;
reg [3:0] delay_type = INPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] input_data_d0 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] input_data_d1 = {DATA_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] input_data_crc = {DATA_WIDTH{1'b0}};
reg [3:0] input_type_d0 = INPUT_TYPE_IDLE;
reg [3:0] input_type_d1 = INPUT_TYPE_IDLE;
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}}, m_axis_tdata_next;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}}, m_axis_tkeep_next;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0, m_axis_tlast_next;
reg m_axis_tuser_reg = 1'b0, m_axis_tuser_next;
reg [1:0] start_packet_reg = 2'b00;
reg error_bad_frame_reg = 1'b0, error_bad_frame_next;
reg error_bad_fcs_reg = 1'b0, error_bad_fcs_next;
reg rx_bad_block_reg = 1'b0;
reg [PTP_TS_WIDTH-1:0] ptp_ts_reg = 0;
reg [31:0] crc_state = 32'hFFFFFFFF;
reg [31:0] crc_state3 = 32'hFFFFFFFF;
wire [31:0] crc_next0;
wire [31:0] crc_next1;
wire [31:0] crc_next2;
wire [31:0] crc_next3;
wire [31:0] crc_next7;
wire crc_valid0 = crc_next0 == ~32'h2144df1c;
wire crc_valid1 = crc_next1 == ~32'h2144df1c;
wire crc_valid2 = crc_next2 == ~32'h2144df1c;
wire crc_valid3 = crc_next3 == ~32'h2144df1c;
wire crc_valid7 = crc_next7 == ~32'h2144df1c;
reg crc_valid7_save = 1'b0;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = m_axis_tkeep_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = PTP_TS_ENABLE ? {ptp_ts_reg, m_axis_tuser_reg} : m_axis_tuser_reg;
assign start_packet = start_packet_reg;
assign error_bad_frame = error_bad_frame_reg;
assign error_bad_fcs = error_bad_fcs_reg;
assign rx_bad_block = rx_bad_block_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(input_data_crc[7:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next0)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(16),
.STYLE("AUTO")
)
eth_crc_16 (
.data_in(input_data_crc[15:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next1)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(24),
.STYLE("AUTO")
)
eth_crc_24 (
.data_in(input_data_crc[23:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next2)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(32),
.STYLE("AUTO")
)
eth_crc_32 (
.data_in(input_data_crc[31:0]),
.state_in(crc_state3),
.data_out(),
.state_out(crc_next3)
);
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(64),
.STYLE("AUTO")
)
eth_crc_64 (
.data_in(input_data_d0[63:0]),
.state_in(crc_state),
.data_out(),
.state_out(crc_next7)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc_last = 1'b0;
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'd0;
m_axis_tvalid_next = 1'b0;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
error_bad_frame_next = 1'b0;
error_bad_fcs_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for packet
reset_crc = 1'b1;
if (input_type_d1 == INPUT_TYPE_START_0) begin
// start condition
reset_crc = 1'b0;
state_next = STATE_PAYLOAD;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// read payload
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'hff;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b0;
m_axis_tuser_next = 1'b0;
if (input_type_d0 == INPUT_TYPE_DATA) begin
state_next = STATE_PAYLOAD;
end else if (input_type_d0[3]) begin
// INPUT_TYPE_TERM_*
if (input_type_d0 <= INPUT_TYPE_TERM_4) begin
// end this cycle
reset_crc = 1'b1;
case (input_type_d0)
INPUT_TYPE_TERM_0: m_axis_tkeep_next = 8'b00001111;
INPUT_TYPE_TERM_1: m_axis_tkeep_next = 8'b00011111;
INPUT_TYPE_TERM_2: m_axis_tkeep_next = 8'b00111111;
INPUT_TYPE_TERM_3: m_axis_tkeep_next = 8'b01111111;
INPUT_TYPE_TERM_4: m_axis_tkeep_next = 8'b11111111;
endcase
m_axis_tlast_next = 1'b1;
if ((input_type_d0 == INPUT_TYPE_TERM_0 && crc_valid7_save) ||
(input_type_d0 == INPUT_TYPE_TERM_1 && crc_valid0) ||
(input_type_d0 == INPUT_TYPE_TERM_2 && crc_valid1) ||
(input_type_d0 == INPUT_TYPE_TERM_3 && crc_valid2) ||
(input_type_d0 == INPUT_TYPE_TERM_4 && crc_valid3)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end else begin
// need extra cycle
update_crc_last = 1'b1;
state_next = STATE_LAST;
end
end else begin
// control or error characters in packet
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
reset_crc = 1'b1;
state_next = STATE_IDLE;
end
end
STATE_LAST: begin
// last cycle of packet
m_axis_tdata_next = input_data_d1;
m_axis_tkeep_next = 8'hff;
m_axis_tvalid_next = 1'b1;
m_axis_tlast_next = 1'b1;
m_axis_tuser_next = 1'b0;
reset_crc = 1'b1;
case (input_type_d1)
INPUT_TYPE_TERM_5: m_axis_tkeep_next = 8'b00000001;
INPUT_TYPE_TERM_6: m_axis_tkeep_next = 8'b00000011;
INPUT_TYPE_TERM_7: m_axis_tkeep_next = 8'b00000111;
endcase
if ((input_type_d1 == INPUT_TYPE_TERM_5 && crc_valid0) ||
(input_type_d1 == INPUT_TYPE_TERM_6 && crc_valid1) ||
(input_type_d1 == INPUT_TYPE_TERM_7 && crc_valid2)) begin
// CRC valid
end else begin
m_axis_tuser_next = 1'b1;
error_bad_frame_next = 1'b1;
error_bad_fcs_next = 1'b1;
end
state_next = STATE_IDLE;
end
endcase
end
always @(posedge clk) begin
state_reg <= state_next;
m_axis_tdata_reg <= m_axis_tdata_next;
m_axis_tkeep_reg <= m_axis_tkeep_next;
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tlast_reg <= m_axis_tlast_next;
m_axis_tuser_reg <= m_axis_tuser_next;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= error_bad_frame_next;
error_bad_fcs_reg <= error_bad_fcs_next;
rx_bad_block_reg <= 1'b0;
delay_type_valid <= 1'b0;
if (encoded_rx_hdr == SYNC_DATA) begin
swap_data <= encoded_rx_data[63:32];
end else begin
swap_data <= {8'd0, encoded_rx_data[63:40]};
end
if (PTP_TS_WIDTH == 96 && $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000) > 0) begin
// ns field rollover
ptp_ts_reg[45:16] <= $signed({1'b0, ptp_ts_reg[45:16]}) - $signed(31'd1000000000);
ptp_ts_reg[95:48] <= ptp_ts_reg[95:48] + 1;
end
if (encoded_rx_hdr == SYNC_CTRL && encoded_rx_data[7:0] == BLOCK_TYPE_START_0) begin
lanes_swapped <= 1'b0;
start_packet_reg <= 2'b01;
input_type_d0 <= INPUT_TYPE_START_0;
input_data_d0 <= encoded_rx_data;
input_data_crc <= encoded_rx_data;
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS);
end
end else if (encoded_rx_hdr == SYNC_CTRL && (encoded_rx_data[7:0] == BLOCK_TYPE_START_4 || encoded_rx_data[7:0] == BLOCK_TYPE_OS_START)) begin
lanes_swapped <= 1'b1;
start_packet_reg <= 2'b10;
delay_type_valid <= 1'b1;
if (delay_type_valid) begin
input_type_d0 <= delay_type;
end else begin
input_type_d0 <= INPUT_TYPE_IDLE;
end
input_data_d0 <= {encoded_rx_data[31:0], swap_data};
input_data_crc <= {encoded_rx_data[31:0], swap_data};
if (PTP_TS_WIDTH == 96) begin
ptp_ts_reg[45:0] <= ptp_ts[45:0] + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
ptp_ts_reg[95:48] <= ptp_ts[95:48];
end else begin
ptp_ts_reg <= ptp_ts + (((PTP_PERIOD_NS * 2**16 + PTP_PERIOD_FNS) * 3) >> 1);
end
end else if (lanes_swapped) begin
if (delay_type_valid) begin
input_type_d0 <= delay_type;
end else if (encoded_rx_hdr == SYNC_DATA) begin
input_type_d0 <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_7;
BLOCK_TYPE_TERM_4: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_5: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_6: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
BLOCK_TYPE_TERM_7: begin
delay_type_valid <= 1'b1;
input_type_d0 <= INPUT_TYPE_DATA;
end
default: begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
endcase
end else begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
if (encoded_rx_hdr == SYNC_DATA) begin
input_data_d0 <= {encoded_rx_data[31:0], swap_data};
input_data_crc <= {encoded_rx_data[31:0], swap_data};
end else begin
input_data_d0 <= {encoded_rx_data[39:8], swap_data};
input_data_crc <= {encoded_rx_data[39:8], swap_data};
end
end else begin
if (encoded_rx_hdr == SYNC_DATA) begin
input_type_d0 <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_TERM_0: input_type_d0 <= INPUT_TYPE_TERM_0;
BLOCK_TYPE_TERM_1: input_type_d0 <= INPUT_TYPE_TERM_1;
BLOCK_TYPE_TERM_2: input_type_d0 <= INPUT_TYPE_TERM_2;
BLOCK_TYPE_TERM_3: input_type_d0 <= INPUT_TYPE_TERM_3;
BLOCK_TYPE_TERM_4: input_type_d0 <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_5: input_type_d0 <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_6: input_type_d0 <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_7: input_type_d0 <= INPUT_TYPE_TERM_7;
default: begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
endcase
end else begin
rx_bad_block_reg <= 1'b1;
input_type_d0 <= INPUT_TYPE_ERROR;
end
if (encoded_rx_hdr == SYNC_DATA) begin
input_data_d0 <= encoded_rx_data;
input_data_crc <= encoded_rx_data;
end else begin
input_data_d0 <= {8'd0, encoded_rx_data[63:8]};
input_data_crc <= {8'd0, encoded_rx_data[63:8]};
end
end
if (encoded_rx_hdr == SYNC_DATA) begin
delay_type <= INPUT_TYPE_DATA;
end else if (encoded_rx_hdr == SYNC_CTRL) begin
case (encoded_rx_data[7:0])
BLOCK_TYPE_START_4: delay_type <= INPUT_TYPE_START_0;
BLOCK_TYPE_TERM_0: delay_type <= INPUT_TYPE_TERM_4;
BLOCK_TYPE_TERM_1: delay_type <= INPUT_TYPE_TERM_5;
BLOCK_TYPE_TERM_2: delay_type <= INPUT_TYPE_TERM_6;
BLOCK_TYPE_TERM_3: delay_type <= INPUT_TYPE_TERM_7;
BLOCK_TYPE_TERM_4: delay_type <= INPUT_TYPE_TERM_0;
BLOCK_TYPE_TERM_5: delay_type <= INPUT_TYPE_TERM_1;
BLOCK_TYPE_TERM_6: delay_type <= INPUT_TYPE_TERM_2;
BLOCK_TYPE_TERM_7: delay_type <= INPUT_TYPE_TERM_3;
default: delay_type <= INPUT_TYPE_ERROR;
endcase
end else begin
delay_type <= INPUT_TYPE_ERROR;
end
input_type_d1 <= input_type_d0;
input_data_d1 <= input_data_d0;
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else begin
crc_state <= crc_next7;
end
if (update_crc_last) begin
crc_state3 <= crc_next3;
end else begin
crc_state3 <= crc_next7;
end
crc_valid7_save <= crc_valid7;
if (state_next == STATE_LAST) begin
input_data_crc[31:0] <= input_data_crc[63:32];
end
if (rst) begin
state_reg <= STATE_IDLE;
m_axis_tvalid_reg <= 1'b0;
start_packet_reg <= 2'b00;
error_bad_frame_reg <= 1'b0;
error_bad_fcs_reg <= 1'b0;
rx_bad_block_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
crc_state3 <= 32'hFFFFFFFF;
input_type_d0 <= INPUT_TYPE_IDLE;
input_type_d1 <= INPUT_TYPE_IDLE;
lanes_swapped <= 1'b0;
delay_type_valid <= 1'b0;
delay_type <= INPUT_TYPE_IDLE;
end
end
endmodule