verilog-ethernet/rtl/arp_eth_tx.v
Alex Forencich 9b5a8cf24a Rewrite resets
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-05-15 17:39:44 -07:00

365 lines
13 KiB
Verilog

/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* ARP ethernet frame transmitter (ARP frame in, Ethernet frame out)
*/
module arp_eth_tx #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* ARP frame input
*/
input wire s_frame_valid,
output wire s_frame_ready,
input wire [47:0] s_eth_dest_mac,
input wire [47:0] s_eth_src_mac,
input wire [15:0] s_eth_type,
input wire [15:0] s_arp_htype,
input wire [15:0] s_arp_ptype,
input wire [15:0] s_arp_oper,
input wire [47:0] s_arp_sha,
input wire [31:0] s_arp_spa,
input wire [47:0] s_arp_tha,
input wire [31:0] s_arp_tpa,
/*
* Ethernet frame output
*/
output wire m_eth_hdr_valid,
input wire m_eth_hdr_ready,
output wire [47:0] m_eth_dest_mac,
output wire [47:0] m_eth_src_mac,
output wire [15:0] m_eth_type,
output wire [DATA_WIDTH-1:0] m_eth_payload_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep,
output wire m_eth_payload_axis_tvalid,
input wire m_eth_payload_axis_tready,
output wire m_eth_payload_axis_tlast,
output wire m_eth_payload_axis_tuser,
/*
* Status signals
*/
output wire busy
);
parameter CYCLE_COUNT = (28+KEEP_WIDTH-1)/KEEP_WIDTH;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = 28 % KEEP_WIDTH;
// bus width assertions
initial begin
if (KEEP_WIDTH * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
/*
ARP Frame
Field Length
Destination MAC address 6 octets
Source MAC address 6 octets
Ethertype (0x0806) 2 octets
HTYPE (1) 2 octets
PTYPE (0x0800) 2 octets
HLEN (6) 1 octets
PLEN (4) 1 octets
OPER 2 octets
SHA Sender MAC 6 octets
SPA Sender IP 4 octets
THA Target MAC 6 octets
TPA Target IP 4 octets
This module receives an ARP frame with header fields in parallel and
transmits the complete Ethernet payload on an AXI interface.
*/
// datapath control signals
reg store_frame;
reg send_arp_header_reg = 1'b0, send_arp_header_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg [15:0] arp_htype_reg = 16'd0;
reg [15:0] arp_ptype_reg = 16'd0;
reg [15:0] arp_oper_reg = 16'd0;
reg [47:0] arp_sha_reg = 48'd0;
reg [31:0] arp_spa_reg = 32'd0;
reg [47:0] arp_tha_reg = 48'd0;
reg [31:0] arp_tpa_reg = 32'd0;
reg s_frame_ready_reg = 1'b0, s_frame_ready_next;
reg m_eth_hdr_valid_reg = 1'b0, m_eth_hdr_valid_next;
reg [47:0] m_eth_dest_mac_reg = 48'd0;
reg [47:0] m_eth_src_mac_reg = 48'd0;
reg [15:0] m_eth_type_reg = 16'd0;
reg busy_reg = 1'b0;
// internal datapath
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_int;
reg m_eth_payload_axis_tvalid_int;
reg m_eth_payload_axis_tready_int_reg = 1'b0;
reg m_eth_payload_axis_tlast_int;
reg m_eth_payload_axis_tuser_int;
wire m_eth_payload_axis_tready_int_early;
assign s_frame_ready = s_frame_ready_reg;
assign m_eth_hdr_valid = m_eth_hdr_valid_reg;
assign m_eth_dest_mac = m_eth_dest_mac_reg;
assign m_eth_src_mac = m_eth_src_mac_reg;
assign m_eth_type = m_eth_type_reg;
assign busy = busy_reg;
always @* begin
send_arp_header_next = send_arp_header_reg;
ptr_next = ptr_reg;
s_frame_ready_next = 1'b0;
store_frame = 1'b0;
m_eth_hdr_valid_next = m_eth_hdr_valid_reg && !m_eth_hdr_ready;
m_eth_payload_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_eth_payload_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_eth_payload_axis_tvalid_int = 1'b0;
m_eth_payload_axis_tlast_int = 1'b0;
m_eth_payload_axis_tuser_int = 1'b0;
if (s_frame_ready && s_frame_valid) begin
store_frame = 1'b1;
m_eth_hdr_valid_next = 1'b1;
ptr_next = 0;
send_arp_header_next = 1'b1;
end
if (m_eth_payload_axis_tready_int_reg) begin
if (send_arp_header_reg) begin
ptr_next = ptr_reg + 1;
m_eth_payload_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_eth_payload_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_eth_payload_axis_tvalid_int = 1'b1;
m_eth_payload_axis_tlast_int = 1'b0;
m_eth_payload_axis_tuser_int = 1'b0;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/KEEP_WIDTH) begin \
m_eth_payload_axis_tdata_int[(offset%KEEP_WIDTH)*8 +: 8] = field; \
m_eth_payload_axis_tkeep_int[offset%KEEP_WIDTH] = 1'b1; \
end
`_HEADER_FIELD_(0, arp_htype_reg[1*8 +: 8])
`_HEADER_FIELD_(1, arp_htype_reg[0*8 +: 8])
`_HEADER_FIELD_(2, arp_ptype_reg[1*8 +: 8])
`_HEADER_FIELD_(3, arp_ptype_reg[0*8 +: 8])
`_HEADER_FIELD_(4, 8'd6)
`_HEADER_FIELD_(5, 8'd4)
`_HEADER_FIELD_(6, arp_oper_reg[1*8 +: 8])
`_HEADER_FIELD_(7, arp_oper_reg[0*8 +: 8])
`_HEADER_FIELD_(8, arp_sha_reg[5*8 +: 8])
`_HEADER_FIELD_(9, arp_sha_reg[4*8 +: 8])
`_HEADER_FIELD_(10, arp_sha_reg[3*8 +: 8])
`_HEADER_FIELD_(11, arp_sha_reg[2*8 +: 8])
`_HEADER_FIELD_(12, arp_sha_reg[1*8 +: 8])
`_HEADER_FIELD_(13, arp_sha_reg[0*8 +: 8])
`_HEADER_FIELD_(14, arp_spa_reg[3*8 +: 8])
`_HEADER_FIELD_(15, arp_spa_reg[2*8 +: 8])
`_HEADER_FIELD_(16, arp_spa_reg[1*8 +: 8])
`_HEADER_FIELD_(17, arp_spa_reg[0*8 +: 8])
`_HEADER_FIELD_(18, arp_tha_reg[5*8 +: 8])
`_HEADER_FIELD_(19, arp_tha_reg[4*8 +: 8])
`_HEADER_FIELD_(20, arp_tha_reg[3*8 +: 8])
`_HEADER_FIELD_(21, arp_tha_reg[2*8 +: 8])
`_HEADER_FIELD_(22, arp_tha_reg[1*8 +: 8])
`_HEADER_FIELD_(23, arp_tha_reg[0*8 +: 8])
`_HEADER_FIELD_(24, arp_tpa_reg[3*8 +: 8])
`_HEADER_FIELD_(25, arp_tpa_reg[2*8 +: 8])
`_HEADER_FIELD_(26, arp_tpa_reg[1*8 +: 8])
`_HEADER_FIELD_(27, arp_tpa_reg[0*8 +: 8])
if (ptr_reg == 27/KEEP_WIDTH) begin
m_eth_payload_axis_tlast_int = 1'b1;
send_arp_header_next = 1'b0;
end
`undef _HEADER_FIELD_
end
end
s_frame_ready_next = !m_eth_hdr_valid_next && !send_arp_header_next;
end
always @(posedge clk) begin
send_arp_header_reg <= send_arp_header_next;
ptr_reg <= ptr_next;
s_frame_ready_reg <= s_frame_ready_next;
m_eth_hdr_valid_reg <= m_eth_hdr_valid_next;
busy_reg <= send_arp_header_next;
if (store_frame) begin
m_eth_dest_mac_reg <= s_eth_dest_mac;
m_eth_src_mac_reg <= s_eth_src_mac;
m_eth_type_reg <= s_eth_type;
arp_htype_reg <= s_arp_htype;
arp_ptype_reg <= s_arp_ptype;
arp_oper_reg <= s_arp_oper;
arp_sha_reg <= s_arp_sha;
arp_spa_reg <= s_arp_spa;
arp_tha_reg <= s_arp_tha;
arp_tpa_reg <= s_arp_tpa;
end
if (rst) begin
send_arp_header_reg <= 1'b0;
ptr_reg <= 0;
s_frame_ready_reg <= 1'b0;
m_eth_hdr_valid_reg <= 1'b0;
busy_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_eth_payload_axis_tvalid_reg = 1'b0, m_eth_payload_axis_tvalid_next;
reg m_eth_payload_axis_tlast_reg = 1'b0;
reg m_eth_payload_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_m_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_eth_payload_axis_tvalid_reg = 1'b0, temp_m_eth_payload_axis_tvalid_next;
reg temp_m_eth_payload_axis_tlast_reg = 1'b0;
reg temp_m_eth_payload_axis_tuser_reg = 1'b0;
// datapath control
reg store_eth_payload_int_to_output;
reg store_eth_payload_int_to_temp;
reg store_eth_payload_axis_temp_to_output;
assign m_eth_payload_axis_tdata = m_eth_payload_axis_tdata_reg;
assign m_eth_payload_axis_tkeep = KEEP_ENABLE ? m_eth_payload_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_eth_payload_axis_tvalid = m_eth_payload_axis_tvalid_reg;
assign m_eth_payload_axis_tlast = m_eth_payload_axis_tlast_reg;
assign m_eth_payload_axis_tuser = m_eth_payload_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_eth_payload_axis_tready_int_early = m_eth_payload_axis_tready || (!temp_m_eth_payload_axis_tvalid_reg && (!m_eth_payload_axis_tvalid_reg || !m_eth_payload_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
store_eth_payload_int_to_output = 1'b0;
store_eth_payload_int_to_temp = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b0;
if (m_eth_payload_axis_tready_int_reg) begin
// input is ready
if (m_eth_payload_axis_tready || !m_eth_payload_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_eth_payload_axis_tvalid_next = m_eth_payload_axis_tvalid_int;
store_eth_payload_int_to_temp = 1'b1;
end
end else if (m_eth_payload_axis_tready) begin
// input is not ready, but output is ready
m_eth_payload_axis_tvalid_next = temp_m_eth_payload_axis_tvalid_reg;
temp_m_eth_payload_axis_tvalid_next = 1'b0;
store_eth_payload_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_eth_payload_axis_tvalid_reg <= m_eth_payload_axis_tvalid_next;
m_eth_payload_axis_tready_int_reg <= m_eth_payload_axis_tready_int_early;
temp_m_eth_payload_axis_tvalid_reg <= temp_m_eth_payload_axis_tvalid_next;
// datapath
if (store_eth_payload_int_to_output) begin
m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end else if (store_eth_payload_axis_temp_to_output) begin
m_eth_payload_axis_tdata_reg <= temp_m_eth_payload_axis_tdata_reg;
m_eth_payload_axis_tkeep_reg <= temp_m_eth_payload_axis_tkeep_reg;
m_eth_payload_axis_tlast_reg <= temp_m_eth_payload_axis_tlast_reg;
m_eth_payload_axis_tuser_reg <= temp_m_eth_payload_axis_tuser_reg;
end
if (store_eth_payload_int_to_temp) begin
temp_m_eth_payload_axis_tdata_reg <= m_eth_payload_axis_tdata_int;
temp_m_eth_payload_axis_tkeep_reg <= m_eth_payload_axis_tkeep_int;
temp_m_eth_payload_axis_tlast_reg <= m_eth_payload_axis_tlast_int;
temp_m_eth_payload_axis_tuser_reg <= m_eth_payload_axis_tuser_int;
end
if (rst) begin
m_eth_payload_axis_tvalid_reg <= 1'b0;
m_eth_payload_axis_tready_int_reg <= 1'b0;
temp_m_eth_payload_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall