verilog-ethernet/rtl/ptp_clock_cdc.v
2019-07-15 15:16:17 -07:00

425 lines
15 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PTP clock CDC (clock domain crossing) module
*/
module ptp_clock_cdc #
(
parameter TS_WIDTH = 96,
parameter NS_WIDTH = 4,
parameter FNS_WIDTH = 16,
parameter INPUT_PERIOD_NS = 4'h6,
parameter INPUT_PERIOD_FNS = 16'h6666,
parameter OUTPUT_PERIOD_NS = 4'h6,
parameter OUTPUT_PERIOD_FNS = 16'h6666,
parameter USE_SAMPLE_CLOCK = 1,
parameter LOG_FIFO_DEPTH = 3,
parameter LOG_RATE = 3
)
(
input wire input_clk,
input wire input_rst,
input wire output_clk,
input wire output_rst,
input wire sample_clk,
/*
* Timestamp inputs from source PTP clock
*/
input wire [TS_WIDTH-1:0] input_ts,
/*
* Timestamp outputs
*/
output wire [TS_WIDTH-1:0] output_ts,
output wire output_ts_step,
/*
* PPS output
*/
output wire output_pps
);
// bus width assertions
initial begin
if (TS_WIDTH != 96) begin
$error("Error: Timestamp width must be 96");
$finish;
end
end
parameter TS_NS_WIDTH = TS_WIDTH == 96 ? 30 : 48;
parameter FIFO_ADDR_WIDTH = LOG_FIFO_DEPTH+1;
parameter LOG_AVG = 6;
parameter LOG_AVG_SCALE = LOG_AVG+8;
parameter LOG_AVG_SYNC_RATE = LOG_RATE;
parameter WR_PERIOD = {{INPUT_PERIOD_NS, 16'd0} + INPUT_PERIOD_FNS, 16'd0} / ({OUTPUT_PERIOD_NS, 16'd0} + OUTPUT_PERIOD_FNS) / 2**(LOG_RATE+1);
reg [NS_WIDTH-1:0] period_ns_reg = OUTPUT_PERIOD_NS;
reg [FNS_WIDTH-1:0] period_fns_reg = OUTPUT_PERIOD_FNS;
reg [47:0] ts_s_reg = 0;
reg [TS_NS_WIDTH-1:0] ts_ns_reg = 0;
reg [FNS_WIDTH-1:0] ts_fns_reg = 0;
reg [TS_NS_WIDTH-1:0] ts_ns_inc_reg = 0;
reg [FNS_WIDTH-1:0] ts_fns_inc_reg = 0;
reg [TS_NS_WIDTH+1-1:0] ts_ns_ovf_reg = {TS_NS_WIDTH{1'b1}};
reg [FNS_WIDTH-1:0] ts_fns_ovf_reg = {FNS_WIDTH{1'b1}};
reg ts_step_reg = 1'b0;
reg pps_reg = 0;
reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_gray_next;
reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_gray_next;
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
wire [FIFO_ADDR_WIDTH:0] wr_ptr_sync2;
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
wire [FIFO_ADDR_WIDTH:0] rd_ptr_sync2;
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
wire [FIFO_ADDR_WIDTH:0] wr_ptr_sample_sync2;
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
wire [FIFO_ADDR_WIDTH:0] rd_ptr_sample_sync2;
reg [15:0] wr_acc_reg = 16'd0, wr_acc_next;
reg [15:0] wr_inc_reg = WR_PERIOD, wr_inc_next;
reg [31:0] err_int_reg = 0, err_int_next;
reg [LOG_RATE-1:0] rd_cnt_reg = {LOG_RATE{1'b0}}, rd_cnt_next;
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_acc_reg = 0;
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_reg = 0;
reg [LOG_AVG_SYNC_RATE-1:0] sample_cnt_reg = 0;
reg sample_update_reg = 1'b0;
reg sample_update_sync1_reg = 1'b0;
reg sample_update_sync2_reg = 1'b0;
reg sample_update_sync3_reg = 1'b0;
reg [TS_WIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0];
reg [TS_WIDTH-1:0] mem_read_data_reg = 0;
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = ((wr_ptr_gray_reg[FIFO_ADDR_WIDTH] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH]) &&
(wr_ptr_gray_reg[FIFO_ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-1]) &&
(wr_ptr_gray_reg[FIFO_ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-2:0]));
// empty when pointers match exactly
wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg;
wire [FIFO_ADDR_WIDTH:0] wr_depth = wr_ptr_reg - rd_ptr_sync2;
wire [FIFO_ADDR_WIDTH:0] rd_depth = wr_ptr_sync2 - rd_ptr_reg;
wire [FIFO_ADDR_WIDTH:0] sample_depth = wr_ptr_sample_sync2 - rd_ptr_sample_sync2;
// control signals
reg write;
reg read;
generate
if (TS_WIDTH == 96) begin
assign output_ts[95:48] = ts_s_reg;
assign output_ts[47:46] = 2'b00;
assign output_ts[45:16] = ts_ns_reg;
assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH);
end else if (TS_WIDTH == 64) begin
assign output_ts[63:16] = ts_ns_reg;
assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH);
end
endgenerate
assign output_ts_step = ts_step_reg;
assign output_pps = pps_reg;
generate
genvar n;
for (n = 0; n < FIFO_ADDR_WIDTH+1; n = n + 1) begin
assign wr_ptr_sync2[n] = ^wr_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
assign rd_ptr_sync2[n] = ^rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
assign wr_ptr_sample_sync2[n] = ^wr_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
assign rd_ptr_sample_sync2[n] = ^rd_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
end
endgenerate
// pointer sync
always @(posedge input_clk) begin
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
end
always @(posedge output_clk) begin
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
end
always @(posedge sample_clk) begin
rd_ptr_gray_sample_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sample_sync2_reg <= rd_ptr_gray_sample_sync1_reg;
wr_ptr_gray_sample_sync1_reg <= wr_ptr_gray_reg;
wr_ptr_gray_sample_sync2_reg <= wr_ptr_gray_sample_sync1_reg;
end
always @(posedge sample_clk) begin
if (USE_SAMPLE_CLOCK) begin
sample_acc_reg <= sample_acc_reg + ((sample_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG);
sample_cnt_reg <= sample_cnt_reg + 1;
if (sample_cnt_reg == 0) begin
sample_update_reg <= !sample_update_reg;
sample_avg_reg <= sample_acc_reg;
end
end
end
always @(posedge input_clk) begin
sample_update_sync1_reg <= sample_update_reg;
sample_update_sync2_reg <= sample_update_sync1_reg;
sample_update_sync3_reg <= sample_update_sync2_reg;
end
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_sync_reg = 0;
reg sample_avg_sync_valid_reg = 0;
always @(posedge input_clk) begin
if (USE_SAMPLE_CLOCK) begin
sample_avg_sync_valid_reg <= 1'b0;
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
sample_avg_sync_reg <= sample_avg_reg;
sample_avg_sync_valid_reg <= 1'b1;
end
end else begin
sample_acc_reg <= sample_acc_reg + ((wr_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG);
sample_cnt_reg <= sample_cnt_reg + 1;
sample_avg_sync_valid_reg <= 1'b0;
if (sample_cnt_reg == 0) begin
sample_avg_sync_reg <= sample_acc_reg;
sample_avg_sync_valid_reg <= 1'b1;
end
end
end
always @* begin
write = 1'b0;
wr_ptr_next = wr_ptr_reg;
wr_ptr_gray_next = wr_ptr_gray_reg;
wr_acc_next = wr_acc_reg + wr_inc_reg;
wr_inc_next = wr_inc_reg;
err_int_next = err_int_reg;
if (sample_avg_sync_valid_reg) begin
// updated sampled FIFO depth
err_int_next = err_int_reg + (sample_avg_sync_reg - (2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE));
wr_inc_next = WR_PERIOD + (((2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE) - sample_avg_sync_reg) >> 8) - ($signed(err_int_reg) >> 13);
if ($signed(wr_inc_next) > $signed(WR_PERIOD*4)) begin
wr_inc_next = WR_PERIOD*4;
end else if ($signed(wr_inc_next) < $signed(WR_PERIOD/4)) begin
wr_inc_next = WR_PERIOD/4;
end
end
if (!full && wr_acc_reg[15] != wr_acc_next[15]) begin
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1);
end
end
always @(posedge input_clk) begin
wr_ptr_reg <= wr_ptr_next;
wr_ptr_gray_reg <= wr_ptr_gray_next;
wr_acc_reg <= wr_acc_next;
wr_inc_reg <= wr_inc_next;
err_int_reg <= err_int_next;
if (write) begin
mem[wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= input_ts;
end
if (input_rst) begin
wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
wr_acc_reg <= 16'd0;
wr_inc_reg <= WR_PERIOD;
err_int_reg <= 0;
end
end
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
rd_ptr_gray_next = rd_ptr_gray_reg;
rd_cnt_next = rd_cnt_reg + 1;
if (!empty && rd_cnt_reg == 0) begin
read = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
end
end
always @(posedge output_clk) begin
rd_ptr_reg <= rd_ptr_next;
rd_ptr_gray_reg <= rd_ptr_gray_next;
rd_cnt_reg <= rd_cnt_next;
if (!empty) begin
mem_read_data_reg <= mem[rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
end
if (read) begin
end
if (output_rst) begin
rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
rd_cnt_reg <= {LOG_RATE{1'b0}};
end
end
reg sec_mismatch_reg = 1'b0;
reg diff_valid_reg = 1'b0;
reg diff_offset_valid_reg = 1'b0;
reg [30:0] ts_ns_diff_reg = 31'd0;
reg [FNS_WIDTH-1:0] ts_fns_diff_reg = 16'd0;
reg [48:0] time_err_int_reg = 32'd0;
always @(posedge output_clk) begin
ts_step_reg <= 0;
diff_valid_reg <= 1'b0;
diff_offset_valid_reg <= 1'b0;
// 96 bit timestamp
if (!ts_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
// increment seconds field, pre-compute both normal increment and overflow values
{ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg};
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
{ts_ns_reg, ts_fns_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg};
ts_s_reg <= ts_s_reg + 1;
end else begin
// no increment seconds field, pre-compute both normal increment and overflow values
{ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg};
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
{ts_ns_reg, ts_fns_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg};
ts_s_reg <= ts_s_reg;
end
// FIFO dequeue
if (read) begin
// dequeue from FIFO
if (mem_read_data_reg[95:48] != ts_s_reg) begin
// seconds field doesn't match
if (!sec_mismatch_reg) begin
// ignore the first time
sec_mismatch_reg <= 1'b1;
end else begin
// two seconds mismatches in a row; step the clock
sec_mismatch_reg <= 1'b0;
{ts_ns_inc_reg, ts_fns_inc_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg};
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
ts_s_reg <= mem_read_data_reg[95:48];
ts_ns_reg <= mem_read_data_reg[45:16];
ts_fns_reg <= FNS_WIDTH > 16 ? mem_read_data_reg[15:0] << (FNS_WIDTH-16) : mem_read_data_reg[15:0] >> (16-FNS_WIDTH);
ts_step_reg <= 1;
end
end else begin
// compute difference
sec_mismatch_reg <= 1'b0;
diff_valid_reg <= 1'b1;
{ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_reg, ts_fns_reg} - (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH));
end
end else if (diff_valid_reg) begin
// offset difference by FIFO delay
diff_offset_valid_reg <= 1'b1;
diff_valid_reg <= 1'b0;
{ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_diff_reg, ts_fns_diff_reg} - ({period_ns_reg, period_fns_reg} * 2**(LOG_RATE + LOG_FIFO_DEPTH));
end else if (diff_offset_valid_reg) begin
// PI control
diff_offset_valid_reg <= 1'b0;
if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) > 4*2**16) begin
// limit positive adjustment
time_err_int_reg <= 0;
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ({4'd4, {FNS_WIDTH{1'b0}}});
end else if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) < -8*2**16) begin
// limit negative adjustment
time_err_int_reg <= 0;
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) + ({4'd8, {FNS_WIDTH{1'b0}}});
end else begin
time_err_int_reg <= $signed(time_err_int_reg) + $signed({ts_ns_diff_reg, ts_fns_diff_reg});
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) - ($signed(time_err_int_reg) / 2**16);
end
end
pps_reg <= !ts_ns_ovf_reg[30];
if (output_rst) begin
period_ns_reg <= OUTPUT_PERIOD_NS;
period_fns_reg <= OUTPUT_PERIOD_FNS;
ts_s_reg <= 0;
ts_ns_reg <= 0;
ts_fns_reg <= 0;
ts_ns_inc_reg <= 0;
ts_fns_inc_reg <= 0;
ts_ns_ovf_reg <= 31'h7fffffff;
ts_fns_ovf_reg <= {FNS_WIDTH{1'b1}};
ts_step_reg <= 0;
pps_reg <= 0;
end
end
endmodule