verilog-ethernet/rtl/axis_adapter.v
2014-10-22 15:13:42 -07:00

433 lines
17 KiB
Verilog

/*
Copyright (c) 2014 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream bus width adapter
*/
module axis_adapter #
(
parameter INPUT_DATA_WIDTH = 8,
parameter INPUT_KEEP_WIDTH = (INPUT_DATA_WIDTH/8),
parameter OUTPUT_DATA_WIDTH = 8,
parameter OUTPUT_KEEP_WIDTH = (OUTPUT_DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [INPUT_DATA_WIDTH-1:0] input_axis_tdata,
input wire [INPUT_KEEP_WIDTH-1:0] input_axis_tkeep,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI output
*/
output wire [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata,
output wire [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep,
output wire output_axis_tvalid,
input wire output_axis_tready,
output wire output_axis_tlast,
output wire output_axis_tuser
);
// bus word widths (must be identical)
localparam INPUT_DATA_WORD_WIDTH = INPUT_DATA_WIDTH / INPUT_KEEP_WIDTH;
localparam OUTPUT_DATA_WORD_WIDTH = OUTPUT_DATA_WIDTH / OUTPUT_KEEP_WIDTH;
// output bus is wider
localparam EXPAND_BUS = OUTPUT_KEEP_WIDTH > INPUT_KEEP_WIDTH;
// total data and keep widths
localparam DATA_WIDTH = EXPAND_BUS ? OUTPUT_DATA_WIDTH : INPUT_DATA_WIDTH;
localparam KEEP_WIDTH = EXPAND_BUS ? OUTPUT_KEEP_WIDTH : INPUT_KEEP_WIDTH;
// required number of cycles to match widths
localparam CYCLE_COUNT = EXPAND_BUS ? (OUTPUT_KEEP_WIDTH / INPUT_KEEP_WIDTH) : (INPUT_KEEP_WIDTH / OUTPUT_KEEP_WIDTH);
// data width and keep width per cycle
localparam CYCLE_DATA_WIDTH = DATA_WIDTH / CYCLE_COUNT;
localparam CYCLE_KEEP_WIDTH = KEEP_WIDTH / CYCLE_COUNT;
// bus width assertions
initial begin
if (INPUT_DATA_WORD_WIDTH * INPUT_KEEP_WIDTH != INPUT_DATA_WIDTH) begin
$error("Error: input data width not evenly divisble");
$finish;
end
if (OUTPUT_DATA_WORD_WIDTH * OUTPUT_KEEP_WIDTH != OUTPUT_DATA_WIDTH) begin
$error("Error: output data width not evenly divisble");
$finish;
end
if (INPUT_DATA_WORD_WIDTH != OUTPUT_DATA_WORD_WIDTH) begin
$error("Error: word width mismatch");
$finish;
end
end
// state register
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_TRANSFER_IN = 3'd1,
STATE_TRANSFER_OUT = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg [7:0] cycle_count_reg = 0, cycle_count_next;
reg [DATA_WIDTH-1:0] temp_tdata_reg = 0, temp_tdata_next;
reg [KEEP_WIDTH-1:0] temp_tkeep_reg = 0, temp_tkeep_next;
reg temp_tlast_reg = 0, temp_tlast_next;
reg temp_tuser_reg = 0, temp_tuser_next;
// internal datapath
reg [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata_int;
reg [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int = 0;
reg output_axis_tlast_int;
reg output_axis_tuser_int;
wire output_axis_tready_int_early;
reg input_axis_tready_reg = 0, input_axis_tready_next;
assign input_axis_tready = input_axis_tready_reg;
always @* begin
state_next = 3'bz;
cycle_count_next = cycle_count_reg;
temp_tdata_next = temp_tdata_reg;
temp_tkeep_next = temp_tkeep_reg;
temp_tlast_next = temp_tlast_reg;
temp_tuser_next = temp_tuser_reg;
output_axis_tdata_int = 0;
output_axis_tkeep_int = 0;
output_axis_tvalid_int = 0;
output_axis_tlast_int = 0;
output_axis_tuser_int = 0;
input_axis_tready_next = 0;
case (state_reg)
STATE_IDLE: begin
// idle state - no data in registers
if (CYCLE_COUNT == 1) begin
// output and input same width - just act like a register
// accept data next cycle if output register ready next cycle
input_axis_tready_next = output_axis_tready_int_early;
// transfer through
output_axis_tdata_int = input_axis_tdata;
output_axis_tkeep_int = input_axis_tkeep;
output_axis_tvalid_int = input_axis_tvalid;
output_axis_tlast_int = input_axis_tlast;
output_axis_tuser_int = input_axis_tuser;
state_next = STATE_IDLE;
end else if (EXPAND_BUS) begin
// output bus is wider
// accept new data
input_axis_tready_next = 1;
if (input_axis_tvalid) begin
// word transfer in - store it in data register
// pass complete input word, zero-extended to temp register
temp_tdata_next = input_axis_tdata;
temp_tkeep_next = input_axis_tkeep;
temp_tlast_next = input_axis_tlast;
temp_tuser_next = input_axis_tuser;
// first input cycle complete
cycle_count_next = 1;
if (input_axis_tlast) begin
// got last signal on first cycle, so output it
input_axis_tready_next = 0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
input_axis_tready_next = 1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
// output bus is narrower
// accept new data
input_axis_tready_next = 1;
if (input_axis_tvalid) begin
// word transfer in - store it in data register
cycle_count_next = 0;
// pass complete input word, zero-extended to temp register
temp_tdata_next = input_axis_tdata;
temp_tkeep_next = input_axis_tkeep;
temp_tlast_next = input_axis_tlast;
temp_tuser_next = input_axis_tuser;
// short-circuit and get first word out the door
output_axis_tdata_int = input_axis_tdata;
output_axis_tkeep_int = input_axis_tkeep;
output_axis_tvalid_int = 1;
output_axis_tlast_int = input_axis_tlast & ((CYCLE_COUNT == 1) | (input_axis_tkeep[CYCLE_KEEP_WIDTH-1:0] != {CYCLE_KEEP_WIDTH{1'b1}}));
output_axis_tuser_int = input_axis_tuser & ((CYCLE_COUNT == 1) | (input_axis_tkeep[CYCLE_KEEP_WIDTH-1:0] != {CYCLE_KEEP_WIDTH{1'b1}}));
if (output_axis_tready_int) begin
// if output register is ready for first word, then move on to the next one
cycle_count_next = 1;
end
// continue outputting words
input_axis_tready_next = 0;
state_next = STATE_TRANSFER_OUT;
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_TRANSFER_IN: begin
// transfer word to temp registers
// only used when output is wider
// accept new data
input_axis_tready_next = 1;
if (input_axis_tvalid) begin
// word transfer in - store in data register
temp_tdata_next[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH] = input_axis_tdata;
temp_tkeep_next[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] = input_axis_tkeep;
temp_tlast_next = input_axis_tlast;
temp_tuser_next = input_axis_tuser;
cycle_count_next = cycle_count_reg + 1;
if ((cycle_count_reg == CYCLE_COUNT-1) | input_axis_tlast) begin
// terminated by counter or tlast signal, output complete word
// read input word next cycle if output will be ready
input_axis_tready_next = output_axis_tready_int_early;
state_next = STATE_TRANSFER_OUT;
end else begin
// more words to read
input_axis_tready_next = 1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
end
STATE_TRANSFER_OUT: begin
// transfer word to output registers
if (EXPAND_BUS) begin
// output bus is wider
// do not accept new data
input_axis_tready_next = 0;
// single-cycle output of entire stored word (output wider)
output_axis_tdata_int = temp_tdata_reg;
output_axis_tkeep_int = temp_tkeep_reg;
output_axis_tvalid_int = 1;
output_axis_tlast_int = temp_tlast_reg;
output_axis_tuser_int = temp_tuser_reg;
if (output_axis_tready_int) begin
// word transfer out
if (input_axis_tready & input_axis_tvalid) begin
// word transfer in
// pass complete input word, zero-extended to temp register
temp_tdata_next = input_axis_tdata;
temp_tkeep_next = input_axis_tkeep;
temp_tlast_next = input_axis_tlast;
temp_tuser_next = input_axis_tuser;
// first input cycle complete
cycle_count_next = 1;
if (input_axis_tlast) begin
// got last signal on first cycle, so output it
input_axis_tready_next = 0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
input_axis_tready_next = 1;
state_next = STATE_TRANSFER_IN;
end
end else begin
input_axis_tready_next = 1;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end else begin
// output bus is narrower
// do not accept new data
input_axis_tready_next = 0;
// output current part of stored word (output narrower)
output_axis_tdata_int = temp_tdata_reg[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH];
output_axis_tkeep_int = temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH];
output_axis_tvalid_int = 1;
output_axis_tlast_int = temp_tlast_reg & ((cycle_count_reg == CYCLE_COUNT-1) | (temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] != {CYCLE_KEEP_WIDTH{1'b1}}));
output_axis_tuser_int = temp_tuser_reg & ((cycle_count_reg == CYCLE_COUNT-1) | (temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] != {CYCLE_KEEP_WIDTH{1'b1}}));
if (output_axis_tready_int) begin
// word transfer out
cycle_count_next = cycle_count_reg + 1;
if ((cycle_count_reg == CYCLE_COUNT-1) | (temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] != {CYCLE_KEEP_WIDTH{1'b1}})) begin
// terminated by counter or tlast signal
input_axis_tready_next = 1;
state_next = STATE_IDLE;
end else begin
// more words to write
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end
end
endcase
end
always @(posedge clk or posedge rst) begin
if (rst) begin
state_reg <= STATE_IDLE;
cycle_count_reg <= 0;
temp_tdata_reg <= 0;
temp_tkeep_reg <= 0;
temp_tlast_reg <= 0;
temp_tuser_reg <= 0;
input_axis_tready_reg <= 0;
end else begin
state_reg <= state_next;
input_axis_tready_reg <= input_axis_tready_next;
temp_tdata_reg <= temp_tdata_next;
temp_tkeep_reg <= temp_tkeep_next;
temp_tlast_reg <= temp_tlast_next;
temp_tuser_reg <= temp_tuser_next;
cycle_count_reg <= cycle_count_next;
end
end
// output datapath logic
reg [OUTPUT_DATA_WIDTH-1:0] output_axis_tdata_reg = 0;
reg [OUTPUT_KEEP_WIDTH-1:0] output_axis_tkeep_reg = 0;
reg output_axis_tvalid_reg = 0;
reg output_axis_tlast_reg = 0;
reg output_axis_tuser_reg = 0;
reg [OUTPUT_DATA_WIDTH-1:0] temp_axis_tdata_reg = 0;
reg [OUTPUT_KEEP_WIDTH-1:0] temp_axis_tkeep_reg = 0;
reg temp_axis_tvalid_reg = 0;
reg temp_axis_tlast_reg = 0;
reg temp_axis_tuser_reg = 0;
assign output_axis_tdata = output_axis_tdata_reg;
assign output_axis_tkeep = output_axis_tkeep_reg;
assign output_axis_tvalid = output_axis_tvalid_reg;
assign output_axis_tlast = output_axis_tlast_reg;
assign output_axis_tuser = output_axis_tuser_reg;
// enable ready input next cycle if output is ready or if there is space in both output registers or if there is space in the temp register that will not be filled next cycle
assign output_axis_tready_int_early = output_axis_tready | (~temp_axis_tvalid_reg & ~output_axis_tvalid_reg) | (~temp_axis_tvalid_reg & ~output_axis_tvalid_int);
always @(posedge clk or posedge rst) begin
if (rst) begin
output_axis_tdata_reg <= 0;
output_axis_tkeep_reg <= 0;
output_axis_tvalid_reg <= 0;
output_axis_tlast_reg <= 0;
output_axis_tuser_reg <= 0;
output_axis_tready_int <= 0;
temp_axis_tdata_reg <= 0;
temp_axis_tkeep_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end else begin
// transfer sink ready state to source
output_axis_tready_int <= output_axis_tready_int_early;
if (output_axis_tready_int) begin
// input is ready
if (output_axis_tready | ~output_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
output_axis_tdata_reg <= output_axis_tdata_int;
output_axis_tkeep_reg <= output_axis_tkeep_int;
output_axis_tvalid_reg <= output_axis_tvalid_int;
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else begin
// output is not ready and currently valid, store input in temp
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tkeep_reg <= output_axis_tkeep_int;
temp_axis_tvalid_reg <= output_axis_tvalid_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end else if (output_axis_tready) begin
// input is not ready, but output is ready
output_axis_tdata_reg <= temp_axis_tdata_reg;
output_axis_tkeep_reg <= temp_axis_tkeep_reg;
output_axis_tvalid_reg <= temp_axis_tvalid_reg;
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
temp_axis_tdata_reg <= 0;
temp_axis_tkeep_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end
end
end
endmodule