verilog-ethernet/rtl/axis_eth_fcs_insert.v
Alex Forencich d2fedc4134 Rename ports
2018-11-07 22:35:06 -08:00

369 lines
11 KiB
Verilog

/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream Ethernet FCS inserter
*/
module axis_eth_fcs_insert #
(
parameter ENABLE_PADDING = 0,
parameter MIN_FRAME_LENGTH = 64
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status
*/
output wire busy
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PAYLOAD = 2'd1,
STATE_PAD = 2'd2,
STATE_FCS = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
// datapath control signals
reg reset_crc;
reg update_crc;
reg [15:0] frame_ptr_reg = 16'd0, frame_ptr_next;
reg busy_reg = 1'b0;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
reg [31:0] crc_state = 32'hFFFFFFFF;
wire [31:0] crc_next;
// internal datapath
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_axis_tready = s_axis_tready_reg;
assign busy = busy_reg;
lfsr #(
.LFSR_WIDTH(32),
.LFSR_POLY(32'h4c11db7),
.LFSR_CONFIG("GALOIS"),
.LFSR_FEED_FORWARD(0),
.REVERSE(1),
.DATA_WIDTH(8),
.STYLE("AUTO")
)
eth_crc_8 (
.data_in(m_axis_tdata_int),
.state_in(crc_state),
.data_out(),
.state_out(crc_next)
);
always @* begin
state_next = STATE_IDLE;
reset_crc = 1'b0;
update_crc = 1'b0;
frame_ptr_next = frame_ptr_reg;
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - wait for data
s_axis_tready_next = m_axis_tready_int_early;
frame_ptr_next = 16'd0;
reset_crc = 1'b1;
m_axis_tdata_int = s_axis_tdata;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
frame_ptr_next = 16'd1;
reset_crc = 1'b0;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_PAYLOAD: begin
// transfer payload
s_axis_tready_next = m_axis_tready_int_early;
m_axis_tdata_int = s_axis_tdata;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
update_crc = 1'b1;
if (s_axis_tlast) begin
if (s_axis_tuser) begin
m_axis_tlast_int = 1'b1;
m_axis_tuser_int = 1'b1;
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
state_next = STATE_IDLE;
end else begin
s_axis_tready_next = 1'b0;
if (ENABLE_PADDING && frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end
end else begin
state_next = STATE_PAYLOAD;
end
end else begin
state_next = STATE_PAYLOAD;
end
end
STATE_PAD: begin
// insert padding
s_axis_tready_next = 1'b0;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (m_axis_tready_int_reg) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
update_crc = 1'b1;
if (frame_ptr_reg < MIN_FRAME_LENGTH-5) begin
state_next = STATE_PAD;
end else begin
frame_ptr_next = 16'd0;
state_next = STATE_FCS;
end
end else begin
state_next = STATE_PAD;
end
end
STATE_FCS: begin
// send FCS
s_axis_tready_next = 1'b0;
case (frame_ptr_reg)
2'd0: m_axis_tdata_int = ~crc_state[7:0];
2'd1: m_axis_tdata_int = ~crc_state[15:8];
2'd2: m_axis_tdata_int = ~crc_state[23:16];
2'd3: m_axis_tdata_int = ~crc_state[31:24];
endcase
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (m_axis_tready_int_reg) begin
frame_ptr_next = frame_ptr_reg + 16'd1;
if (frame_ptr_reg < 16'd3) begin
state_next = STATE_FCS;
end else begin
reset_crc = 1'b1;
frame_ptr_next = 16'd0;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_FCS;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_ptr_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
crc_state <= 32'hFFFFFFFF;
end else begin
state_reg <= state_next;
frame_ptr_reg <= frame_ptr_next;
s_axis_tready_reg <= s_axis_tready_next;
busy_reg <= state_next != STATE_IDLE;
// datapath
if (reset_crc) begin
crc_state <= 32'hFFFFFFFF;
end else if (update_crc) begin
crc_state <= crc_next;
end
end
end
// output datapath logic
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule