2021-10-20 17:29:12 -07:00

230 lines
6.4 KiB
Verilog

/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* MDIO master
*/
module mdio_master (
input wire clk,
input wire rst,
/*
* Host interface
*/
input wire [4:0] cmd_phy_addr,
input wire [4:0] cmd_reg_addr,
input wire [15:0] cmd_data,
input wire [1:0] cmd_opcode,
input wire cmd_valid,
output wire cmd_ready,
output wire [15:0] data_out,
output wire data_out_valid,
input wire data_out_ready,
/*
* MDIO to PHY
*/
output wire mdc_o,
input wire mdio_i,
output wire mdio_o,
output wire mdio_t,
/*
* Status
*/
output wire busy,
/*
* Configuration
*/
input wire [7:0] prescale
);
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_PREAMBLE = 2'd1,
STATE_TRANSFER = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [16:0] count_reg = 16'd0, count_next;
reg [6:0] bit_count_reg = 6'd0, bit_count_next;
reg cycle_reg = 1'b0, cycle_next;
reg [31:0] data_reg = 32'd0, data_next;
reg [1:0] op_reg = 2'b00, op_next;
reg cmd_ready_reg = 1'b0, cmd_ready_next;
reg [15:0] data_out_reg = 15'd0, data_out_next;
reg data_out_valid_reg = 1'b0, data_out_valid_next;
reg mdio_i_reg = 1'b1;
reg mdc_o_reg = 1'b0, mdc_o_next;
reg mdio_o_reg = 1'b0, mdio_o_next;
reg mdio_t_reg = 1'b1, mdio_t_next;
reg busy_reg = 1'b0;
assign cmd_ready = cmd_ready_reg;
assign data_out = data_out_reg;
assign data_out_valid = data_out_valid_reg;
assign mdc_o = mdc_o_reg;
assign mdio_o = mdio_o_reg;
assign mdio_t = mdio_t_reg;
assign busy = busy_reg;
always @* begin
state_next = STATE_IDLE;
count_next = count_reg;
bit_count_next = bit_count_reg;
cycle_next = cycle_reg;
data_next = data_reg;
op_next = op_reg;
cmd_ready_next = 1'b0;
data_out_next = data_out_reg;
data_out_valid_next = data_out_valid_reg & ~data_out_ready;
mdc_o_next = mdc_o_reg;
mdio_o_next = mdio_o_reg;
mdio_t_next = mdio_t_reg;
if (count_reg > 16'd0) begin
count_next = count_reg - 16'd1;
state_next = state_reg;
end else if (cycle_reg) begin
cycle_next = 1'b0;
mdc_o_next = 1'b1;
count_next = prescale;
state_next = state_reg;
end else begin
mdc_o_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle - accept new command
cmd_ready_next = ~data_out_valid;
if (cmd_ready & cmd_valid) begin
cmd_ready_next = 1'b0;
data_next = {2'b01, cmd_opcode, cmd_phy_addr, cmd_reg_addr, 2'b10, cmd_data};
op_next = cmd_opcode;
mdio_t_next = 1'b0;
mdio_o_next = 1'b1;
bit_count_next = 6'd32;
cycle_next = 1'b1;
count_next = prescale;
state_next = STATE_PREAMBLE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_PREAMBLE: begin
cycle_next = 1'b1;
count_next = prescale;
if (bit_count_reg > 6'd1) begin
bit_count_next = bit_count_reg - 6'd1;
state_next = STATE_PREAMBLE;
end else begin
bit_count_next = 6'd32;
{mdio_o_next, data_next} = {data_reg, mdio_i_reg};
state_next = STATE_TRANSFER;
end
end
STATE_TRANSFER: begin
cycle_next = 1'b1;
count_next = prescale;
if ((op_reg == 2'b10 || op_reg == 2'b11) && bit_count_reg == 6'd19) begin
mdio_t_next = 1'b1;
end
if (bit_count_reg > 6'd1) begin
bit_count_next = bit_count_reg - 6'd1;
{mdio_o_next, data_next} = {data_reg, mdio_i_reg};
state_next = STATE_TRANSFER;
end else begin
if (op_reg == 2'b10 || op_reg == 2'b11) begin
data_out_next = data_reg[15:0];
data_out_valid_next = 1'b1;
end
mdio_t_next = 1'b1;
state_next = STATE_IDLE;
end
end
endcase
end
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
count_reg <= 16'd0;
bit_count_reg <= 6'd0;
cycle_reg <= 1'b0;
cmd_ready_reg <= 1'b0;
data_out_valid_reg <= 1'b0;
mdc_o_reg <= 1'b0;
mdio_o_reg <= 1'b0;
mdio_t_reg <= 1'b1;
busy_reg <= 1'b0;
end else begin
state_reg <= state_next;
count_reg <= count_next;
bit_count_reg <= bit_count_next;
cycle_reg <= cycle_next;
cmd_ready_reg <= cmd_ready_next;
data_out_valid_reg <= data_out_valid_next;
mdc_o_reg <= mdc_o_next;
mdio_o_reg <= mdio_o_next;
mdio_t_reg <= mdio_t_next;
busy_reg <= (state_next != STATE_IDLE || count_reg != 0 || cycle_reg || mdc_o);
end
data_reg <= data_next;
op_reg <= op_next;
data_out_reg <= data_out_next;
mdio_i_reg <= mdio_i;
end
endmodule
`resetall