verilog-ethernet/rtl/ptp_perout.v
2019-06-27 01:30:18 -07:00

330 lines
11 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PTP period out module
*/
module ptp_perout #
(
parameter FNS_ENABLE = 1,
parameter OUT_START_S = 48'h0,
parameter OUT_START_NS = 30'h0,
parameter OUT_START_FNS = 16'h0000,
parameter OUT_PERIOD_S = 48'd1,
parameter OUT_PERIOD_NS = 30'd0,
parameter OUT_PERIOD_FNS = 16'h0000,
parameter OUT_WIDTH_S = 48'h0,
parameter OUT_WIDTH_NS = 30'd1000,
parameter OUT_WIDTH_FNS = 16'h0000
)
(
input wire clk,
input wire rst,
/*
* Timestamp input from PTP clock
*/
input wire [95:0] input_ts_96,
input wire input_ts_step,
/*
* Control
*/
input wire enable,
input wire [95:0] input_start,
input wire input_start_valid,
input wire [95:0] input_period,
input wire input_period_valid,
input wire [95:0] input_width,
input wire input_width_valid,
/*
* Status
*/
output wire locked,
output wire error,
/*
* Pulse output
*/
output wire output_pulse
);
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_UPDATE_RISE_1 = 3'd1,
STATE_UPDATE_RISE_2 = 3'd2,
STATE_UPDATE_FALL_1 = 3'd3,
STATE_UPDATE_FALL_2 = 3'd4,
STATE_WAIT_EDGE = 3'd5;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg [47:0] time_s_reg = 0;
reg [30:0] time_ns_reg = 0;
reg [15:0] time_fns_reg = 0;
reg [47:0] next_rise_s_reg = 0, next_rise_s_next;
reg [30:0] next_rise_ns_reg = 0, next_rise_ns_next;
reg [15:0] next_rise_fns_reg = 0, next_rise_fns_next;
reg [47:0] next_fall_s_reg = 0, next_fall_s_next;
reg [30:0] next_fall_ns_reg = 0, next_fall_ns_next;
reg [15:0] next_fall_fns_reg = 0, next_fall_fns_next;
reg [47:0] start_s_reg = OUT_START_S;
reg [30:0] start_ns_reg = OUT_START_NS;
reg [15:0] start_fns_reg = OUT_START_FNS;
reg [47:0] period_s_reg = OUT_PERIOD_S;
reg [30:0] period_ns_reg = OUT_PERIOD_NS;
reg [15:0] period_fns_reg = OUT_PERIOD_FNS;
reg [47:0] width_s_reg = OUT_WIDTH_S;
reg [30:0] width_ns_reg = OUT_WIDTH_NS;
reg [15:0] width_fns_reg = OUT_WIDTH_FNS;
reg [29:0] ts_96_ns_inc_reg = 0, ts_96_ns_inc_next;
reg [15:0] ts_96_fns_inc_reg = 0, ts_96_fns_inc_next;
reg [30:0] ts_96_ns_ovf_reg = 0, ts_96_ns_ovf_next;
reg [15:0] ts_96_fns_ovf_reg = 0, ts_96_fns_ovf_next;
reg locked_reg = 1'b0, locked_next;
reg error_reg = 1'b0;
reg level_reg = 1'b0, level_next;
reg output_reg = 1'b0, output_next;
assign locked = locked_reg;
assign error = error_reg;
assign output_pulse = output_reg;
always @* begin
state_next = STATE_IDLE;
next_rise_s_next = next_rise_s_reg;
next_rise_ns_next = next_rise_ns_reg;
next_rise_fns_next = next_rise_fns_reg;
next_fall_s_next = next_fall_s_reg;
next_fall_ns_next = next_fall_ns_reg;
next_fall_fns_next = next_fall_fns_reg;
ts_96_ns_inc_next = ts_96_ns_inc_reg;
ts_96_fns_inc_next = ts_96_fns_inc_reg;
ts_96_ns_ovf_next = ts_96_ns_ovf_reg;
ts_96_fns_ovf_next = ts_96_fns_ovf_reg;
locked_next = locked_reg;
level_next = level_reg;
output_next = output_reg;
case (state_reg)
STATE_IDLE: begin
// set next rise to start time
next_rise_s_next = start_s_reg;
next_rise_ns_next = start_ns_reg;
if (FNS_ENABLE) begin
next_rise_fns_next = start_fns_reg;
end
locked_next = 1'b0;
level_next = 1'b0;
output_next = 1'b0;
if (input_start_valid || input_period_valid) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_UPDATE_FALL_1;
end
end
STATE_UPDATE_RISE_1: begin
// set next rise time to next rise time plus period
{ts_96_ns_inc_next, ts_96_fns_inc_next} = {next_rise_ns_reg, next_rise_fns_reg} + {period_ns_reg, period_fns_reg};
{ts_96_ns_ovf_next, ts_96_fns_ovf_next} = {next_rise_ns_reg, next_rise_fns_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, 16'd0};
if (input_start_valid || input_period_valid) begin
level_next = 1'b0;
output_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_UPDATE_RISE_2;
end
end
STATE_UPDATE_RISE_2: begin
if (!ts_96_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
next_rise_s_next = next_rise_s_reg + period_s_reg + 1;
next_rise_ns_next = ts_96_ns_ovf_reg;
next_rise_fns_next = ts_96_fns_ovf_reg;
end else begin
// no increment seconds field
next_rise_s_next = next_rise_s_reg + period_s_reg;
next_rise_ns_next = ts_96_ns_inc_reg;
next_rise_fns_next = ts_96_fns_inc_reg;
end
if (input_start_valid || input_period_valid) begin
level_next = 1'b0;
output_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_EDGE;
end
end
STATE_UPDATE_FALL_1: begin
// set next fall time to next rise time plus width
{ts_96_ns_inc_next, ts_96_fns_inc_next} = {next_rise_ns_reg, next_rise_fns_reg} + {width_ns_reg, width_fns_reg};
{ts_96_ns_ovf_next, ts_96_fns_ovf_next} = {next_rise_ns_reg, next_rise_fns_reg} + {width_ns_reg, width_fns_reg} - {31'd1_000_000_000, 16'd0};
if (input_start_valid || input_period_valid) begin
level_next = 1'b0;
output_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_UPDATE_FALL_2;
end
end
STATE_UPDATE_FALL_2: begin
if (!ts_96_ns_ovf_reg[30]) begin
// if the overflow lookahead did not borrow, one second has elapsed
next_fall_s_next = next_rise_s_reg + width_s_reg + 1;
next_fall_ns_next = ts_96_ns_ovf_reg;
next_fall_fns_next = ts_96_fns_ovf_reg;
end else begin
// no increment seconds field
next_fall_s_next = next_rise_s_reg + width_s_reg;
next_fall_ns_next = ts_96_ns_inc_reg;
next_fall_fns_next = ts_96_fns_inc_reg;
end
if (input_start_valid || input_period_valid) begin
level_next = 1'b0;
output_next = 1'b0;
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT_EDGE;
end
end
STATE_WAIT_EDGE: begin
if (input_start_valid || input_period_valid) begin
state_next = STATE_IDLE;
end else if ((time_s_reg > next_rise_s_reg) || (time_s_reg == next_rise_s_reg && {time_ns_reg, time_fns_reg} > {next_rise_ns_reg, next_rise_fns_reg})) begin
// rising edge
level_next = 1'b1;
output_next = enable && locked_reg;
state_next = STATE_UPDATE_RISE_1;
end else if ((time_s_reg > next_fall_s_reg) || (time_s_reg == next_fall_s_reg && {time_ns_reg, time_fns_reg} > {next_fall_ns_reg, next_fall_fns_reg})) begin
// falling edge
level_next = 1'b0;
output_next = 1'b0;
state_next = STATE_UPDATE_FALL_1;
end else begin
locked_next = locked_reg || level_reg;
state_next = STATE_WAIT_EDGE;
end
end
endcase
end
always @(posedge clk) begin
state_reg <= state_next;
time_s_reg <= input_ts_96[95:48];
time_ns_reg <= input_ts_96[45:16];
if (FNS_ENABLE) begin
time_fns_reg <= input_ts_96[15:0];
end
if (input_start_valid) begin
start_s_reg <= input_start[95:48];
start_ns_reg <= input_start[45:16];
if (FNS_ENABLE) begin
start_fns_reg <= input_start[15:0];
end
end
if (input_period_valid) begin
period_s_reg <= input_period[95:48];
period_ns_reg <= input_period[45:16];
if (FNS_ENABLE) begin
period_fns_reg <= input_period[15:0];
end
end
if (input_width_valid) begin
width_s_reg <= input_width[95:48];
width_ns_reg <= input_width[45:16];
if (FNS_ENABLE) begin
width_fns_reg <= input_width[15:0];
end
end
next_rise_s_reg <= next_rise_s_next;
next_rise_ns_reg <= next_rise_ns_next;
if (FNS_ENABLE) begin
next_rise_fns_reg <= next_rise_fns_next;
end
next_fall_s_reg <= next_fall_s_next;
next_fall_ns_reg <= next_fall_ns_next;
if (FNS_ENABLE) begin
next_fall_fns_reg <= next_fall_fns_next;
end
ts_96_ns_inc_reg <= ts_96_ns_inc_next;
if (FNS_ENABLE) begin
ts_96_fns_inc_reg <= ts_96_fns_inc_next;
end
ts_96_ns_ovf_reg <= ts_96_ns_ovf_next;
if (FNS_ENABLE) begin
ts_96_fns_ovf_reg <= ts_96_fns_ovf_next;
end
locked_reg <= locked_next;
level_reg <= level_next;
output_reg <= output_next;
if (rst) begin
state_reg <= STATE_IDLE;
start_s_reg <= OUT_START_S;
start_ns_reg <= OUT_START_NS;
start_fns_reg <= OUT_START_FNS;
period_s_reg <= OUT_PERIOD_S;
period_ns_reg <= OUT_PERIOD_NS;
period_fns_reg <= OUT_PERIOD_FNS;
width_s_reg <= OUT_WIDTH_S;
width_ns_reg <= OUT_WIDTH_NS;
width_fns_reg <= OUT_WIDTH_FNS;
locked_reg <= 1'b0;
error_reg <= 1'b0;
output_reg <= 1'b0;
end
end
endmodule