/* Copyright (c) 2019 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * Ultrascale PCIe DMA write interface */ module dma_if_pcie_us_wr # ( // Width of PCIe AXI stream interfaces in bits parameter AXIS_PCIE_DATA_WIDTH = 256, // PCIe AXI stream tkeep signal width (words per cycle) parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32), // PCIe AXI stream RQ tuser signal width parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137, // RQ sequence number width parameter RQ_SEQ_NUM_WIDTH = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6, // RQ sequence number tracking enable parameter RQ_SEQ_NUM_ENABLE = 0, // RAM segment count parameter SEG_COUNT = AXIS_PCIE_DATA_WIDTH > 64 ? AXIS_PCIE_DATA_WIDTH*2 / 128 : 2, // RAM segment data width parameter SEG_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH*2/SEG_COUNT, // RAM segment address width parameter SEG_ADDR_WIDTH = 8, // RAM segment byte enable width parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8, // RAM select width parameter RAM_SEL_WIDTH = 2, // RAM address width parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH), // PCIe address width parameter PCIE_ADDR_WIDTH = 64, // Length field width parameter LEN_WIDTH = 16, // Tag field width parameter TAG_WIDTH = 8, // Operation table size parameter OP_TABLE_SIZE = 2**(RQ_SEQ_NUM_WIDTH-1), // In-flight transmit limit parameter TX_LIMIT = 2**(RQ_SEQ_NUM_WIDTH-1), // Transmit flow control parameter TX_FC_ENABLE = 0 ) ( input wire clk, input wire rst, /* * AXI input (RQ from read DMA IF) */ input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rq_tdata, input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rq_tkeep, input wire s_axis_rq_tvalid, output wire s_axis_rq_tready, input wire s_axis_rq_tlast, input wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] s_axis_rq_tuser, /* * AXI output (RQ) */ output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata, output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep, output wire m_axis_rq_tvalid, input wire m_axis_rq_tready, output wire m_axis_rq_tlast, output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser, /* * Transmit sequence number input */ input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_0, input wire s_axis_rq_seq_num_valid_0, input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_1, input wire s_axis_rq_seq_num_valid_1, /* * Transmit sequence number output (to read DMA IF) */ output wire [RQ_SEQ_NUM_WIDTH-1:0] m_axis_rq_seq_num_0, output wire m_axis_rq_seq_num_valid_0, output wire [RQ_SEQ_NUM_WIDTH-1:0] m_axis_rq_seq_num_1, output wire m_axis_rq_seq_num_valid_1, /* * Transmit flow control */ input wire [7:0] pcie_tx_fc_ph_av, input wire [11:0] pcie_tx_fc_pd_av, /* * AXI write descriptor input */ input wire [PCIE_ADDR_WIDTH-1:0] s_axis_write_desc_pcie_addr, input wire [RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel, input wire [RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr, input wire [LEN_WIDTH-1:0] s_axis_write_desc_len, input wire [TAG_WIDTH-1:0] s_axis_write_desc_tag, input wire s_axis_write_desc_valid, output wire s_axis_write_desc_ready, /* * AXI write descriptor status output */ output wire [TAG_WIDTH-1:0] m_axis_write_desc_status_tag, output wire m_axis_write_desc_status_valid, /* * RAM interface */ output wire [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel, output wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr, output wire [SEG_COUNT-1:0] ram_rd_cmd_valid, input wire [SEG_COUNT-1:0] ram_rd_cmd_ready, input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data, input wire [SEG_COUNT-1:0] ram_rd_resp_valid, output wire [SEG_COUNT-1:0] ram_rd_resp_ready, /* * Configuration */ input wire enable, input wire [15:0] requester_id, input wire requester_id_enable, input wire [2:0] max_payload_size ); parameter RAM_WORD_WIDTH = SEG_BE_WIDTH; parameter RAM_WORD_SIZE = SEG_DATA_WIDTH/RAM_WORD_WIDTH; parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH; parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH; parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8); parameter RAM_OFFSET_WIDTH = $clog2(SEG_COUNT*SEG_DATA_WIDTH/8); parameter WORD_LEN_WIDTH = LEN_WIDTH - $clog2(AXIS_PCIE_KEEP_WIDTH); parameter CYCLE_COUNT_WIDTH = 13-$clog2(AXIS_PCIE_KEEP_WIDTH*4); parameter SEQ_NUM_MASK = {RQ_SEQ_NUM_WIDTH-1{1'b1}}; parameter SEQ_NUM_FLAG = {1'b1, {RQ_SEQ_NUM_WIDTH-1{1'b0}}}; parameter MASK_FIFO_ADDR_WIDTH = $clog2(OP_TABLE_SIZE)+1; parameter OP_TAG_WIDTH = $clog2(OP_TABLE_SIZE); // bus width assertions initial begin if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin $error("Error: PCIe interface width must be 64, 128, or 256 (instance %m)"); $finish; end if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin $error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)"); $finish; end if (AXIS_PCIE_DATA_WIDTH == 512) begin if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin $error("Error: PCIe RQ tuser width must be 137 (instance %m)"); $finish; end end else begin if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin $error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)"); $finish; end end if (AXIS_PCIE_RQ_USER_WIDTH == 60) begin if (RQ_SEQ_NUM_WIDTH != 4) begin $error("Error: RQ sequence number width must be 4 (instance %m)"); $finish; end end else begin if (RQ_SEQ_NUM_WIDTH != 6) begin $error("Error: RQ sequence number width must be 6 (instance %m)"); $finish; end end if (RQ_SEQ_NUM_ENABLE && OP_TABLE_SIZE > 2**(RQ_SEQ_NUM_WIDTH-1)) begin $error("Error: Operation table size of range (instance %m)"); $finish; end if (RQ_SEQ_NUM_ENABLE && TX_LIMIT > 2**(RQ_SEQ_NUM_WIDTH-1)) begin $error("Error: TX limit out of range (instance %m)"); $finish; end if (SEG_COUNT < 2) begin $error("Error: RAM interface requires at least 2 segments (instance %m)"); $finish; end if (SEG_COUNT*SEG_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH*2) begin $error("Error: RAM interface width must be double the PCIe interface width (instance %m)"); $finish; end if (SEG_BE_WIDTH * 8 != SEG_DATA_WIDTH) begin $error("Error: RAM interface requires byte (8-bit) granularity (instance %m)"); $finish; end if (2**$clog2(RAM_WORD_WIDTH) != RAM_WORD_WIDTH) begin $error("Error: RAM word width must be even power of two (instance %m)"); $finish; end if (RAM_ADDR_WIDTH != SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH)) begin $error("Error: RAM_ADDR_WIDTH does not match RAM configuration (instance %m)"); $finish; end end localparam [3:0] REQ_MEM_READ = 4'b0000, REQ_MEM_WRITE = 4'b0001, REQ_IO_READ = 4'b0010, REQ_IO_WRITE = 4'b0011, REQ_MEM_FETCH_ADD = 4'b0100, REQ_MEM_SWAP = 4'b0101, REQ_MEM_CAS = 4'b0110, REQ_MEM_READ_LOCKED = 4'b0111, REQ_CFG_READ_0 = 4'b1000, REQ_CFG_READ_1 = 4'b1001, REQ_CFG_WRITE_0 = 4'b1010, REQ_CFG_WRITE_1 = 4'b1011, REQ_MSG = 4'b1100, REQ_MSG_VENDOR = 4'b1101, REQ_MSG_ATS = 4'b1110; localparam [2:0] CPL_STATUS_SC = 3'b000, // successful completion CPL_STATUS_UR = 3'b001, // unsupported request CPL_STATUS_CRS = 3'b010, // configuration request retry status CPL_STATUS_CA = 3'b100; // completer abort localparam [0:0] REQ_STATE_IDLE = 1'd0, REQ_STATE_START = 1'd1; reg [0:0] req_state_reg = REQ_STATE_IDLE, req_state_next; localparam [0:0] READ_STATE_IDLE = 1'd0, READ_STATE_READ = 1'd1; reg [0:0] read_state_reg = READ_STATE_IDLE, read_state_next; localparam [2:0] TLP_STATE_IDLE = 3'd0, TLP_STATE_HEADER_1 = 3'd1, TLP_STATE_HEADER_2 = 3'd2, TLP_STATE_TRANSFER = 3'd3, TLP_STATE_PASSTHROUGH = 3'd4; reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next; // datapath control signals reg mask_fifo_we; reg read_cmd_ready; reg [PCIE_ADDR_WIDTH-1:0] pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, pcie_addr_next; reg [RAM_SEL_WIDTH-1:0] ram_sel_reg = {RAM_SEL_WIDTH{1'b0}}, ram_sel_next; reg [RAM_ADDR_WIDTH-1:0] ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, ram_addr_next; reg [LEN_WIDTH-1:0] op_count_reg = {LEN_WIDTH{1'b0}}, op_count_next; reg [LEN_WIDTH-1:0] tr_count_reg = {LEN_WIDTH{1'b0}}, tr_count_next; reg [LEN_WIDTH-1:0] tlp_count_reg = {LEN_WIDTH{1'b0}}, tlp_count_next; reg [PCIE_ADDR_WIDTH-1:0] read_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, read_pcie_addr_next; reg [RAM_SEL_WIDTH-1:0] read_ram_sel_reg = {RAM_SEL_WIDTH{1'b0}}, read_ram_sel_next; reg [RAM_ADDR_WIDTH-1:0] read_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, read_ram_addr_next; reg [LEN_WIDTH-1:0] read_len_reg = {LEN_WIDTH{1'b0}}, read_len_next; reg [SEG_COUNT-1:0] read_ram_mask_reg = {SEG_COUNT{1'b0}}, read_ram_mask_next; reg [SEG_COUNT-1:0] read_ram_mask_0_reg = {SEG_COUNT{1'b0}}, read_ram_mask_0_next; reg [SEG_COUNT-1:0] read_ram_mask_1_reg = {SEG_COUNT{1'b0}}, read_ram_mask_1_next; reg ram_wrap_reg = 1'b0, ram_wrap_next; reg [CYCLE_COUNT_WIDTH-1:0] read_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, read_cycle_count_next; reg read_last_cycle_reg = 1'b0, read_last_cycle_next; reg [OFFSET_WIDTH+1-1:0] cycle_byte_count_reg = {OFFSET_WIDTH+1{1'b0}}, cycle_byte_count_next; reg [RAM_OFFSET_WIDTH-1:0] start_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, start_offset_next; reg [RAM_OFFSET_WIDTH-1:0] end_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, end_offset_next; reg [PCIE_ADDR_WIDTH-1:0] tlp_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_addr_next; reg [11:0] tlp_len_reg = 12'd0, tlp_len_next; reg [RAM_OFFSET_WIDTH-1:0] offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, offset_next; reg [9:0] dword_count_reg = 10'd0, dword_count_next; reg [SEG_COUNT-1:0] ram_mask_reg = {SEG_COUNT{1'b0}}, ram_mask_next; reg ram_mask_valid_reg = 1'b0, ram_mask_valid_next; reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, cycle_count_next; reg last_cycle_reg = 1'b0, last_cycle_next; reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next; reg [PCIE_ADDR_WIDTH-1:0] read_cmd_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, read_cmd_pcie_addr_next; reg [RAM_SEL_WIDTH-1:0] read_cmd_ram_sel_reg = {RAM_SEL_WIDTH{1'b0}}, read_cmd_ram_sel_next; reg [RAM_ADDR_WIDTH-1:0] read_cmd_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, read_cmd_ram_addr_next; reg [11:0] read_cmd_len_reg = 12'd0, read_cmd_len_next; reg [CYCLE_COUNT_WIDTH-1:0] read_cmd_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, read_cmd_cycle_count_next; reg read_cmd_last_cycle_reg = 1'b0, read_cmd_last_cycle_next; reg read_cmd_valid_reg = 1'b0, read_cmd_valid_next; reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_wr_ptr_reg = 0; reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_rd_ptr_reg = 0, mask_fifo_rd_ptr_next; reg [SEG_COUNT-1:0] mask_fifo_mask[(2**MASK_FIFO_ADDR_WIDTH)-1:0]; reg [SEG_COUNT-1:0] mask_fifo_wr_mask; wire mask_fifo_empty = mask_fifo_wr_ptr_reg == mask_fifo_rd_ptr_reg; wire mask_fifo_full = mask_fifo_wr_ptr_reg == (mask_fifo_rd_ptr_reg ^ (1 << MASK_FIFO_ADDR_WIDTH)); reg [10:0] max_payload_size_dw_reg = 11'd0; reg have_credit_reg = 1'b0; reg [RQ_SEQ_NUM_WIDTH-1:0] active_tx_count_reg = {RQ_SEQ_NUM_WIDTH{1'b0}}; reg active_tx_count_av_reg = 1'b1; reg inc_active_tx; reg s_axis_rq_tready_reg = 1'b0, s_axis_rq_tready_next; reg s_axis_write_desc_ready_reg = 1'b0, s_axis_write_desc_ready_next; reg [TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next; reg m_axis_write_desc_status_valid_reg = 1'b0, m_axis_write_desc_status_valid_next; reg [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel_reg = 0, ram_rd_cmd_sel_next; reg [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr_reg = 0, ram_rd_cmd_addr_next; reg [SEG_COUNT-1:0] ram_rd_cmd_valid_reg = 0, ram_rd_cmd_valid_next; reg [SEG_COUNT-1:0] ram_rd_resp_ready_cmb; // internal datapath reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int; reg m_axis_rq_tvalid_int; reg m_axis_rq_tready_int_reg = 1'b0; reg m_axis_rq_tlast_int; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int; wire m_axis_rq_tready_int_early; assign s_axis_rq_tready = s_axis_rq_tready_reg; assign m_axis_rq_seq_num_0 = s_axis_rq_seq_num_0 & SEQ_NUM_MASK; assign m_axis_rq_seq_num_valid_0 = s_axis_rq_seq_num_valid_0 && (s_axis_rq_seq_num_0 & SEQ_NUM_FLAG); assign m_axis_rq_seq_num_1 = s_axis_rq_seq_num_1 & SEQ_NUM_MASK; assign m_axis_rq_seq_num_valid_1 = s_axis_rq_seq_num_valid_1 && (s_axis_rq_seq_num_1 & SEQ_NUM_FLAG); wire axis_rq_seq_num_valid_0_int = s_axis_rq_seq_num_valid_0 && !(s_axis_rq_seq_num_0 & SEQ_NUM_FLAG); wire axis_rq_seq_num_valid_1_int = s_axis_rq_seq_num_valid_1 && !(s_axis_rq_seq_num_1 & SEQ_NUM_FLAG); assign s_axis_write_desc_ready = s_axis_write_desc_ready_reg; assign m_axis_write_desc_status_tag = m_axis_write_desc_status_tag_reg; assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg; assign ram_rd_cmd_sel = ram_rd_cmd_sel_reg; assign ram_rd_cmd_addr = ram_rd_cmd_addr_reg; assign ram_rd_cmd_valid = ram_rd_cmd_valid_reg; assign ram_rd_resp_ready = ram_rd_resp_ready_cmb; wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_max_payload = pcie_addr_reg + {max_payload_size_dw_reg, 2'b00}; wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_op_count = pcie_addr_reg + op_count_reg; // operation tag management reg [OP_TAG_WIDTH+1-1:0] op_table_start_ptr_reg = 0; reg [PCIE_ADDR_WIDTH-1:0] op_table_start_pcie_addr; reg [11:0] op_table_start_len; reg [9:0] op_table_start_dword_len; reg [CYCLE_COUNT_WIDTH-1:0] op_table_start_cycle_count; reg [RAM_OFFSET_WIDTH-1:0] op_table_start_offset; reg [TAG_WIDTH-1:0] op_table_start_tag; reg op_table_start_last; reg op_table_start_en; reg [OP_TAG_WIDTH+1-1:0] op_table_tx_start_ptr_reg = 0; reg op_table_tx_start_en; reg [OP_TAG_WIDTH+1-1:0] op_table_tx_finish_ptr_reg = 0; reg op_table_tx_finish_en; reg [OP_TAG_WIDTH+1-1:0] op_table_finish_ptr_reg = 0; reg op_table_finish_en; reg [2**OP_TAG_WIDTH-1:0] op_table_active = 0; reg [2**OP_TAG_WIDTH-1:0] op_table_tx_done = 0; reg [PCIE_ADDR_WIDTH-1:0] op_table_pcie_addr[2**OP_TAG_WIDTH-1:0]; reg [11:0] op_table_len[2**OP_TAG_WIDTH-1:0]; reg [9:0] op_table_dword_len[2**OP_TAG_WIDTH-1:0]; reg [CYCLE_COUNT_WIDTH-1:0] op_table_cycle_count[2**OP_TAG_WIDTH-1:0]; reg [RAM_OFFSET_WIDTH-1:0] op_table_offset[2**OP_TAG_WIDTH-1:0]; reg [TAG_WIDTH-1:0] op_table_tag[2**OP_TAG_WIDTH-1:0]; reg op_table_last[2**OP_TAG_WIDTH-1:0]; integer i; initial begin for (i = 0; i < 2**OP_TAG_WIDTH; i = i + 1) begin op_table_pcie_addr[i] = 0; op_table_len[i] = 0; op_table_dword_len[i] = 0; op_table_cycle_count[i] = 0; op_table_offset[i] = 0; op_table_tag[i] = 0; op_table_last[i] = 0; end end always @* begin req_state_next = REQ_STATE_IDLE; s_axis_write_desc_ready_next = 1'b0; pcie_addr_next = pcie_addr_reg; ram_sel_next = ram_sel_reg; ram_addr_next = ram_addr_reg; op_count_next = op_count_reg; tr_count_next = tr_count_reg; tlp_count_next = tlp_count_reg; tlp_cmd_tag_next = tlp_cmd_tag_reg; read_cmd_pcie_addr_next = read_cmd_pcie_addr_reg; read_cmd_ram_sel_next = read_cmd_ram_sel_reg; read_cmd_ram_addr_next = read_cmd_ram_addr_reg; read_cmd_len_next = read_cmd_len_reg; read_cmd_cycle_count_next = read_cmd_cycle_count_reg; read_cmd_last_cycle_next = read_cmd_last_cycle_reg; read_cmd_valid_next = read_cmd_valid_reg && !read_cmd_ready; op_table_start_pcie_addr = pcie_addr_reg; op_table_start_len = 0; op_table_start_dword_len = 0; op_table_start_cycle_count = 0; if (AXIS_PCIE_DATA_WIDTH >= 256) begin op_table_start_offset = 16+pcie_addr_reg[1:0]-ram_addr_reg[RAM_OFFSET_WIDTH-1:0]; end else begin op_table_start_offset = pcie_addr_reg[1:0]-ram_addr_reg[RAM_OFFSET_WIDTH-1:0]; end op_table_start_tag = tlp_cmd_tag_reg; op_table_start_last = 0; op_table_start_en = 1'b0; // TLP segmentation case (req_state_reg) REQ_STATE_IDLE: begin // idle state, wait for incoming descriptor s_axis_write_desc_ready_next = !op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH) && enable; pcie_addr_next = s_axis_write_desc_pcie_addr; ram_sel_next = s_axis_write_desc_ram_sel; ram_addr_next = s_axis_write_desc_ram_addr; op_count_next = s_axis_write_desc_len; if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin // packet smaller than max payload size if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin // crosses 4k boundary tlp_count_next = 13'h1000 - pcie_addr_next[11:0]; end else begin // does not cross 4k boundary, send one TLP tlp_count_next = op_count_next; end end else begin // packet larger than max payload size if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin // crosses 4k boundary tlp_count_next = 13'h1000 - pcie_addr_next[11:0]; end else begin // does not cross 4k boundary, send one TLP tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]; end end if (s_axis_write_desc_ready & s_axis_write_desc_valid) begin s_axis_write_desc_ready_next = 1'b0; tlp_cmd_tag_next = s_axis_write_desc_tag; req_state_next = REQ_STATE_START; end else begin req_state_next = REQ_STATE_IDLE; end end REQ_STATE_START: begin // start state, compute TLP length if (!op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH) && (!ram_rd_cmd_valid_reg || ram_rd_cmd_ready) && (!read_cmd_valid_reg || read_cmd_ready)) begin read_cmd_pcie_addr_next = pcie_addr_reg; read_cmd_ram_sel_next = ram_sel_reg; read_cmd_ram_addr_next = ram_addr_reg; read_cmd_len_next = tlp_count_next; if (AXIS_PCIE_DATA_WIDTH >= 256) begin read_cmd_cycle_count_next = (tlp_count_next + 16+pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8); end else begin read_cmd_cycle_count_next = (tlp_count_next + pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8); end op_table_start_cycle_count = read_cmd_cycle_count_next; read_cmd_last_cycle_next = read_cmd_cycle_count_next == 0; read_cmd_valid_next = 1'b1; pcie_addr_next = pcie_addr_reg + tlp_count_next; ram_addr_next = ram_addr_reg + tlp_count_next; op_count_next = op_count_reg - tlp_count_next; op_table_start_pcie_addr = pcie_addr_reg; op_table_start_len = tlp_count_next; op_table_start_dword_len = (tlp_count_next + pcie_addr_reg[1:0] + 3) >> 2; if (AXIS_PCIE_DATA_WIDTH >= 256) begin op_table_start_offset = 16+pcie_addr_reg[1:0]-ram_addr_reg[RAM_OFFSET_WIDTH-1:0]; end else begin op_table_start_offset = pcie_addr_reg[1:0]-ram_addr_reg[RAM_OFFSET_WIDTH-1:0]; end op_table_start_last = op_count_next == 0; op_table_start_tag = tlp_cmd_tag_reg; op_table_start_en = 1'b1; if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin // packet smaller than max payload size if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin // crosses 4k boundary tlp_count_next = 13'h1000 - pcie_addr_next[11:0]; end else begin // does not cross 4k boundary, send one TLP tlp_count_next = op_count_next; end end else begin // packet larger than max payload size if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin // crosses 4k boundary tlp_count_next = 13'h1000 - pcie_addr_next[11:0]; end else begin // does not cross 4k boundary, send one TLP tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]; end end if (op_count_next != 0) begin req_state_next = REQ_STATE_START; end else begin s_axis_write_desc_ready_next = !op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH) && enable; req_state_next = REQ_STATE_IDLE; end end else begin req_state_next = REQ_STATE_START; end end endcase end always @* begin read_state_next = READ_STATE_IDLE; read_cmd_ready = 1'b0; ram_rd_cmd_sel_next = ram_rd_cmd_sel_reg; ram_rd_cmd_addr_next = ram_rd_cmd_addr_reg; ram_rd_cmd_valid_next = ram_rd_cmd_valid_reg & ~ram_rd_cmd_ready; read_pcie_addr_next = read_pcie_addr_reg; read_ram_sel_next = read_ram_sel_reg; read_ram_addr_next = read_ram_addr_reg; read_len_next = read_len_reg; read_ram_mask_next = read_ram_mask_reg; read_ram_mask_0_next = read_ram_mask_0_reg; read_ram_mask_1_next = read_ram_mask_1_reg; ram_wrap_next = ram_wrap_reg; read_cycle_count_next = read_cycle_count_reg; read_last_cycle_next = read_last_cycle_reg; cycle_byte_count_next = cycle_byte_count_reg; start_offset_next = start_offset_reg; end_offset_next = end_offset_reg; mask_fifo_wr_mask = read_ram_mask_reg; mask_fifo_we = 1'b0; // Read request generation case (read_state_reg) READ_STATE_IDLE: begin // idle state, wait for read command read_pcie_addr_next = read_cmd_pcie_addr_reg; read_ram_sel_next = read_cmd_ram_sel_reg; read_ram_addr_next = read_cmd_ram_addr_reg; read_len_next = read_cmd_len_reg; read_cycle_count_next = read_cmd_cycle_count_reg; read_last_cycle_next = read_cmd_last_cycle_reg; if (AXIS_PCIE_DATA_WIDTH >= 256 && read_len_next > (AXIS_PCIE_DATA_WIDTH/8-16)-read_pcie_addr_next[1:0]) begin cycle_byte_count_next = (AXIS_PCIE_DATA_WIDTH/8-16)-read_pcie_addr_next[1:0]; end else if (AXIS_PCIE_DATA_WIDTH <= 128 && read_len_next > AXIS_PCIE_DATA_WIDTH/8-read_pcie_addr_next[1:0]) begin cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8-read_pcie_addr_next[1:0]; end else begin cycle_byte_count_next = read_len_next; end start_offset_next = read_ram_addr_next; end_offset_next = start_offset_next+cycle_byte_count_next-1; ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH; read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH)); read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH))); if (!ram_wrap_next) begin read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next; read_ram_mask_1_next = 0; end read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next; if (read_cmd_valid_reg) begin read_cmd_ready = 1'b1; read_state_next = READ_STATE_READ; end else begin read_state_next = READ_STATE_IDLE; end end READ_STATE_READ: begin // read state - start new read operations if (!(ram_rd_cmd_valid & ~ram_rd_cmd_ready & read_ram_mask_reg) && !mask_fifo_full) begin // update counters read_ram_addr_next = read_ram_addr_reg + cycle_byte_count_reg; read_len_next = read_len_reg - cycle_byte_count_reg; read_cycle_count_next = read_cycle_count_reg - 1; read_last_cycle_next = read_cycle_count_next == 0; for (i = 0; i < SEG_COUNT; i = i + 1) begin if (read_ram_mask_0_reg[i]) begin ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = read_ram_sel_reg; ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_ram_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]; ram_rd_cmd_valid_next[i] = 1'b1; end if (read_ram_mask_1_reg[i]) begin ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = read_ram_sel_reg; ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_ram_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]+1; ram_rd_cmd_valid_next[i] = 1'b1; end end mask_fifo_wr_mask = read_ram_mask_reg; mask_fifo_we = 1'b1; if (read_len_next > AXIS_PCIE_DATA_WIDTH/8) begin cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8; end else begin cycle_byte_count_next = read_len_next; end start_offset_next = read_ram_addr_next; end_offset_next = start_offset_next+cycle_byte_count_next-1; ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH; read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH)); read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH))); if (!ram_wrap_next) begin read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next; read_ram_mask_1_next = 0; end read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next; if (!read_last_cycle_reg) begin read_state_next = READ_STATE_READ; end else if (read_cmd_valid_reg) begin read_pcie_addr_next = read_cmd_pcie_addr_reg; read_ram_sel_next = read_cmd_ram_sel_reg; read_ram_addr_next = read_cmd_ram_addr_reg; read_len_next = read_cmd_len_reg; read_cycle_count_next = read_cmd_cycle_count_reg; read_last_cycle_next = read_cmd_last_cycle_reg; if (AXIS_PCIE_DATA_WIDTH >= 256 && read_len_next > (AXIS_PCIE_DATA_WIDTH/8-16)-read_pcie_addr_next[1:0]) begin cycle_byte_count_next = (AXIS_PCIE_DATA_WIDTH/8-16)-read_pcie_addr_next[1:0]; end else if (AXIS_PCIE_DATA_WIDTH <= 128 && read_len_next > AXIS_PCIE_DATA_WIDTH/8-read_pcie_addr_next[1:0]) begin cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8-read_pcie_addr_next[1:0]; end else begin cycle_byte_count_next = read_len_next; end start_offset_next = read_ram_addr_next; end_offset_next = start_offset_next+cycle_byte_count_next-1; ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH; read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH)); read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH))); if (!ram_wrap_next) begin read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next; read_ram_mask_1_next = 0; end read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next; read_cmd_ready = 1'b1; read_state_next = READ_STATE_READ; end else begin read_state_next = READ_STATE_IDLE; end end else begin read_state_next = READ_STATE_READ; end end endcase end wire [3:0] first_be = 4'b1111 << tlp_addr_reg[1:0]; wire [3:0] last_be = 4'b1111 >> (3 - ((tlp_addr_reg[1:0] + tlp_len_reg[1:0] - 1) & 3)); always @* begin tlp_state_next = TLP_STATE_IDLE; m_axis_write_desc_status_tag_next = m_axis_write_desc_status_tag_reg; m_axis_write_desc_status_valid_next = 1'b0; ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}}; tlp_addr_next = tlp_addr_reg; tlp_len_next = tlp_len_reg; dword_count_next = dword_count_reg; offset_next = offset_reg; ram_mask_next = ram_mask_reg; ram_mask_valid_next = ram_mask_valid_reg; cycle_count_next = cycle_count_reg; last_cycle_next = last_cycle_reg; mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg; op_table_tx_start_en = 1'b0; op_table_tx_finish_en = 1'b0; inc_active_tx = 1'b0; s_axis_rq_tready_next = 1'b0; m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}}; m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; m_axis_rq_tvalid_int = 1'b0; m_axis_rq_tlast_int = 1'b0; m_axis_rq_tuser_int = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; m_axis_rq_tdata_int[1:0] = 2'b0; // address type m_axis_rq_tdata_int[63:2] = tlp_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address if (AXIS_PCIE_DATA_WIDTH > 64) begin m_axis_rq_tdata_int[74:64] = dword_count_reg; // DWORD count m_axis_rq_tdata_int[78:75] = REQ_MEM_WRITE; // request type - memory write m_axis_rq_tdata_int[79] = 1'b0; // poisoned request m_axis_rq_tdata_int[95:80] = requester_id; m_axis_rq_tdata_int[103:96] = 8'd0; // tag m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID m_axis_rq_tdata_int[120] = requester_id_enable; // requester ID enable m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class m_axis_rq_tdata_int[126:124] = 3'b000; // attr m_axis_rq_tdata_int[127] = 1'b0; // force ECRC end if (AXIS_PCIE_DATA_WIDTH == 256) begin m_axis_rq_tkeep_int = 8'b00001111; end else if (AXIS_PCIE_DATA_WIDTH == 128) begin m_axis_rq_tkeep_int = 4'b1111; end else if (AXIS_PCIE_DATA_WIDTH == 64) begin m_axis_rq_tkeep_int = 2'b11; end if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE 0 m_axis_rq_tuser_int[7:4] = 4'd0; // first BE 1 m_axis_rq_tuser_int[11:8] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE 0 m_axis_rq_tuser_int[15:12] = 4'd0; // last BE 1 m_axis_rq_tuser_int[19:16] = 3'd0; // addr_offset m_axis_rq_tuser_int[21:20] = 2'b01; // is_sop m_axis_rq_tuser_int[23:22] = 2'd0; // is_sop0_ptr m_axis_rq_tuser_int[25:24] = 2'd0; // is_sop1_ptr m_axis_rq_tuser_int[27:26] = 2'b01; // is_eop m_axis_rq_tuser_int[31:28] = 4'd3; // is_eop0_ptr m_axis_rq_tuser_int[35:32] = 4'd0; // is_eop1_ptr m_axis_rq_tuser_int[36] = 1'b0; // discontinue m_axis_rq_tuser_int[38:37] = 2'b00; // tph_present m_axis_rq_tuser_int[42:39] = 4'b0000; // tph_type m_axis_rq_tuser_int[44:43] = 2'b00; // tph_indirect_tag_en m_axis_rq_tuser_int[60:45] = 16'd0; // tph_st_tag m_axis_rq_tuser_int[66:61] = op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK; // seq_num0 m_axis_rq_tuser_int[72:67] = 6'd0; // seq_num1 m_axis_rq_tuser_int[136:73] = 64'd0; // parity end else begin m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE m_axis_rq_tuser_int[7:4] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset m_axis_rq_tuser_int[11] = 1'b0; // discontinue m_axis_rq_tuser_int[12] = 1'b0; // tph_present m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag m_axis_rq_tuser_int[27:24] = op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK; // seq_num m_axis_rq_tuser_int[59:28] = 32'd0; // parity if (AXIS_PCIE_RQ_USER_WIDTH == 62) begin m_axis_rq_tuser_int[61:60] = (op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK) >> 4; // seq_num end end // AXI read response processing and TLP generation case (tlp_state_reg) TLP_STATE_IDLE: begin // idle state, wait for command s_axis_rq_tready_next = m_axis_rq_tready_int_early; // pass through read request TLP m_axis_rq_tdata_int = s_axis_rq_tdata; m_axis_rq_tkeep_int = s_axis_rq_tkeep; m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid; m_axis_rq_tlast_int = s_axis_rq_tlast; m_axis_rq_tuser_int = s_axis_rq_tuser; if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tuser_int[61+RQ_SEQ_NUM_WIDTH-1] = 1'b1; end else begin if (RQ_SEQ_NUM_WIDTH > 4) begin m_axis_rq_tuser_int[60+RQ_SEQ_NUM_WIDTH-4-1] = 1'b1; end else begin m_axis_rq_tuser_int[24+RQ_SEQ_NUM_WIDTH-1] = 1'b1; end end ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}}; tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0; if (s_axis_rq_tready && s_axis_rq_tvalid) begin // pass through read request TLP if (s_axis_rq_tlast) begin tlp_state_next = TLP_STATE_IDLE; end else begin tlp_state_next = TLP_STATE_PASSTHROUGH; end end else if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin s_axis_rq_tready_next = 1'b0; op_table_tx_start_en = 1'b1; tlp_state_next = TLP_STATE_HEADER_1; end else begin tlp_state_next = TLP_STATE_IDLE; end end TLP_STATE_HEADER_1: begin // header 1 state, send TLP header if (AXIS_PCIE_DATA_WIDTH >= 256) begin ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}}; if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin // transfer in read data ram_rd_resp_ready_cmb = ram_mask_reg; ram_mask_valid_next = 1'b0; // update counters dword_count_next = dword_count_reg - (AXIS_PCIE_KEEP_WIDTH-4); cycle_count_next = cycle_count_reg - 1; last_cycle_next = cycle_count_next == 0; offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8; m_axis_rq_tdata_int[AXIS_PCIE_DATA_WIDTH-1:128] = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8 + 128); m_axis_rq_tvalid_int = 1'b1; if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH-4) begin m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}}; end else begin m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH-4 - dword_count_reg); end inc_active_tx = 1'b1; if (last_cycle_reg) begin m_axis_rq_tlast_int = 1'b1; op_table_tx_finish_en = 1'b1; // skip idle state if possible tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0; if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && !s_axis_rq_tvalid && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin op_table_tx_start_en = 1'b1; tlp_state_next = TLP_STATE_HEADER_1; end else begin s_axis_rq_tready_next = m_axis_rq_tready_int_early; tlp_state_next = TLP_STATE_IDLE; end end else begin tlp_state_next = TLP_STATE_TRANSFER; end end else begin tlp_state_next = TLP_STATE_HEADER_1; end end else begin if (m_axis_rq_tready_int_reg) begin m_axis_rq_tvalid_int = 1'b1; inc_active_tx = 1'b1; if (AXIS_PCIE_DATA_WIDTH == 128) begin tlp_state_next = TLP_STATE_TRANSFER; end else begin tlp_state_next = TLP_STATE_HEADER_2; end end else begin tlp_state_next = TLP_STATE_HEADER_1; end end end TLP_STATE_HEADER_2: begin // header 2 state, send rest of TLP header (64 bit interface only) if (m_axis_rq_tready_int_reg) begin m_axis_rq_tdata_int[10:0] = dword_count_reg; // DWORD count m_axis_rq_tdata_int[14:11] = 4'b0001; // request type - memory write m_axis_rq_tdata_int[15] = 1'b0; // poisoned request m_axis_rq_tdata_int[31:16] = requester_id; m_axis_rq_tdata_int[39:32] = 8'd0; // tag m_axis_rq_tdata_int[55:40] = 16'd0; // completer ID m_axis_rq_tdata_int[56] = requester_id_enable; // requester ID enable m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class m_axis_rq_tdata_int[62:60] = 3'b000; // attr m_axis_rq_tdata_int[63] = 1'b0; // force ECRC m_axis_rq_tvalid_int = 1'b1; m_axis_rq_tkeep_int = 2'b11; tlp_state_next = TLP_STATE_TRANSFER; end else begin tlp_state_next = TLP_STATE_HEADER_2; end end TLP_STATE_TRANSFER: begin // transfer state, transfer data ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}}; if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin // transfer in read data ram_rd_resp_ready_cmb = ram_mask_reg; ram_mask_valid_next = 1'b0; // update counters dword_count_next = dword_count_reg - AXIS_PCIE_KEEP_WIDTH; cycle_count_next = cycle_count_reg - 1; last_cycle_next = cycle_count_next == 0; offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8; m_axis_rq_tdata_int = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8); m_axis_rq_tvalid_int = 1'b1; if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH) begin m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}}; end else begin m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH - dword_count_reg); end if (last_cycle_reg) begin // no more data to transfer, finish operation m_axis_rq_tlast_int = 1'b1; op_table_tx_finish_en = 1'b1; // skip idle state if possible tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]]; last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0; if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && !s_axis_rq_tvalid && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin op_table_tx_start_en = 1'b1; tlp_state_next = TLP_STATE_HEADER_1; end else begin s_axis_rq_tready_next = m_axis_rq_tready_int_early; tlp_state_next = TLP_STATE_IDLE; end end else begin tlp_state_next = TLP_STATE_TRANSFER; end end else begin tlp_state_next = TLP_STATE_TRANSFER; end end TLP_STATE_PASSTHROUGH: begin // passthrough state, pass through read request TLP s_axis_rq_tready_next = m_axis_rq_tready_int_early; // pass through read request TLP m_axis_rq_tdata_int = s_axis_rq_tdata; m_axis_rq_tkeep_int = s_axis_rq_tkeep; m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid; m_axis_rq_tlast_int = s_axis_rq_tlast; m_axis_rq_tuser_int = s_axis_rq_tuser; if (AXIS_PCIE_DATA_WIDTH == 512) begin m_axis_rq_tuser_int[61+RQ_SEQ_NUM_WIDTH-1] = 1'b1; end else begin if (RQ_SEQ_NUM_WIDTH > 4) begin m_axis_rq_tuser_int[60+RQ_SEQ_NUM_WIDTH-4-1] = 1'b1; end else begin m_axis_rq_tuser_int[24+RQ_SEQ_NUM_WIDTH-1] = 1'b1; end end if (s_axis_rq_tready && s_axis_rq_tvalid && s_axis_rq_tlast) begin tlp_state_next = TLP_STATE_IDLE; end else begin tlp_state_next = TLP_STATE_PASSTHROUGH; end end endcase if (!ram_mask_valid_next && !mask_fifo_empty) begin ram_mask_next = mask_fifo_mask[mask_fifo_rd_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]]; ram_mask_valid_next = 1'b1; mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg+1; end op_table_finish_en = 1'b0; if (op_table_active[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]] && (!RQ_SEQ_NUM_ENABLE || op_table_tx_done[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]]) && op_table_finish_ptr_reg != op_table_tx_finish_ptr_reg) begin op_table_finish_en = 1'b1; if (op_table_last[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]]) begin m_axis_write_desc_status_tag_next = op_table_tag[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]]; m_axis_write_desc_status_valid_next = 1'b1; end end end always @(posedge clk) begin req_state_reg <= req_state_next; read_state_reg <= read_state_next; tlp_state_reg <= tlp_state_next; pcie_addr_reg <= pcie_addr_next; ram_sel_reg <= ram_sel_next; ram_addr_reg <= ram_addr_next; op_count_reg <= op_count_next; tr_count_reg <= tr_count_next; tlp_count_reg <= tlp_count_next; read_pcie_addr_reg <= read_pcie_addr_next; read_ram_sel_reg <= read_ram_sel_next; read_ram_addr_reg <= read_ram_addr_next; read_len_reg <= read_len_next; read_ram_mask_reg <= read_ram_mask_next; read_ram_mask_0_reg <= read_ram_mask_0_next; read_ram_mask_1_reg <= read_ram_mask_1_next; ram_wrap_reg <= ram_wrap_next; read_cycle_count_reg <= read_cycle_count_next; read_last_cycle_reg <= read_last_cycle_next; cycle_byte_count_reg <= cycle_byte_count_next; start_offset_reg <= start_offset_next; end_offset_reg <= end_offset_next; tlp_addr_reg <= tlp_addr_next; tlp_len_reg <= tlp_len_next; dword_count_reg <= dword_count_next; offset_reg <= offset_next; ram_mask_reg <= ram_mask_next; ram_mask_valid_reg <= ram_mask_valid_next; cycle_count_reg <= cycle_count_next; last_cycle_reg <= last_cycle_next; tlp_cmd_tag_reg <= tlp_cmd_tag_next; read_cmd_pcie_addr_reg <= read_cmd_pcie_addr_next; read_cmd_ram_sel_reg <= read_cmd_ram_sel_next; read_cmd_ram_addr_reg <= read_cmd_ram_addr_next; read_cmd_len_reg <= read_cmd_len_next; read_cmd_cycle_count_reg <= read_cmd_cycle_count_next; read_cmd_last_cycle_reg <= read_cmd_last_cycle_next; read_cmd_valid_reg <= read_cmd_valid_next; s_axis_rq_tready_reg <= s_axis_rq_tready_next; s_axis_write_desc_ready_reg <= s_axis_write_desc_ready_next; m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next; m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next; ram_rd_cmd_sel_reg <= ram_rd_cmd_sel_next; ram_rd_cmd_addr_reg <= ram_rd_cmd_addr_next; ram_rd_cmd_valid_reg <= ram_rd_cmd_valid_next; max_payload_size_dw_reg <= 11'd32 << (max_payload_size > 5 ? 5 : max_payload_size); have_credit_reg <= (pcie_tx_fc_ph_av > 4) && (pcie_tx_fc_pd_av > (max_payload_size_dw_reg >> 1)); if (active_tx_count_reg < TX_LIMIT && inc_active_tx && !axis_rq_seq_num_valid_0_int && !axis_rq_seq_num_valid_1_int) begin // inc by 1 active_tx_count_reg <= active_tx_count_reg + 1; active_tx_count_av_reg <= active_tx_count_reg < (TX_LIMIT-1); end else if (active_tx_count_reg > 0 && ((inc_active_tx && axis_rq_seq_num_valid_0_int && axis_rq_seq_num_valid_1_int) || (!inc_active_tx && (axis_rq_seq_num_valid_0_int ^ axis_rq_seq_num_valid_1_int)))) begin // dec by 1 active_tx_count_reg <= active_tx_count_reg - 1; active_tx_count_av_reg <= 1'b1; end else if (active_tx_count_reg > 1 && !inc_active_tx && axis_rq_seq_num_valid_0_int && axis_rq_seq_num_valid_1_int) begin // dec by 2 active_tx_count_reg <= active_tx_count_reg - 2; active_tx_count_av_reg <= 1'b1; end else begin active_tx_count_av_reg <= active_tx_count_reg < TX_LIMIT; end if (mask_fifo_we) begin mask_fifo_mask[mask_fifo_wr_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]] <= mask_fifo_wr_mask; mask_fifo_wr_ptr_reg <= mask_fifo_wr_ptr_reg + 1; end mask_fifo_rd_ptr_reg <= mask_fifo_rd_ptr_next; if (op_table_start_en) begin op_table_start_ptr_reg <= op_table_start_ptr_reg + 1; op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b1; op_table_tx_done[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b0; op_table_pcie_addr[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_pcie_addr; op_table_len[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_len; op_table_dword_len[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_dword_len; op_table_cycle_count[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_cycle_count; op_table_offset[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_offset; op_table_tag[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_tag; op_table_last[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_last; end if (op_table_tx_start_en) begin op_table_tx_start_ptr_reg <= op_table_tx_start_ptr_reg + 1; end if (op_table_tx_finish_en) begin op_table_tx_finish_ptr_reg <= op_table_tx_finish_ptr_reg + 1; end if (axis_rq_seq_num_valid_0_int) begin op_table_tx_done[s_axis_rq_seq_num_0[OP_TAG_WIDTH-1:0]] <= 1'b1; end if (axis_rq_seq_num_valid_1_int) begin op_table_tx_done[s_axis_rq_seq_num_1[OP_TAG_WIDTH-1:0]] <= 1'b1; end if (op_table_finish_en) begin op_table_finish_ptr_reg <= op_table_finish_ptr_reg + 1; op_table_active[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b0; end if (rst) begin req_state_reg <= REQ_STATE_IDLE; read_state_reg <= READ_STATE_IDLE; tlp_state_reg <= TLP_STATE_IDLE; read_cmd_valid_reg <= 1'b0; ram_mask_valid_reg <= 1'b0; s_axis_rq_tready_reg <= 1'b0; s_axis_write_desc_ready_reg <= 1'b0; m_axis_write_desc_status_valid_reg <= 1'b0; ram_rd_cmd_valid_reg <= {SEG_COUNT{1'b0}}; active_tx_count_reg <= {RQ_SEQ_NUM_WIDTH{1'b0}}; active_tx_count_av_reg <= 1'b1; mask_fifo_wr_ptr_reg <= 0; mask_fifo_rd_ptr_reg <= 0; op_table_start_ptr_reg <= 0; op_table_tx_start_ptr_reg <= 0; op_table_tx_finish_ptr_reg <= 0; op_table_finish_ptr_reg <= 0; op_table_active <= 0; end end // output datapath logic (PCIe TLP) reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next; reg m_axis_rq_tlast_reg = 1'b0; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}}; reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}}; reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next; reg temp_m_axis_rq_tlast_reg = 1'b0; reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}}; // datapath control reg store_axis_rq_int_to_output; reg store_axis_rq_int_to_temp; reg store_axis_rq_temp_to_output; assign m_axis_rq_tdata = m_axis_rq_tdata_reg; assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg; assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg; assign m_axis_rq_tlast = m_axis_rq_tlast_reg; assign m_axis_rq_tuser = m_axis_rq_tuser_reg; // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int)); always @* begin // transfer sink ready state to source m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg; temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg; store_axis_rq_int_to_output = 1'b0; store_axis_rq_int_to_temp = 1'b0; store_axis_rq_temp_to_output = 1'b0; if (m_axis_rq_tready_int_reg) begin // input is ready if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin // output is ready or currently not valid, transfer data to output m_axis_rq_tvalid_next = m_axis_rq_tvalid_int; store_axis_rq_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int; store_axis_rq_int_to_temp = 1'b1; end end else if (m_axis_rq_tready) begin // input is not ready, but output is ready m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg; temp_m_axis_rq_tvalid_next = 1'b0; store_axis_rq_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin m_axis_rq_tvalid_reg <= 1'b0; m_axis_rq_tready_int_reg <= 1'b0; temp_m_axis_rq_tvalid_reg <= 1'b0; end else begin m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next; m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early; temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next; end // datapath if (store_axis_rq_int_to_output) begin m_axis_rq_tdata_reg <= m_axis_rq_tdata_int; m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int; m_axis_rq_tlast_reg <= m_axis_rq_tlast_int; m_axis_rq_tuser_reg <= m_axis_rq_tuser_int; end else if (store_axis_rq_temp_to_output) begin m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg; m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg; m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg; m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg; end if (store_axis_rq_int_to_temp) begin temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int; temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int; temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int; temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int; end end endmodule