verilog-pcie/rtl/dma_client_axis_sink.v

519 lines
22 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI stream sink DMA client
*/
module dma_client_axis_sink #
(
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// RAM address width
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
// Width of AXI stream interfaces in bits
parameter AXIS_DATA_WIDTH = SEG_DATA_WIDTH*SEG_COUNT/2,
// Use AXI stream tkeep signal
parameter AXIS_KEEP_ENABLE = (AXIS_DATA_WIDTH>8),
// AXI stream tkeep signal width (words per cycle)
parameter AXIS_KEEP_WIDTH = (AXIS_DATA_WIDTH/8),
// Use AXI stream tlast signal
parameter AXIS_LAST_ENABLE = 1,
// Propagate AXI stream tid signal
parameter AXIS_ID_ENABLE = 0,
// AXI stream tid signal width
parameter AXIS_ID_WIDTH = 8,
// Propagate AXI stream tdest signal
parameter AXIS_DEST_ENABLE = 0,
// AXI stream tdest signal width
parameter AXIS_DEST_WIDTH = 8,
// Propagate AXI stream tuser signal
parameter AXIS_USER_ENABLE = 1,
// AXI stream tuser signal width
parameter AXIS_USER_WIDTH = 1,
// Width of length field
parameter LEN_WIDTH = 16,
// Width of tag field
parameter TAG_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI write descriptor input
*/
input wire [RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
input wire [LEN_WIDTH-1:0] s_axis_write_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_write_desc_tag,
input wire s_axis_write_desc_valid,
output wire s_axis_write_desc_ready,
/*
* AXI write descriptor status output
*/
output wire [LEN_WIDTH-1:0] m_axis_write_desc_status_len,
output wire [TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
output wire [AXIS_ID_WIDTH-1:0] m_axis_write_desc_status_id,
output wire [AXIS_DEST_WIDTH-1:0] m_axis_write_desc_status_dest,
output wire [AXIS_USER_WIDTH-1:0] m_axis_write_desc_status_user,
output wire m_axis_write_desc_status_valid,
/*
* AXI stream write data input
*/
input wire [AXIS_DATA_WIDTH-1:0] s_axis_write_data_tdata,
input wire [AXIS_KEEP_WIDTH-1:0] s_axis_write_data_tkeep,
input wire s_axis_write_data_tvalid,
output wire s_axis_write_data_tready,
input wire s_axis_write_data_tlast,
input wire [AXIS_ID_WIDTH-1:0] s_axis_write_data_tid,
input wire [AXIS_DEST_WIDTH-1:0] s_axis_write_data_tdest,
input wire [AXIS_USER_WIDTH-1:0] s_axis_write_data_tuser,
/*
* RAM interface
*/
output wire [SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
output wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
output wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
output wire [SEG_COUNT-1:0] ram_wr_cmd_valid,
input wire [SEG_COUNT-1:0] ram_wr_cmd_ready,
/*
* Configuration
*/
input wire enable,
input wire abort
);
parameter RAM_WORD_WIDTH = SEG_BE_WIDTH;
parameter RAM_WORD_SIZE = SEG_DATA_WIDTH/RAM_WORD_WIDTH;
parameter AXIS_KEEP_WIDTH_INT = AXIS_KEEP_ENABLE ? AXIS_KEEP_WIDTH : 1;
parameter AXIS_WORD_WIDTH = AXIS_KEEP_WIDTH_INT;
parameter AXIS_WORD_SIZE = AXIS_DATA_WIDTH/AXIS_WORD_WIDTH;
parameter PART_COUNT = SEG_COUNT*SEG_BE_WIDTH / AXIS_KEEP_WIDTH_INT;
parameter PART_COUNT_WIDTH = PART_COUNT > 1 ? $clog2(PART_COUNT) : 1;
parameter PART_OFFSET_WIDTH = AXIS_KEEP_WIDTH_INT > 1 ? $clog2(AXIS_KEEP_WIDTH_INT) : 1;
parameter PARTS_PER_SEG = (SEG_BE_WIDTH + AXIS_KEEP_WIDTH_INT - 1) / AXIS_KEEP_WIDTH_INT;
parameter SEGS_PER_PART = (AXIS_KEEP_WIDTH_INT + SEG_BE_WIDTH - 1) / SEG_BE_WIDTH;
parameter OFFSET_WIDTH = AXIS_KEEP_WIDTH_INT > 1 ? $clog2(AXIS_KEEP_WIDTH_INT) : 1;
parameter OFFSET_MASK = AXIS_KEEP_WIDTH_INT > 1 ? {OFFSET_WIDTH{1'b1}} : 0;
parameter ADDR_MASK = {RAM_ADDR_WIDTH{1'b1}} << $clog2(AXIS_KEEP_WIDTH_INT);
parameter CYCLE_COUNT_WIDTH = LEN_WIDTH - $clog2(AXIS_KEEP_WIDTH_INT) + 1;
// bus width assertions
initial begin
if (RAM_WORD_SIZE * SEG_BE_WIDTH != SEG_DATA_WIDTH) begin
$error("Error: RAM data width not evenly divisble (instance %m)");
$finish;
end
if (AXIS_WORD_SIZE * AXIS_KEEP_WIDTH_INT != AXIS_DATA_WIDTH) begin
$error("Error: AXI stream data width not evenly divisble (instance %m)");
$finish;
end
if (RAM_WORD_SIZE != AXIS_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(RAM_WORD_WIDTH) != RAM_WORD_WIDTH) begin
$error("Error: RAM word width must be even power of two (instance %m)");
$finish;
end
if (RAM_ADDR_WIDTH != SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH)) begin
$error("Error: RAM_ADDR_WIDTH does not match RAM configuration (instance %m)");
$finish;
end
if (AXIS_DATA_WIDTH > SEG_COUNT*SEG_DATA_WIDTH) begin
$error("Error: AXI stream interface width must not be wider than RAM interface width (instance %m)");
$finish;
end
if (AXIS_DATA_WIDTH*2**$clog2(PART_COUNT) != SEG_COUNT*SEG_DATA_WIDTH) begin
$error("Error: AXI stream interface width must be a power of two fraction of RAM interface width (instance %m)");
$finish;
end
end
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_WRITE = 2'd1,
STATE_DROP_DATA = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
integer i;
reg [OFFSET_WIDTH:0] cycle_size;
reg [RAM_ADDR_WIDTH-1:0] addr_reg = {RAM_ADDR_WIDTH{1'b0}}, addr_next;
reg [SEG_COUNT-1:0] ram_mask_reg = 0, ram_mask_next;
reg [AXIS_KEEP_WIDTH_INT-1:0] keep_mask_reg = {AXIS_KEEP_WIDTH_INT{1'b0}}, keep_mask_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [LEN_WIDTH-1:0] length_reg = {LEN_WIDTH{1'b0}}, length_next;
reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, cycle_count_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg s_axis_write_desc_ready_reg = 1'b0, s_axis_write_desc_ready_next;
reg [LEN_WIDTH-1:0] m_axis_write_desc_status_len_reg = {LEN_WIDTH{1'b0}}, m_axis_write_desc_status_len_next;
reg [TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
reg [AXIS_ID_WIDTH-1:0] m_axis_write_desc_status_id_reg = {AXIS_ID_WIDTH{1'b0}}, m_axis_write_desc_status_id_next;
reg [AXIS_DEST_WIDTH-1:0] m_axis_write_desc_status_dest_reg = {AXIS_DEST_WIDTH{1'b0}}, m_axis_write_desc_status_dest_next;
reg [AXIS_USER_WIDTH-1:0] m_axis_write_desc_status_user_reg = {AXIS_USER_WIDTH{1'b0}}, m_axis_write_desc_status_user_next;
reg m_axis_write_desc_status_valid_reg = 1'b0, m_axis_write_desc_status_valid_next;
reg s_axis_write_data_tready_reg = 1'b0, s_axis_write_data_tready_next;
// internal datapath
reg [SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be_int;
reg [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr_int;
reg [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data_int;
reg [SEG_COUNT-1:0] ram_wr_cmd_valid_int;
reg [SEG_COUNT-1:0] ram_wr_cmd_ready_int_reg = 1'b0;
wire [SEG_COUNT-1:0] ram_wr_cmd_ready_int_early;
assign s_axis_write_desc_ready = s_axis_write_desc_ready_reg;
assign m_axis_write_desc_status_len = m_axis_write_desc_status_len_reg;
assign m_axis_write_desc_status_tag = m_axis_write_desc_status_tag_reg;
assign m_axis_write_desc_status_id = m_axis_write_desc_status_id_reg;
assign m_axis_write_desc_status_dest = m_axis_write_desc_status_dest_reg;
assign m_axis_write_desc_status_user = m_axis_write_desc_status_user_reg;
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
assign s_axis_write_data_tready = s_axis_write_data_tready_reg;
always @* begin
state_next = STATE_IDLE;
s_axis_write_desc_ready_next = 1'b0;
m_axis_write_desc_status_len_next = m_axis_write_desc_status_len_reg;
m_axis_write_desc_status_tag_next = m_axis_write_desc_status_tag_reg;
m_axis_write_desc_status_id_next = m_axis_write_desc_status_id_reg;
m_axis_write_desc_status_dest_next = m_axis_write_desc_status_dest_reg;
m_axis_write_desc_status_user_next = m_axis_write_desc_status_user_reg;
m_axis_write_desc_status_valid_next = 1'b0;
s_axis_write_data_tready_next = 1'b0;
ram_wr_cmd_be_int = (s_axis_write_data_tkeep & keep_mask_reg) << (addr_reg & ({PART_COUNT_WIDTH{1'b1}} << PART_OFFSET_WIDTH));
ram_wr_cmd_addr_int = {PART_COUNT{addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]}};
ram_wr_cmd_data_int = {PART_COUNT{s_axis_write_data_tdata}};
ram_wr_cmd_valid_int = {SEG_COUNT{1'b0}};
cycle_size = AXIS_KEEP_WIDTH_INT;
addr_next = addr_reg;
ram_mask_next = ram_mask_reg;
keep_mask_next = keep_mask_reg;
last_cycle_offset_next = last_cycle_offset_reg;
length_next = length_reg;
cycle_count_next = cycle_count_reg;
last_cycle_next = last_cycle_reg;
case (state_reg)
STATE_IDLE: begin
// idle state - load new descriptor to start operation
s_axis_write_desc_ready_next = enable;
addr_next = s_axis_write_desc_ram_addr & ADDR_MASK;
last_cycle_offset_next = s_axis_write_desc_len & OFFSET_MASK;
if (PART_COUNT > 1) begin
ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
ram_mask_next = {SEG_COUNT{1'b1}};
end
m_axis_write_desc_status_tag_next = s_axis_write_desc_tag;
length_next = 0;
cycle_count_next = (s_axis_write_desc_len - 1) >> $clog2(AXIS_KEEP_WIDTH_INT);
last_cycle_next = cycle_count_next == 0;
if (cycle_count_next == 0 && last_cycle_offset_next != 0) begin
keep_mask_next = {AXIS_KEEP_WIDTH_INT{1'b1}} >> (AXIS_KEEP_WIDTH_INT - last_cycle_offset_next);
end else begin
keep_mask_next = {AXIS_KEEP_WIDTH_INT{1'b1}};
end
if (s_axis_write_desc_ready && s_axis_write_desc_valid) begin
s_axis_write_desc_ready_next = 1'b0;
s_axis_write_data_tready_next = !(~ram_wr_cmd_ready_int_early & ram_mask_next);
state_next = STATE_WRITE;
end else begin
state_next = STATE_IDLE;
end
end
STATE_WRITE: begin
// write state - generate write operations
s_axis_write_data_tready_next = !(~ram_wr_cmd_ready_int_early & ram_mask_reg);
if (s_axis_write_data_tready && s_axis_write_data_tvalid) begin
m_axis_write_desc_status_id_next = s_axis_write_data_tid;
m_axis_write_desc_status_dest_next = s_axis_write_data_tdest;
m_axis_write_desc_status_user_next = s_axis_write_data_tuser;
// update counters
addr_next = addr_reg + AXIS_KEEP_WIDTH_INT;
length_next = length_reg + AXIS_KEEP_WIDTH_INT;
cycle_count_next = cycle_count_reg - 1;
last_cycle_next = cycle_count_next == 0;
if (cycle_count_next == 0 && last_cycle_offset_reg != 0) begin
keep_mask_next = {AXIS_KEEP_WIDTH_INT{1'b1}} >> (AXIS_KEEP_WIDTH_INT - last_cycle_offset_reg);
end else begin
keep_mask_next = {AXIS_KEEP_WIDTH_INT{1'b1}};
end
if (PART_COUNT > 1) begin
ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
ram_mask_next = {SEG_COUNT{1'b1}};
end
if (PART_COUNT > 1) begin
ram_wr_cmd_be_int = (s_axis_write_data_tkeep & keep_mask_reg) << (addr_reg & ({PART_COUNT_WIDTH{1'b1}} << PART_OFFSET_WIDTH));
end else begin
ram_wr_cmd_be_int = s_axis_write_data_tkeep & keep_mask_reg;
end
ram_wr_cmd_addr_int = {SEG_COUNT{addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]}};
ram_wr_cmd_data_int = {PART_COUNT{s_axis_write_data_tdata}};
for (i = 0; i < SEG_COUNT; i = i + 1) begin
ram_wr_cmd_valid_int[i] = ram_wr_cmd_be_int[i*SEG_BE_WIDTH +: SEG_BE_WIDTH] != 0;
end
if (AXIS_LAST_ENABLE && s_axis_write_data_tlast) begin
if (AXIS_KEEP_ENABLE) begin
cycle_size = AXIS_KEEP_WIDTH_INT;
for (i = AXIS_KEEP_WIDTH_INT-1; i >= 0; i = i - 1) begin
if (~(s_axis_write_data_tkeep & keep_mask_reg) & (1 << i)) begin
cycle_size = i;
end
end
end else begin
cycle_size = AXIS_KEEP_WIDTH_INT;
end
// no more data to transfer, finish operation
if (last_cycle_reg && last_cycle_offset_reg > 0) begin
if (AXIS_KEEP_ENABLE && !(s_axis_write_data_tkeep & keep_mask_reg & ~({AXIS_KEEP_WIDTH_INT{1'b1}} >> (AXIS_KEEP_WIDTH_INT - last_cycle_offset_reg)))) begin
length_next = length_reg + cycle_size;
end else begin
length_next = length_reg + last_cycle_offset_reg;
end
end else begin
if (AXIS_KEEP_ENABLE) begin
length_next = length_reg + cycle_size;
end
end
m_axis_write_desc_status_len_next = length_next;
m_axis_write_desc_status_valid_next = 1'b1;
s_axis_write_data_tready_next = 1'b0;
s_axis_write_desc_ready_next = enable;
state_next = STATE_IDLE;
end else if (last_cycle_reg) begin
if (last_cycle_offset_reg > 0) begin
length_next = length_reg + last_cycle_offset_reg;
end
m_axis_write_desc_status_len_next = length_next;
m_axis_write_desc_status_valid_next = 1'b1;
if (AXIS_LAST_ENABLE) begin
s_axis_write_data_tready_next = 1'b1;
state_next = STATE_DROP_DATA;
end else begin
s_axis_write_data_tready_next = 1'b0;
s_axis_write_desc_ready_next = enable;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_WRITE;
end
end else begin
state_next = STATE_WRITE;
end
end
STATE_DROP_DATA: begin
// drop excess AXI stream data
s_axis_write_data_tready_next = 1'b1;
if (s_axis_write_data_tready && s_axis_write_data_tvalid) begin
if (s_axis_write_data_tlast) begin
s_axis_write_data_tready_next = 1'b0;
s_axis_write_desc_ready_next = enable;
state_next = STATE_IDLE;
end else begin
state_next = STATE_DROP_DATA;
end
end else begin
state_next = STATE_DROP_DATA;
end
end
endcase
end
always @(posedge clk) begin
state_reg <= state_next;
s_axis_write_desc_ready_reg <= s_axis_write_desc_ready_next;
m_axis_write_desc_status_len_reg <= m_axis_write_desc_status_len_next;
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
m_axis_write_desc_status_id_reg <= m_axis_write_desc_status_id_next;
m_axis_write_desc_status_dest_reg <= m_axis_write_desc_status_dest_next;
m_axis_write_desc_status_user_reg <= m_axis_write_desc_status_user_next;
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
s_axis_write_data_tready_reg <= s_axis_write_data_tready_next;
addr_reg <= addr_next;
ram_mask_reg <= ram_mask_next;
keep_mask_reg <= keep_mask_next;
last_cycle_offset_reg <= last_cycle_offset_next;
length_reg <= length_next;
cycle_count_reg <= cycle_count_next;
last_cycle_reg <= last_cycle_next;
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_write_desc_ready_reg <= 1'b0;
m_axis_write_desc_status_valid_reg <= 1'b0;
s_axis_write_data_tready_reg <= 1'b0;
end
end
// output datapath logic (write data)
generate
genvar n;
for (n = 0; n < SEG_COUNT; n = n + 1) begin
reg [SEG_BE_WIDTH-1:0] ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg ram_wr_cmd_valid_reg = 1'b0, ram_wr_cmd_valid_next;
reg [SEG_BE_WIDTH-1:0] temp_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] temp_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] temp_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg temp_ram_wr_cmd_valid_reg = 1'b0, temp_ram_wr_cmd_valid_next;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign ram_wr_cmd_be[n*SEG_BE_WIDTH +: SEG_BE_WIDTH] = ram_wr_cmd_be_reg;
assign ram_wr_cmd_addr[n*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = ram_wr_cmd_addr_reg;
assign ram_wr_cmd_data[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = ram_wr_cmd_data_reg;
assign ram_wr_cmd_valid[n +: 1] = ram_wr_cmd_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign ram_wr_cmd_ready_int_early[n +: 1] = ram_wr_cmd_ready[n +: 1] || (!temp_ram_wr_cmd_valid_reg && (!ram_wr_cmd_valid_reg || !ram_wr_cmd_valid_int[n +: 1]));
always @* begin
// transfer sink ready state to source
ram_wr_cmd_valid_next = ram_wr_cmd_valid_reg;
temp_ram_wr_cmd_valid_next = temp_ram_wr_cmd_valid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (ram_wr_cmd_ready_int_reg[n +: 1]) begin
// input is ready
if (ram_wr_cmd_ready[n +: 1] || !ram_wr_cmd_valid_reg) begin
// output is ready or currently not valid, transfer data to output
ram_wr_cmd_valid_next = ram_wr_cmd_valid_int[n +: 1];
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_ram_wr_cmd_valid_next = ram_wr_cmd_valid_int[n +: 1];
store_axi_w_int_to_temp = 1'b1;
end
end else if (ram_wr_cmd_ready[n +: 1]) begin
// input is not ready, but output is ready
ram_wr_cmd_valid_next = temp_ram_wr_cmd_valid_reg;
temp_ram_wr_cmd_valid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
ram_wr_cmd_valid_reg <= 1'b0;
ram_wr_cmd_ready_int_reg[n +: 1] <= 1'b0;
temp_ram_wr_cmd_valid_reg <= 1'b0;
end else begin
ram_wr_cmd_valid_reg <= ram_wr_cmd_valid_next;
ram_wr_cmd_ready_int_reg[n +: 1] <= ram_wr_cmd_ready_int_early[n +: 1];
temp_ram_wr_cmd_valid_reg <= temp_ram_wr_cmd_valid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
ram_wr_cmd_be_reg <= ram_wr_cmd_be_int[n*SEG_BE_WIDTH +: SEG_BE_WIDTH];
ram_wr_cmd_addr_reg <= ram_wr_cmd_addr_int[n*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
ram_wr_cmd_data_reg <= ram_wr_cmd_data_int[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
end else if (store_axi_w_temp_to_output) begin
ram_wr_cmd_be_reg <= temp_ram_wr_cmd_be_reg;
ram_wr_cmd_addr_reg <= temp_ram_wr_cmd_addr_reg;
ram_wr_cmd_data_reg <= temp_ram_wr_cmd_data_reg;
end
if (store_axi_w_int_to_temp) begin
temp_ram_wr_cmd_be_reg <= ram_wr_cmd_be_int[n*SEG_BE_WIDTH +: SEG_BE_WIDTH];
temp_ram_wr_cmd_addr_reg <= ram_wr_cmd_addr_int[n*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
temp_ram_wr_cmd_data_reg <= ram_wr_cmd_data_int[n*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
end
end
end
endgenerate
endmodule