verilog-pcie/rtl/pcie_us_axis_cq_demux.v
2019-10-14 16:01:38 -07:00

312 lines
12 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ultrascale PCIe CQ demultiplexer
*/
module pcie_us_axis_cq_demux #
(
// Output count
parameter M_COUNT = 2,
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream CQ tuser signal width
parameter AXIS_PCIE_CQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 85 : 183
)
(
input wire clk,
input wire rst,
/*
* AXI input (CQ)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_cq_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_cq_tkeep,
input wire s_axis_cq_tvalid,
output wire s_axis_cq_tready,
input wire s_axis_cq_tlast,
input wire [AXIS_PCIE_CQ_USER_WIDTH-1:0] s_axis_cq_tuser,
/*
* AXI output (CQ)
*/
output wire [M_COUNT*AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata,
output wire [M_COUNT*AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep,
output wire [M_COUNT-1:0] m_axis_cq_tvalid,
input wire [M_COUNT-1:0] m_axis_cq_tready,
output wire [M_COUNT-1:0] m_axis_cq_tlast,
output wire [M_COUNT*AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser,
/*
* Fields
*/
output wire [3:0] req_type,
output wire [7:0] target_function,
output wire [2:0] bar_id,
output wire [7:0] msg_code,
output wire [2:0] msg_routing,
/*
* Control
*/
input wire enable,
input wire drop,
input wire [M_COUNT-1:0] select
);
parameter CL_M_COUNT = $clog2(M_COUNT);
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
end
reg [CL_M_COUNT-1:0] select_reg = {CL_M_COUNT{1'b0}}, select_ctl, select_next;
reg drop_reg = 1'b0, drop_ctl, drop_next;
reg frame_reg = 1'b0, frame_ctl, frame_next;
reg s_axis_cq_tready_reg = 1'b0, s_axis_cq_tready_next;
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_s_axis_cq_tdata = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_s_axis_cq_tkeep = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_s_axis_cq_tvalid = 1'b0;
reg temp_s_axis_cq_tlast = 1'b0;
reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] temp_s_axis_cq_tuser = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}};
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep_int;
reg [M_COUNT-1:0] m_axis_cq_tvalid_int;
reg m_axis_cq_tready_int_reg = 1'b0;
reg m_axis_cq_tlast_int;
reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser_int;
wire m_axis_cq_tready_int_early;
assign s_axis_cq_tready = (s_axis_cq_tready_reg || (AXIS_PCIE_DATA_WIDTH == 64 && !temp_s_axis_cq_tvalid)) && enable;
assign req_type = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[78:75] : s_axis_cq_tdata[14:11];
assign target_function = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[111:104] : s_axis_cq_tdata[47:40];
assign bar_id = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[114:112] : s_axis_cq_tdata[50:48];
assign msg_code = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[111:104] : s_axis_cq_tdata[47:40];
assign msg_routing = AXIS_PCIE_DATA_WIDTH > 64 ? s_axis_cq_tdata[114:112] : s_axis_cq_tdata[50:48];
integer i;
always @* begin
select_next = select_reg;
select_ctl = select_reg;
drop_next = drop_reg;
drop_ctl = drop_reg;
frame_next = frame_reg;
frame_ctl = frame_reg;
s_axis_cq_tready_next = 1'b0;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
if (temp_s_axis_cq_tvalid && s_axis_cq_tready) begin
// end of frame detection
if (temp_s_axis_cq_tlast) begin
frame_next = 1'b0;
drop_next = 1'b0;
end
end
end else begin
if (s_axis_cq_tvalid && s_axis_cq_tready) begin
// end of frame detection
if (s_axis_cq_tlast) begin
frame_next = 1'b0;
drop_next = 1'b0;
end
end
end
if (!frame_reg && (AXIS_PCIE_DATA_WIDTH == 64 ? temp_s_axis_cq_tvalid : s_axis_cq_tvalid) && s_axis_cq_tready) begin
// start of frame, grab select value
select_ctl = 0;
drop_ctl = 1'b1;
frame_ctl = 1'b1;
for (i = M_COUNT-1; i >= 0; i = i - 1) begin
if (select[i]) begin
select_ctl = i;
drop_ctl = 1'b0;
end
end
drop_ctl = drop_ctl || drop;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
if (!(s_axis_cq_tready && temp_s_axis_cq_tvalid && temp_s_axis_cq_tlast)) begin
select_next = select_ctl;
drop_next = drop_ctl;
frame_next = 1'b1;
end
end else begin
if (!(s_axis_cq_tready && s_axis_cq_tvalid && s_axis_cq_tlast)) begin
select_next = select_ctl;
drop_next = drop_ctl;
frame_next = 1'b1;
end
end
end
s_axis_cq_tready_next = m_axis_cq_tready_int_early || drop_ctl;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cq_tdata_int = temp_s_axis_cq_tdata;
m_axis_cq_tkeep_int = temp_s_axis_cq_tkeep;
m_axis_cq_tvalid_int = (temp_s_axis_cq_tvalid && s_axis_cq_tready && !drop_ctl) << select_ctl;
m_axis_cq_tlast_int = temp_s_axis_cq_tlast;
m_axis_cq_tuser_int = temp_s_axis_cq_tuser;
end else begin
m_axis_cq_tdata_int = s_axis_cq_tdata;
m_axis_cq_tkeep_int = s_axis_cq_tkeep;
m_axis_cq_tvalid_int = (s_axis_cq_tvalid && s_axis_cq_tready && !drop_ctl) << select_ctl;
m_axis_cq_tlast_int = s_axis_cq_tlast;
m_axis_cq_tuser_int = s_axis_cq_tuser;
end
end
always @(posedge clk) begin
if (rst) begin
select_reg <= 2'd0;
drop_reg <= 1'b0;
frame_reg <= 1'b0;
s_axis_cq_tready_reg <= 1'b0;
end else begin
select_reg <= select_next;
drop_reg <= drop_next;
frame_reg <= frame_next;
s_axis_cq_tready_reg <= s_axis_cq_tready_next;
end
if (s_axis_cq_tready && AXIS_PCIE_DATA_WIDTH == 64) begin
temp_s_axis_cq_tdata <= s_axis_cq_tdata;
temp_s_axis_cq_tkeep <= s_axis_cq_tkeep;
temp_s_axis_cq_tvalid <= s_axis_cq_tvalid;
temp_s_axis_cq_tlast <= s_axis_cq_tlast;
temp_s_axis_cq_tuser <= s_axis_cq_tuser;
end
end
// output datapath logic
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg [M_COUNT-1:0] m_axis_cq_tvalid_reg = {M_COUNT{1'b0}}, m_axis_cq_tvalid_next;
reg m_axis_cq_tlast_reg = 1'b0;
reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] m_axis_cq_tuser_reg = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_cq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_cq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg [M_COUNT-1:0] temp_m_axis_cq_tvalid_reg = {M_COUNT{1'b0}}, temp_m_axis_cq_tvalid_next;
reg temp_m_axis_cq_tlast_reg = 1'b0;
reg [AXIS_PCIE_CQ_USER_WIDTH-1:0] temp_m_axis_cq_tuser_reg = {AXIS_PCIE_CQ_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_cq_temp_to_output;
assign m_axis_cq_tdata = {M_COUNT{m_axis_cq_tdata_reg}};
assign m_axis_cq_tkeep = {M_COUNT{m_axis_cq_tkeep_reg}};
assign m_axis_cq_tvalid = m_axis_cq_tvalid_reg;
assign m_axis_cq_tlast = {M_COUNT{m_axis_cq_tlast_reg}};
assign m_axis_cq_tuser = {M_COUNT{m_axis_cq_tuser_reg}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_cq_tready_int_early = (m_axis_cq_tready & m_axis_cq_tvalid) || (!temp_m_axis_cq_tvalid_reg && (!m_axis_cq_tvalid || !m_axis_cq_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_cq_tvalid_next = m_axis_cq_tvalid_reg;
temp_m_axis_cq_tvalid_next = temp_m_axis_cq_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_cq_temp_to_output = 1'b0;
if (m_axis_cq_tready_int_reg) begin
// input is ready
if ((m_axis_cq_tready & m_axis_cq_tvalid) || !m_axis_cq_tvalid) begin
// output is ready or currently not valid, transfer data to output
m_axis_cq_tvalid_next = m_axis_cq_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_cq_tvalid_next = m_axis_cq_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_cq_tready & m_axis_cq_tvalid) begin
// input is not ready, but output is ready
m_axis_cq_tvalid_next = temp_m_axis_cq_tvalid_reg;
temp_m_axis_cq_tvalid_next = 1'b0;
store_axis_cq_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_cq_tvalid_reg <= {M_COUNT{1'b0}};
m_axis_cq_tready_int_reg <= 1'b0;
temp_m_axis_cq_tvalid_reg <= 1'b0;
end else begin
m_axis_cq_tvalid_reg <= m_axis_cq_tvalid_next;
m_axis_cq_tready_int_reg <= m_axis_cq_tready_int_early;
temp_m_axis_cq_tvalid_reg <= temp_m_axis_cq_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_cq_tdata_reg <= m_axis_cq_tdata_int;
m_axis_cq_tkeep_reg <= m_axis_cq_tkeep_int;
m_axis_cq_tlast_reg <= m_axis_cq_tlast_int;
m_axis_cq_tuser_reg <= m_axis_cq_tuser_int;
end else if (store_axis_cq_temp_to_output) begin
m_axis_cq_tdata_reg <= temp_m_axis_cq_tdata_reg;
m_axis_cq_tkeep_reg <= temp_m_axis_cq_tkeep_reg;
m_axis_cq_tlast_reg <= temp_m_axis_cq_tlast_reg;
m_axis_cq_tuser_reg <= temp_m_axis_cq_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_cq_tdata_reg <= m_axis_cq_tdata_int;
temp_m_axis_cq_tkeep_reg <= m_axis_cq_tkeep_int;
temp_m_axis_cq_tlast_reg <= m_axis_cq_tlast_int;
temp_m_axis_cq_tuser_reg <= m_axis_cq_tuser_int;
end
end
endmodule