1173 lines
51 KiB
Verilog
1173 lines
51 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2019 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* Ultrascale PCIe DMA write interface
|
|
*/
|
|
module dma_if_pcie_us_wr #
|
|
(
|
|
// Width of PCIe AXI stream interfaces in bits
|
|
parameter AXIS_PCIE_DATA_WIDTH = 256,
|
|
// PCIe AXI stream tkeep signal width (words per cycle)
|
|
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
|
|
// PCIe AXI stream RQ tuser signal width
|
|
parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137,
|
|
// RQ sequence number width
|
|
parameter RQ_SEQ_NUM_WIDTH = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6,
|
|
// RQ sequence number tracking enable
|
|
parameter RQ_SEQ_NUM_ENABLE = 0,
|
|
// RAM segment count
|
|
parameter SEG_COUNT = AXIS_PCIE_DATA_WIDTH > 64 ? AXIS_PCIE_DATA_WIDTH*2 / 128 : 2,
|
|
// RAM segment data width
|
|
parameter SEG_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH*2/SEG_COUNT,
|
|
// RAM segment address width
|
|
parameter SEG_ADDR_WIDTH = 8,
|
|
// RAM segment byte enable width
|
|
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
|
|
// RAM select width
|
|
parameter RAM_SEL_WIDTH = 2,
|
|
// RAM address width
|
|
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
|
|
// PCIe address width
|
|
parameter PCIE_ADDR_WIDTH = 64,
|
|
// Length field width
|
|
parameter LEN_WIDTH = 16,
|
|
// Tag field width
|
|
parameter TAG_WIDTH = 8,
|
|
// Operation table size
|
|
parameter OP_TABLE_SIZE = 2**(RQ_SEQ_NUM_WIDTH-1),
|
|
// In-flight transmit limit
|
|
parameter TX_LIMIT = 2**(RQ_SEQ_NUM_WIDTH-1)
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI input (RQ from read DMA IF)
|
|
*/
|
|
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rq_tdata,
|
|
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rq_tkeep,
|
|
input wire s_axis_rq_tvalid,
|
|
output wire s_axis_rq_tready,
|
|
input wire s_axis_rq_tlast,
|
|
input wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] s_axis_rq_tuser,
|
|
|
|
/*
|
|
* AXI output (RQ)
|
|
*/
|
|
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
|
|
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
|
|
output wire m_axis_rq_tvalid,
|
|
input wire m_axis_rq_tready,
|
|
output wire m_axis_rq_tlast,
|
|
output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser,
|
|
|
|
/*
|
|
* Transmit sequence number input
|
|
*/
|
|
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_0,
|
|
input wire s_axis_rq_seq_num_valid_0,
|
|
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_1,
|
|
input wire s_axis_rq_seq_num_valid_1,
|
|
|
|
/*
|
|
* Transmit sequence number output (to read DMA IF)
|
|
*/
|
|
output wire [RQ_SEQ_NUM_WIDTH-1:0] m_axis_rq_seq_num_0,
|
|
output wire m_axis_rq_seq_num_valid_0,
|
|
output wire [RQ_SEQ_NUM_WIDTH-1:0] m_axis_rq_seq_num_1,
|
|
output wire m_axis_rq_seq_num_valid_1,
|
|
|
|
/*
|
|
* AXI write descriptor input
|
|
*/
|
|
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_write_desc_pcie_addr,
|
|
input wire [RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
|
|
input wire [RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
|
|
input wire [LEN_WIDTH-1:0] s_axis_write_desc_len,
|
|
input wire [TAG_WIDTH-1:0] s_axis_write_desc_tag,
|
|
input wire s_axis_write_desc_valid,
|
|
output wire s_axis_write_desc_ready,
|
|
|
|
/*
|
|
* AXI write descriptor status output
|
|
*/
|
|
output wire [TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
|
|
output wire m_axis_write_desc_status_valid,
|
|
|
|
/*
|
|
* RAM interface
|
|
*/
|
|
output wire [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
|
|
output wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
|
|
output wire [SEG_COUNT-1:0] ram_rd_cmd_valid,
|
|
input wire [SEG_COUNT-1:0] ram_rd_cmd_ready,
|
|
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
|
|
input wire [SEG_COUNT-1:0] ram_rd_resp_valid,
|
|
output wire [SEG_COUNT-1:0] ram_rd_resp_ready,
|
|
|
|
/*
|
|
* Configuration
|
|
*/
|
|
input wire enable,
|
|
input wire [15:0] requester_id,
|
|
input wire requester_id_enable,
|
|
input wire [2:0] max_payload_size
|
|
);
|
|
|
|
parameter RAM_WORD_WIDTH = SEG_BE_WIDTH;
|
|
parameter RAM_WORD_SIZE = SEG_DATA_WIDTH/RAM_WORD_WIDTH;
|
|
|
|
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
|
|
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
|
|
|
|
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
|
|
parameter RAM_OFFSET_WIDTH = $clog2(SEG_COUNT*SEG_DATA_WIDTH/8);
|
|
parameter WORD_LEN_WIDTH = LEN_WIDTH - $clog2(AXIS_PCIE_KEEP_WIDTH);
|
|
parameter CYCLE_COUNT_WIDTH = 13-$clog2(AXIS_PCIE_KEEP_WIDTH*4);
|
|
|
|
parameter SEQ_NUM_MASK = {RQ_SEQ_NUM_WIDTH-1{1'b1}};
|
|
parameter SEQ_NUM_FLAG = {1'b1, {RQ_SEQ_NUM_WIDTH-1{1'b0}}};
|
|
|
|
parameter MASK_FIFO_ADDR_WIDTH = $clog2(OP_TABLE_SIZE)+1;
|
|
|
|
parameter OP_TAG_WIDTH = $clog2(OP_TABLE_SIZE);
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
|
|
$error("Error: PCIe interface width must be 64, 128, or 256 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
|
|
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin
|
|
$error("Error: PCIe RQ tuser width must be 137 (instance %m)");
|
|
$finish;
|
|
end
|
|
end else begin
|
|
if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin
|
|
$error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
if (AXIS_PCIE_RQ_USER_WIDTH == 60) begin
|
|
if (RQ_SEQ_NUM_WIDTH != 4) begin
|
|
$error("Error: RQ sequence number width must be 4 (instance %m)");
|
|
$finish;
|
|
end
|
|
end else begin
|
|
if (RQ_SEQ_NUM_WIDTH != 6) begin
|
|
$error("Error: RQ sequence number width must be 6 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
if (RQ_SEQ_NUM_ENABLE && OP_TABLE_SIZE > 2**(RQ_SEQ_NUM_WIDTH-1)) begin
|
|
$error("Error: Operation table size of range (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (RQ_SEQ_NUM_ENABLE && TX_LIMIT > 2**(RQ_SEQ_NUM_WIDTH-1)) begin
|
|
$error("Error: TX limit out of range (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (SEG_COUNT < 2) begin
|
|
$error("Error: RAM interface requires at least 2 segments (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (SEG_COUNT*SEG_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH*2) begin
|
|
$error("Error: RAM interface width must be double the PCIe interface width (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (SEG_BE_WIDTH * 8 != SEG_DATA_WIDTH) begin
|
|
$error("Error: RAM interface requires byte (8-bit) granularity (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (2**$clog2(RAM_WORD_WIDTH) != RAM_WORD_WIDTH) begin
|
|
$error("Error: RAM word width must be even power of two (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (RAM_ADDR_WIDTH != SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH)) begin
|
|
$error("Error: RAM_ADDR_WIDTH does not match RAM configuration (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [3:0]
|
|
REQ_MEM_READ = 4'b0000,
|
|
REQ_MEM_WRITE = 4'b0001,
|
|
REQ_IO_READ = 4'b0010,
|
|
REQ_IO_WRITE = 4'b0011,
|
|
REQ_MEM_FETCH_ADD = 4'b0100,
|
|
REQ_MEM_SWAP = 4'b0101,
|
|
REQ_MEM_CAS = 4'b0110,
|
|
REQ_MEM_READ_LOCKED = 4'b0111,
|
|
REQ_CFG_READ_0 = 4'b1000,
|
|
REQ_CFG_READ_1 = 4'b1001,
|
|
REQ_CFG_WRITE_0 = 4'b1010,
|
|
REQ_CFG_WRITE_1 = 4'b1011,
|
|
REQ_MSG = 4'b1100,
|
|
REQ_MSG_VENDOR = 4'b1101,
|
|
REQ_MSG_ATS = 4'b1110;
|
|
|
|
localparam [2:0]
|
|
CPL_STATUS_SC = 3'b000, // successful completion
|
|
CPL_STATUS_UR = 3'b001, // unsupported request
|
|
CPL_STATUS_CRS = 3'b010, // configuration request retry status
|
|
CPL_STATUS_CA = 3'b100; // completer abort
|
|
|
|
localparam [1:0]
|
|
READ_STATE_IDLE = 2'd0,
|
|
READ_STATE_START = 2'd1,
|
|
READ_STATE_READ = 2'd2;
|
|
|
|
reg [1:0] read_state_reg = READ_STATE_IDLE, read_state_next;
|
|
|
|
localparam [2:0]
|
|
TLP_STATE_IDLE = 3'd0,
|
|
TLP_STATE_HEADER_1 = 3'd1,
|
|
TLP_STATE_HEADER_2 = 3'd2,
|
|
TLP_STATE_TRANSFER = 3'd3,
|
|
TLP_STATE_PASSTHROUGH = 3'd4;
|
|
|
|
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
|
|
|
|
// datapath control signals
|
|
reg mask_fifo_we;
|
|
|
|
reg [RAM_SEL_WIDTH-1:0] ram_sel_reg = {RAM_SEL_WIDTH{1'b0}}, ram_sel_next;
|
|
reg [PCIE_ADDR_WIDTH-1:0] pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, pcie_addr_next;
|
|
reg [RAM_ADDR_WIDTH-1:0] read_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, read_addr_next;
|
|
reg [LEN_WIDTH-1:0] op_count_reg = {LEN_WIDTH{1'b0}}, op_count_next;
|
|
reg [LEN_WIDTH-1:0] tr_count_reg = {LEN_WIDTH{1'b0}}, tr_count_next;
|
|
reg [LEN_WIDTH-1:0] tlp_count_reg = {LEN_WIDTH{1'b0}}, tlp_count_next;
|
|
reg [SEG_COUNT-1:0] read_ram_mask_reg = {SEG_COUNT{1'b0}}, read_ram_mask_next;
|
|
reg [SEG_COUNT-1:0] read_ram_mask_0_reg = {SEG_COUNT{1'b0}}, read_ram_mask_0_next;
|
|
reg [SEG_COUNT-1:0] read_ram_mask_1_reg = {SEG_COUNT{1'b0}}, read_ram_mask_1_next;
|
|
reg ram_wrap_reg = 1'b0, ram_wrap_next;
|
|
reg [CYCLE_COUNT_WIDTH-1:0] read_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, read_cycle_count_next;
|
|
reg read_last_cycle_reg = 1'b0, read_last_cycle_next;
|
|
reg [OFFSET_WIDTH+1-1:0] cycle_byte_count_reg = {OFFSET_WIDTH+1{1'b0}}, cycle_byte_count_next;
|
|
reg [RAM_OFFSET_WIDTH-1:0] start_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, start_offset_next;
|
|
reg [RAM_OFFSET_WIDTH-1:0] end_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, end_offset_next;
|
|
|
|
reg [PCIE_ADDR_WIDTH-1:0] tlp_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_addr_next;
|
|
reg [11:0] tlp_len_reg = 12'd0, tlp_len_next;
|
|
reg [RAM_OFFSET_WIDTH-1:0] offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, offset_next;
|
|
reg [9:0] dword_count_reg = 10'd0, dword_count_next;
|
|
reg [SEG_COUNT-1:0] ram_mask_reg = {SEG_COUNT{1'b0}}, ram_mask_next;
|
|
reg ram_mask_valid_reg = 1'b0, ram_mask_valid_next;
|
|
reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, cycle_count_next;
|
|
reg last_cycle_reg = 1'b0, last_cycle_next;
|
|
reg last_tlp_reg = 1'b0, last_tlp_next;
|
|
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
|
|
|
|
reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next;
|
|
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
|
|
|
|
reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_wr_ptr_reg = 0;
|
|
reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_rd_ptr_reg = 0, mask_fifo_rd_ptr_next;
|
|
reg [SEG_COUNT-1:0] mask_fifo_mask[(2**MASK_FIFO_ADDR_WIDTH)-1:0];
|
|
reg [SEG_COUNT-1:0] mask_fifo_wr_mask;
|
|
|
|
wire mask_fifo_empty = mask_fifo_wr_ptr_reg == mask_fifo_rd_ptr_reg;
|
|
wire mask_fifo_full = mask_fifo_wr_ptr_reg == (mask_fifo_rd_ptr_reg ^ (1 << MASK_FIFO_ADDR_WIDTH));
|
|
|
|
reg [10:0] max_payload_size_dw_reg = 11'd0;
|
|
|
|
reg [RQ_SEQ_NUM_WIDTH-1:0] active_tx_count_reg = {RQ_SEQ_NUM_WIDTH{1'b0}};
|
|
reg active_tx_count_av_reg = 1'b1;
|
|
reg inc_active_tx;
|
|
|
|
reg s_axis_rq_tready_reg = 1'b0, s_axis_rq_tready_next;
|
|
|
|
reg s_axis_write_desc_ready_reg = 1'b0, s_axis_write_desc_ready_next;
|
|
|
|
reg [TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
|
|
reg m_axis_write_desc_status_valid_reg = 1'b0, m_axis_write_desc_status_valid_next;
|
|
|
|
reg [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel_reg = 0, ram_rd_cmd_sel_next;
|
|
reg [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr_reg = 0, ram_rd_cmd_addr_next;
|
|
reg [SEG_COUNT-1:0] ram_rd_cmd_valid_reg = 0, ram_rd_cmd_valid_next;
|
|
reg [SEG_COUNT-1:0] ram_rd_resp_ready_cmb;
|
|
|
|
// internal datapath
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
|
|
reg m_axis_rq_tvalid_int;
|
|
reg m_axis_rq_tready_int_reg = 1'b0;
|
|
reg m_axis_rq_tlast_int;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int;
|
|
wire m_axis_rq_tready_int_early;
|
|
|
|
assign s_axis_rq_tready = s_axis_rq_tready_reg;
|
|
|
|
assign m_axis_rq_seq_num_0 = s_axis_rq_seq_num_0 & SEQ_NUM_MASK;
|
|
assign m_axis_rq_seq_num_valid_0 = s_axis_rq_seq_num_valid_0 && (s_axis_rq_seq_num_0 & SEQ_NUM_FLAG);
|
|
assign m_axis_rq_seq_num_1 = s_axis_rq_seq_num_1 & SEQ_NUM_MASK;
|
|
assign m_axis_rq_seq_num_valid_1 = s_axis_rq_seq_num_valid_1 && (s_axis_rq_seq_num_1 & SEQ_NUM_FLAG);
|
|
|
|
wire axis_rq_seq_num_valid_0_int = s_axis_rq_seq_num_valid_0 && !(s_axis_rq_seq_num_0 & SEQ_NUM_FLAG);
|
|
wire axis_rq_seq_num_valid_1_int = s_axis_rq_seq_num_valid_1 && !(s_axis_rq_seq_num_1 & SEQ_NUM_FLAG);
|
|
|
|
assign s_axis_write_desc_ready = s_axis_write_desc_ready_reg;
|
|
|
|
assign m_axis_write_desc_status_tag = m_axis_write_desc_status_tag_reg;
|
|
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
|
|
|
|
assign ram_rd_cmd_sel = ram_rd_cmd_sel_reg;
|
|
assign ram_rd_cmd_addr = ram_rd_cmd_addr_reg;
|
|
assign ram_rd_cmd_valid = ram_rd_cmd_valid_reg;
|
|
assign ram_rd_resp_ready = ram_rd_resp_ready_cmb;
|
|
|
|
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_max_payload = pcie_addr_reg + {max_payload_size_dw_reg, 2'b00};
|
|
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_op_count = pcie_addr_reg + op_count_reg;
|
|
|
|
// operation tag management
|
|
reg [OP_TAG_WIDTH+1-1:0] op_table_start_ptr_reg = 0;
|
|
reg [PCIE_ADDR_WIDTH-1:0] op_table_start_pcie_addr;
|
|
reg [11:0] op_table_start_len;
|
|
reg [9:0] op_table_start_dword_len;
|
|
reg [CYCLE_COUNT_WIDTH-1:0] op_table_start_cycle_count;
|
|
reg [RAM_OFFSET_WIDTH-1:0] op_table_start_offset;
|
|
reg [TAG_WIDTH-1:0] op_table_start_tag;
|
|
reg op_table_start_last;
|
|
reg op_table_start_en;
|
|
reg [OP_TAG_WIDTH+1-1:0] op_table_tx_start_ptr_reg = 0;
|
|
reg op_table_tx_start_en;
|
|
reg [OP_TAG_WIDTH+1-1:0] op_table_tx_finish_ptr_reg = 0;
|
|
reg op_table_tx_finish_en;
|
|
reg [OP_TAG_WIDTH+1-1:0] op_table_finish_ptr_reg = 0;
|
|
reg op_table_finish_en;
|
|
|
|
reg [2**OP_TAG_WIDTH-1:0] op_table_active = 0;
|
|
reg [2**OP_TAG_WIDTH-1:0] op_table_tx_done = 0;
|
|
reg [PCIE_ADDR_WIDTH-1:0] op_table_pcie_addr[2**OP_TAG_WIDTH-1:0];
|
|
reg [11:0] op_table_len[2**OP_TAG_WIDTH-1:0];
|
|
reg [9:0] op_table_dword_len[2**OP_TAG_WIDTH-1:0];
|
|
reg [CYCLE_COUNT_WIDTH-1:0] op_table_cycle_count[2**OP_TAG_WIDTH-1:0];
|
|
reg [RAM_OFFSET_WIDTH-1:0] op_table_offset[2**OP_TAG_WIDTH-1:0];
|
|
reg [TAG_WIDTH-1:0] op_table_tag[2**OP_TAG_WIDTH-1:0];
|
|
reg op_table_last[2**OP_TAG_WIDTH-1:0];
|
|
|
|
integer i;
|
|
|
|
initial begin
|
|
for (i = 0; i < 2**OP_TAG_WIDTH; i = i + 1) begin
|
|
op_table_pcie_addr[i] = 0;
|
|
op_table_len[i] = 0;
|
|
op_table_dword_len[i] = 0;
|
|
op_table_cycle_count[i] = 0;
|
|
op_table_offset[i] = 0;
|
|
op_table_tag[i] = 0;
|
|
op_table_last[i] = 0;
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
read_state_next = READ_STATE_IDLE;
|
|
|
|
s_axis_write_desc_ready_next = 1'b0;
|
|
|
|
ram_rd_cmd_sel_next = ram_rd_cmd_sel_reg;
|
|
ram_rd_cmd_addr_next = ram_rd_cmd_addr_reg;
|
|
ram_rd_cmd_valid_next = ram_rd_cmd_valid_reg & ~ram_rd_cmd_ready;
|
|
|
|
mask_fifo_we = 1'b0;
|
|
|
|
ram_sel_next = ram_sel_reg;
|
|
pcie_addr_next = pcie_addr_reg;
|
|
read_addr_next = read_addr_reg;
|
|
op_count_next = op_count_reg;
|
|
tr_count_next = tr_count_reg;
|
|
tlp_count_next = tlp_count_reg;
|
|
read_ram_mask_next = read_ram_mask_reg;
|
|
read_ram_mask_0_next = read_ram_mask_0_reg;
|
|
read_ram_mask_1_next = read_ram_mask_1_reg;
|
|
ram_wrap_next = ram_wrap_reg;
|
|
read_cycle_count_next = read_cycle_count_reg;
|
|
read_last_cycle_next = read_last_cycle_reg;
|
|
cycle_byte_count_next = cycle_byte_count_reg;
|
|
start_offset_next = start_offset_reg;
|
|
end_offset_next = end_offset_reg;
|
|
|
|
tlp_cmd_tag_next = tlp_cmd_tag_reg;
|
|
tlp_cmd_last_next = tlp_cmd_last_reg;
|
|
|
|
mask_fifo_wr_mask = read_ram_mask_reg;
|
|
|
|
op_table_start_pcie_addr = pcie_addr_reg;
|
|
op_table_start_len = 0;
|
|
op_table_start_dword_len = 0;
|
|
op_table_start_cycle_count = 0;
|
|
op_table_start_offset = 0;
|
|
op_table_start_tag = tlp_cmd_tag_reg;
|
|
op_table_start_last = 0;
|
|
op_table_start_en = 1'b0;
|
|
|
|
// TLP segmentation and AXI read request generation
|
|
case (read_state_reg)
|
|
READ_STATE_IDLE: begin
|
|
// idle state, wait for incoming descriptor
|
|
s_axis_write_desc_ready_next = !op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH) && enable;
|
|
|
|
ram_sel_next = s_axis_write_desc_ram_sel;
|
|
pcie_addr_next = s_axis_write_desc_pcie_addr;
|
|
read_addr_next = s_axis_write_desc_ram_addr;
|
|
op_count_next = s_axis_write_desc_len;
|
|
|
|
if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin
|
|
// packet smaller than max payload size
|
|
if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
tlp_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max payload size
|
|
if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0];
|
|
end
|
|
end
|
|
|
|
if (s_axis_write_desc_ready & s_axis_write_desc_valid) begin
|
|
s_axis_write_desc_ready_next = 1'b0;
|
|
tlp_cmd_tag_next = s_axis_write_desc_tag;
|
|
read_state_next = READ_STATE_START;
|
|
end else begin
|
|
read_state_next = READ_STATE_IDLE;
|
|
end
|
|
end
|
|
READ_STATE_START: begin
|
|
// start state, compute TLP length
|
|
if (!op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH)) begin
|
|
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
|
|
read_cycle_count_next = (tlp_count_next + 16+pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8);
|
|
end else begin
|
|
read_cycle_count_next = (tlp_count_next + pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8);
|
|
end
|
|
read_last_cycle_next = read_cycle_count_next == 0;
|
|
op_table_start_cycle_count = read_cycle_count_next;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH >= 256 && tlp_count_next > (AXIS_PCIE_DATA_WIDTH/8-16)-pcie_addr_reg[1:0]) begin
|
|
cycle_byte_count_next = (AXIS_PCIE_DATA_WIDTH/8-16)-pcie_addr_reg[1:0];
|
|
end else if (AXIS_PCIE_DATA_WIDTH <= 128 && tlp_count_next > AXIS_PCIE_DATA_WIDTH/8-pcie_addr_reg[1:0]) begin
|
|
cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8-pcie_addr_reg[1:0];
|
|
end else begin
|
|
cycle_byte_count_next = tlp_count_next;
|
|
end
|
|
start_offset_next = read_addr_next;
|
|
end_offset_next = start_offset_next+cycle_byte_count_next-1;
|
|
|
|
ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH;
|
|
|
|
read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH));
|
|
read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH)));
|
|
|
|
if (!ram_wrap_next) begin
|
|
read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next;
|
|
read_ram_mask_1_next = 0;
|
|
end
|
|
|
|
read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next;
|
|
|
|
pcie_addr_next = pcie_addr_reg + tlp_count_next;
|
|
op_count_next = op_count_reg - tlp_count_next;
|
|
|
|
op_table_start_pcie_addr = pcie_addr_reg;
|
|
op_table_start_len = tlp_count_next;
|
|
op_table_start_dword_len = (tlp_count_next + pcie_addr_reg[1:0] + 3) >> 2;
|
|
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
|
|
op_table_start_offset = 16+pcie_addr_reg[1:0]-read_addr_reg[RAM_OFFSET_WIDTH-1:0];
|
|
end else begin
|
|
op_table_start_offset = pcie_addr_reg[1:0]-read_addr_reg[RAM_OFFSET_WIDTH-1:0];
|
|
end
|
|
tlp_cmd_last_next = op_count_next == 0;
|
|
op_table_start_last = op_count_next == 0;
|
|
|
|
op_table_start_tag = tlp_cmd_tag_reg;
|
|
op_table_start_en = 1'b1;
|
|
|
|
read_state_next = READ_STATE_READ;
|
|
end else begin
|
|
read_state_next = READ_STATE_START;
|
|
end
|
|
end
|
|
READ_STATE_READ: begin
|
|
// read state - start new read operations
|
|
|
|
if (!(ram_rd_cmd_valid & ~ram_rd_cmd_ready & read_ram_mask_reg) && !mask_fifo_full) begin
|
|
|
|
// update counters
|
|
read_addr_next = read_addr_reg + cycle_byte_count_reg;
|
|
tlp_count_next = tlp_count_reg - cycle_byte_count_reg;
|
|
read_cycle_count_next = read_cycle_count_reg - 1;
|
|
read_last_cycle_next = read_cycle_count_next == 0;
|
|
|
|
for (i = 0; i < SEG_COUNT; i = i + 1) begin
|
|
if (read_ram_mask_0_reg[i]) begin
|
|
ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = ram_sel_reg;
|
|
ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH];
|
|
ram_rd_cmd_valid_next[i] = 1'b1;
|
|
end
|
|
if (read_ram_mask_1_reg[i]) begin
|
|
ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = ram_sel_reg;
|
|
ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]+1;
|
|
ram_rd_cmd_valid_next[i] = 1'b1;
|
|
end
|
|
end
|
|
|
|
mask_fifo_wr_mask = read_ram_mask_reg;
|
|
mask_fifo_we = 1'b1;
|
|
|
|
if (tlp_count_next > AXIS_PCIE_DATA_WIDTH/8) begin
|
|
cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8;
|
|
end else begin
|
|
cycle_byte_count_next = tlp_count_next;
|
|
end
|
|
start_offset_next = read_addr_next;
|
|
end_offset_next = start_offset_next+cycle_byte_count_next-1;
|
|
|
|
ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH;
|
|
|
|
read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH));
|
|
read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH)));
|
|
|
|
if (!ram_wrap_next) begin
|
|
read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next;
|
|
read_ram_mask_1_next = 0;
|
|
end
|
|
|
|
read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next;
|
|
|
|
if (!read_last_cycle_reg) begin
|
|
read_state_next = READ_STATE_READ;
|
|
end else if (!tlp_cmd_last_reg) begin
|
|
|
|
if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin
|
|
// packet smaller than max payload size
|
|
if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
tlp_count_next = op_count_next;
|
|
end
|
|
end else begin
|
|
// packet larger than max payload size
|
|
if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin
|
|
// crosses 4k boundary
|
|
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0];
|
|
end
|
|
end
|
|
|
|
read_state_next = READ_STATE_START;
|
|
end else begin
|
|
s_axis_write_desc_ready_next = !op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] && ($unsigned(op_table_start_ptr_reg - op_table_finish_ptr_reg) < 2**OP_TAG_WIDTH) && enable;
|
|
read_state_next = READ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
read_state_next = READ_STATE_READ;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
wire [3:0] first_be = 4'b1111 << tlp_addr_reg[1:0];
|
|
wire [3:0] last_be = 4'b1111 >> (3 - ((tlp_addr_reg[1:0] + tlp_len_reg[1:0] - 1) & 3));
|
|
|
|
always @* begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
|
|
m_axis_write_desc_status_tag_next = m_axis_write_desc_status_tag_reg;
|
|
m_axis_write_desc_status_valid_next = 1'b0;
|
|
|
|
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
|
|
|
|
tlp_addr_next = tlp_addr_reg;
|
|
tlp_len_next = tlp_len_reg;
|
|
dword_count_next = dword_count_reg;
|
|
offset_next = offset_reg;
|
|
ram_mask_next = ram_mask_reg;
|
|
ram_mask_valid_next = ram_mask_valid_reg;
|
|
cycle_count_next = cycle_count_reg;
|
|
last_cycle_next = last_cycle_reg;
|
|
last_tlp_next = last_tlp_reg;
|
|
tag_next = tag_reg;
|
|
|
|
mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg;
|
|
|
|
op_table_tx_start_en = 1'b0;
|
|
op_table_tx_finish_en = 1'b0;
|
|
|
|
inc_active_tx = 1'b0;
|
|
|
|
s_axis_rq_tready_next = 1'b0;
|
|
|
|
m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
m_axis_rq_tvalid_int = 1'b0;
|
|
m_axis_rq_tlast_int = 1'b0;
|
|
m_axis_rq_tuser_int = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
|
|
|
|
m_axis_rq_tdata_int[1:0] = 2'b0; // address type
|
|
m_axis_rq_tdata_int[63:2] = tlp_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
m_axis_rq_tdata_int[74:64] = dword_count_reg; // DWORD count
|
|
m_axis_rq_tdata_int[78:75] = REQ_MEM_WRITE; // request type - memory write
|
|
m_axis_rq_tdata_int[79] = 1'b0; // poisoned request
|
|
m_axis_rq_tdata_int[95:80] = requester_id;
|
|
m_axis_rq_tdata_int[103:96] = 8'd0; // tag
|
|
m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID
|
|
m_axis_rq_tdata_int[120] = requester_id_enable; // requester ID enable
|
|
m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class
|
|
m_axis_rq_tdata_int[126:124] = 3'b000; // attr
|
|
m_axis_rq_tdata_int[127] = 1'b0; // force ECRC
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 256) begin
|
|
m_axis_rq_tkeep_int = 8'b00001111;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
|
|
m_axis_rq_tkeep_int = 4'b1111;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
|
|
m_axis_rq_tkeep_int = 2'b11;
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE 0
|
|
m_axis_rq_tuser_int[7:4] = 4'd0; // first BE 1
|
|
m_axis_rq_tuser_int[11:8] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE 0
|
|
m_axis_rq_tuser_int[15:12] = 4'd0; // last BE 1
|
|
m_axis_rq_tuser_int[19:16] = 3'd0; // addr_offset
|
|
m_axis_rq_tuser_int[21:20] = 2'b01; // is_sop
|
|
m_axis_rq_tuser_int[23:22] = 2'd0; // is_sop0_ptr
|
|
m_axis_rq_tuser_int[25:24] = 2'd0; // is_sop1_ptr
|
|
m_axis_rq_tuser_int[27:26] = 2'b01; // is_eop
|
|
m_axis_rq_tuser_int[31:28] = 4'd3; // is_eop0_ptr
|
|
m_axis_rq_tuser_int[35:32] = 4'd0; // is_eop1_ptr
|
|
m_axis_rq_tuser_int[36] = 1'b0; // discontinue
|
|
m_axis_rq_tuser_int[38:37] = 2'b00; // tph_present
|
|
m_axis_rq_tuser_int[42:39] = 4'b0000; // tph_type
|
|
m_axis_rq_tuser_int[44:43] = 2'b00; // tph_indirect_tag_en
|
|
m_axis_rq_tuser_int[60:45] = 16'd0; // tph_st_tag
|
|
m_axis_rq_tuser_int[66:61] = op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK; // seq_num0
|
|
m_axis_rq_tuser_int[72:67] = 6'd0; // seq_num1
|
|
m_axis_rq_tuser_int[136:73] = 64'd0; // parity
|
|
end else begin
|
|
m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE
|
|
m_axis_rq_tuser_int[7:4] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE
|
|
m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset
|
|
m_axis_rq_tuser_int[11] = 1'b0; // discontinue
|
|
m_axis_rq_tuser_int[12] = 1'b0; // tph_present
|
|
m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type
|
|
m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en
|
|
m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag
|
|
m_axis_rq_tuser_int[27:24] = op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK; // seq_num
|
|
m_axis_rq_tuser_int[59:28] = 32'd0; // parity
|
|
if (AXIS_PCIE_RQ_USER_WIDTH == 62) begin
|
|
m_axis_rq_tuser_int[61:60] = (op_table_tx_finish_ptr_reg[OP_TAG_WIDTH-1:0] & SEQ_NUM_MASK) >> 4; // seq_num
|
|
end
|
|
end
|
|
|
|
// AXI read response processing and TLP generation
|
|
case (tlp_state_reg)
|
|
TLP_STATE_IDLE: begin
|
|
// idle state, wait for command
|
|
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
|
|
|
|
// pass through read request TLP
|
|
m_axis_rq_tdata_int = s_axis_rq_tdata;
|
|
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
|
|
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
|
|
m_axis_rq_tlast_int = s_axis_rq_tlast;
|
|
m_axis_rq_tuser_int = s_axis_rq_tuser;
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
m_axis_rq_tuser_int[61+RQ_SEQ_NUM_WIDTH-1] = 1'b1;
|
|
end else begin
|
|
if (RQ_SEQ_NUM_WIDTH > 4) begin
|
|
m_axis_rq_tuser_int[60+RQ_SEQ_NUM_WIDTH-4-1] = 1'b1;
|
|
end else begin
|
|
m_axis_rq_tuser_int[24+RQ_SEQ_NUM_WIDTH-1] = 1'b1;
|
|
end
|
|
end
|
|
|
|
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
|
|
|
|
tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0;
|
|
last_tlp_next = op_table_last[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tag_next = op_table_tag[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
|
|
if (s_axis_rq_tready && s_axis_rq_tvalid) begin
|
|
// pass through read request TLP
|
|
if (s_axis_rq_tlast) begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_PASSTHROUGH;
|
|
end
|
|
end else if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin
|
|
s_axis_rq_tready_next = 1'b0;
|
|
op_table_tx_start_en = 1'b1;
|
|
tlp_state_next = TLP_STATE_HEADER_1;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end
|
|
TLP_STATE_HEADER_1: begin
|
|
// header 1 state, send TLP header
|
|
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
|
|
|
|
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
|
|
|
|
if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin
|
|
// transfer in read data
|
|
ram_rd_resp_ready_cmb = ram_mask_reg;
|
|
ram_mask_valid_next = 1'b0;
|
|
|
|
// update counters
|
|
dword_count_next = dword_count_reg - (AXIS_PCIE_KEEP_WIDTH-4);
|
|
cycle_count_next = cycle_count_reg - 1;
|
|
last_cycle_next = cycle_count_next == 0;
|
|
offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8;
|
|
|
|
m_axis_rq_tdata_int[AXIS_PCIE_DATA_WIDTH-1:128] = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8 + 128);
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH-4) begin
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
|
|
end else begin
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH-4 - dword_count_reg);
|
|
end
|
|
|
|
inc_active_tx = 1'b1;
|
|
|
|
if (last_cycle_reg) begin
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
op_table_tx_finish_en = 1'b1;
|
|
|
|
// skip idle state if possible
|
|
tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0;
|
|
last_tlp_next = op_table_last[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tag_next = op_table_tag[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
|
|
if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && !s_axis_rq_tvalid && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin
|
|
op_table_tx_start_en = 1'b1;
|
|
tlp_state_next = TLP_STATE_HEADER_1;
|
|
end else begin
|
|
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER_1;
|
|
end
|
|
end else begin
|
|
if (m_axis_rq_tready_int_reg) begin
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
|
|
inc_active_tx = 1'b1;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 128) begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER_2;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER_1;
|
|
end
|
|
end
|
|
end
|
|
TLP_STATE_HEADER_2: begin
|
|
// header 2 state, send rest of TLP header (64 bit interface only)
|
|
if (m_axis_rq_tready_int_reg) begin
|
|
m_axis_rq_tdata_int[10:0] = dword_count_reg; // DWORD count
|
|
m_axis_rq_tdata_int[14:11] = 4'b0001; // request type - memory write
|
|
m_axis_rq_tdata_int[15] = 1'b0; // poisoned request
|
|
m_axis_rq_tdata_int[31:16] = requester_id;
|
|
m_axis_rq_tdata_int[39:32] = 8'd0; // tag
|
|
m_axis_rq_tdata_int[55:40] = 16'd0; // completer ID
|
|
m_axis_rq_tdata_int[56] = requester_id_enable; // requester ID enable
|
|
m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class
|
|
m_axis_rq_tdata_int[62:60] = 3'b000; // attr
|
|
m_axis_rq_tdata_int[63] = 1'b0; // force ECRC
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
m_axis_rq_tkeep_int = 2'b11;
|
|
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER_2;
|
|
end
|
|
end
|
|
TLP_STATE_TRANSFER: begin
|
|
// transfer state, transfer data
|
|
|
|
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
|
|
|
|
if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin
|
|
// transfer in read data
|
|
ram_rd_resp_ready_cmb = ram_mask_reg;
|
|
ram_mask_valid_next = 1'b0;
|
|
|
|
// update counters
|
|
dword_count_next = dword_count_reg - AXIS_PCIE_KEEP_WIDTH;
|
|
cycle_count_next = cycle_count_reg - 1;
|
|
last_cycle_next = cycle_count_next == 0;
|
|
offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8;
|
|
|
|
m_axis_rq_tdata_int = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8);
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH) begin
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
|
|
end else begin
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH - dword_count_reg);
|
|
end
|
|
|
|
if (last_cycle_reg) begin
|
|
// no more data to transfer, finish operation
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
op_table_tx_finish_en = 1'b1;
|
|
|
|
// skip idle state if possible
|
|
tlp_addr_next = op_table_pcie_addr[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tlp_len_next = op_table_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
dword_count_next = op_table_dword_len[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
offset_next = op_table_offset[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
cycle_count_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
last_cycle_next = op_table_cycle_count[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] == 0;
|
|
last_tlp_next = op_table_last[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
tag_next = op_table_tag[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
|
|
if (op_table_active[op_table_tx_start_ptr_reg[OP_TAG_WIDTH-1:0]] && op_table_tx_start_ptr_reg != op_table_start_ptr_reg && !s_axis_rq_tvalid && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin
|
|
op_table_tx_start_en = 1'b1;
|
|
tlp_state_next = TLP_STATE_HEADER_1;
|
|
end else begin
|
|
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end
|
|
end
|
|
TLP_STATE_PASSTHROUGH: begin
|
|
// passthrough state, pass through read request TLP
|
|
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
|
|
|
|
// pass through read request TLP
|
|
m_axis_rq_tdata_int = s_axis_rq_tdata;
|
|
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
|
|
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
|
|
m_axis_rq_tlast_int = s_axis_rq_tlast;
|
|
m_axis_rq_tuser_int = s_axis_rq_tuser;
|
|
if (AXIS_PCIE_DATA_WIDTH == 512) begin
|
|
m_axis_rq_tuser_int[61+RQ_SEQ_NUM_WIDTH-1] = 1'b1;
|
|
end else begin
|
|
if (RQ_SEQ_NUM_WIDTH > 4) begin
|
|
m_axis_rq_tuser_int[60+RQ_SEQ_NUM_WIDTH-4-1] = 1'b1;
|
|
end else begin
|
|
m_axis_rq_tuser_int[24+RQ_SEQ_NUM_WIDTH-1] = 1'b1;
|
|
end
|
|
end
|
|
|
|
if (s_axis_rq_tready && s_axis_rq_tvalid && s_axis_rq_tlast) begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_PASSTHROUGH;
|
|
end
|
|
end
|
|
endcase
|
|
|
|
if (!ram_mask_valid_next && !mask_fifo_empty) begin
|
|
ram_mask_next = mask_fifo_mask[mask_fifo_rd_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]];
|
|
ram_mask_valid_next = 1'b1;
|
|
mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg+1;
|
|
end
|
|
|
|
op_table_finish_en = 1'b0;
|
|
|
|
if (op_table_active[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]] && (!RQ_SEQ_NUM_ENABLE || op_table_tx_done[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]]) && op_table_finish_ptr_reg != op_table_tx_finish_ptr_reg) begin
|
|
op_table_finish_en = 1'b1;
|
|
|
|
if (op_table_last[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]]) begin
|
|
m_axis_write_desc_status_tag_next = op_table_tag[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]];
|
|
m_axis_write_desc_status_valid_next = 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
read_state_reg <= read_state_next;
|
|
tlp_state_reg <= tlp_state_next;
|
|
|
|
ram_sel_reg <= ram_sel_next;
|
|
pcie_addr_reg <= pcie_addr_next;
|
|
read_addr_reg <= read_addr_next;
|
|
op_count_reg <= op_count_next;
|
|
tr_count_reg <= tr_count_next;
|
|
tlp_count_reg <= tlp_count_next;
|
|
read_ram_mask_reg <= read_ram_mask_next;
|
|
read_ram_mask_0_reg <= read_ram_mask_0_next;
|
|
read_ram_mask_1_reg <= read_ram_mask_1_next;
|
|
ram_wrap_reg <= ram_wrap_next;
|
|
read_cycle_count_reg <= read_cycle_count_next;
|
|
read_last_cycle_reg <= read_last_cycle_next;
|
|
cycle_byte_count_reg <= cycle_byte_count_next;
|
|
start_offset_reg <= start_offset_next;
|
|
end_offset_reg <= end_offset_next;
|
|
|
|
tlp_addr_reg <= tlp_addr_next;
|
|
tlp_len_reg <= tlp_len_next;
|
|
dword_count_reg <= dword_count_next;
|
|
offset_reg <= offset_next;
|
|
ram_mask_reg <= ram_mask_next;
|
|
ram_mask_valid_reg <= ram_mask_valid_next;
|
|
cycle_count_reg <= cycle_count_next;
|
|
last_cycle_reg <= last_cycle_next;
|
|
last_tlp_reg <= last_tlp_next;
|
|
tag_reg <= tag_next;
|
|
|
|
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
|
|
tlp_cmd_last_reg <= tlp_cmd_last_next;
|
|
|
|
s_axis_rq_tready_reg <= s_axis_rq_tready_next;
|
|
|
|
s_axis_write_desc_ready_reg <= s_axis_write_desc_ready_next;
|
|
|
|
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
|
|
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
|
|
|
|
ram_rd_cmd_sel_reg <= ram_rd_cmd_sel_next;
|
|
ram_rd_cmd_addr_reg <= ram_rd_cmd_addr_next;
|
|
ram_rd_cmd_valid_reg <= ram_rd_cmd_valid_next;
|
|
|
|
max_payload_size_dw_reg <= 11'd32 << (max_payload_size > 5 ? 5 : max_payload_size);
|
|
|
|
if (active_tx_count_reg < TX_LIMIT && inc_active_tx && !axis_rq_seq_num_valid_0_int && !axis_rq_seq_num_valid_1_int) begin
|
|
// inc by 1
|
|
active_tx_count_reg <= active_tx_count_reg + 1;
|
|
active_tx_count_av_reg <= active_tx_count_reg < (TX_LIMIT-1);
|
|
end else if (active_tx_count_reg > 0 && ((inc_active_tx && axis_rq_seq_num_valid_0_int && axis_rq_seq_num_valid_1_int) || (!inc_active_tx && (axis_rq_seq_num_valid_0_int ^ axis_rq_seq_num_valid_1_int)))) begin
|
|
// dec by 1
|
|
active_tx_count_reg <= active_tx_count_reg - 1;
|
|
active_tx_count_av_reg <= 1'b1;
|
|
end else if (active_tx_count_reg > 1 && !inc_active_tx && axis_rq_seq_num_valid_0_int && axis_rq_seq_num_valid_1_int) begin
|
|
// dec by 2
|
|
active_tx_count_reg <= active_tx_count_reg - 2;
|
|
active_tx_count_av_reg <= 1'b1;
|
|
end else begin
|
|
active_tx_count_av_reg <= active_tx_count_reg < TX_LIMIT;
|
|
end
|
|
|
|
if (mask_fifo_we) begin
|
|
mask_fifo_mask[mask_fifo_wr_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]] <= mask_fifo_wr_mask;
|
|
mask_fifo_wr_ptr_reg <= mask_fifo_wr_ptr_reg + 1;
|
|
end
|
|
mask_fifo_rd_ptr_reg <= mask_fifo_rd_ptr_next;
|
|
|
|
if (op_table_start_en) begin
|
|
op_table_start_ptr_reg <= op_table_start_ptr_reg + 1;
|
|
op_table_active[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b1;
|
|
op_table_tx_done[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b0;
|
|
op_table_pcie_addr[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_pcie_addr;
|
|
op_table_len[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_len;
|
|
op_table_dword_len[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_dword_len;
|
|
op_table_cycle_count[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_cycle_count;
|
|
op_table_offset[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_offset;
|
|
op_table_tag[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_tag;
|
|
op_table_last[op_table_start_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_table_start_last;
|
|
end
|
|
|
|
if (op_table_tx_start_en) begin
|
|
op_table_tx_start_ptr_reg <= op_table_tx_start_ptr_reg + 1;
|
|
end
|
|
|
|
if (op_table_tx_finish_en) begin
|
|
op_table_tx_finish_ptr_reg <= op_table_tx_finish_ptr_reg + 1;
|
|
end
|
|
|
|
if (axis_rq_seq_num_valid_0_int) begin
|
|
op_table_tx_done[s_axis_rq_seq_num_0[OP_TAG_WIDTH-1:0]] <= 1'b1;
|
|
end
|
|
|
|
if (axis_rq_seq_num_valid_1_int) begin
|
|
op_table_tx_done[s_axis_rq_seq_num_1[OP_TAG_WIDTH-1:0]] <= 1'b1;
|
|
end
|
|
|
|
if (op_table_finish_en) begin
|
|
op_table_finish_ptr_reg <= op_table_finish_ptr_reg + 1;
|
|
op_table_active[op_table_finish_ptr_reg[OP_TAG_WIDTH-1:0]] <= 1'b0;
|
|
end
|
|
|
|
if (rst) begin
|
|
read_state_reg <= READ_STATE_IDLE;
|
|
tlp_state_reg <= TLP_STATE_IDLE;
|
|
|
|
ram_mask_valid_reg <= 1'b0;
|
|
|
|
s_axis_rq_tready_reg <= 1'b0;
|
|
s_axis_write_desc_ready_reg <= 1'b0;
|
|
m_axis_write_desc_status_valid_reg <= 1'b0;
|
|
ram_rd_cmd_valid_reg <= {SEG_COUNT{1'b0}};
|
|
|
|
active_tx_count_reg <= {RQ_SEQ_NUM_WIDTH{1'b0}};
|
|
active_tx_count_av_reg <= 1'b1;
|
|
|
|
mask_fifo_wr_ptr_reg <= 0;
|
|
mask_fifo_rd_ptr_reg <= 0;
|
|
|
|
op_table_start_ptr_reg <= 0;
|
|
op_table_tx_start_ptr_reg <= 0;
|
|
op_table_tx_finish_ptr_reg <= 0;
|
|
op_table_finish_ptr_reg <= 0;
|
|
op_table_active <= 0;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (PCIe TLP)
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
|
|
reg m_axis_rq_tlast_reg = 1'b0;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
|
|
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
|
|
reg temp_m_axis_rq_tlast_reg = 1'b0;
|
|
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
|
|
|
|
// datapath control
|
|
reg store_axis_rq_int_to_output;
|
|
reg store_axis_rq_int_to_temp;
|
|
reg store_axis_rq_temp_to_output;
|
|
|
|
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
|
|
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
|
|
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
|
|
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
|
|
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
|
|
store_axis_rq_int_to_output = 1'b0;
|
|
store_axis_rq_int_to_temp = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b0;
|
|
|
|
if (m_axis_rq_tready_int_reg) begin
|
|
// input is ready
|
|
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_temp = 1'b1;
|
|
end
|
|
end else if (m_axis_rq_tready) begin
|
|
// input is not ready, but output is ready
|
|
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
m_axis_rq_tvalid_reg <= 1'b0;
|
|
m_axis_rq_tready_int_reg <= 1'b0;
|
|
temp_m_axis_rq_tvalid_reg <= 1'b0;
|
|
end else begin
|
|
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
|
|
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
|
|
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axis_rq_int_to_output) begin
|
|
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end else if (store_axis_rq_temp_to_output) begin
|
|
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
|
|
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
|
|
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
|
|
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
|
|
end
|
|
|
|
if (store_axis_rq_int_to_temp) begin
|
|
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end
|
|
end
|
|
|
|
endmodule
|