verilog-pcie/rtl/pcie_us_axi_master_rd.v

1224 lines
52 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ultrascale PCIe AXI Master (read)
*/
module pcie_us_axi_master_rd #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream CQ tuser signal width
parameter AXIS_PCIE_CQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 85 : 183,
// PCIe AXI stream CC tuser signal width
parameter AXIS_PCIE_CC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 33 : 81,
// Width of AXI data bus in bits
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
// Width of AXI address bus in bits
parameter AXI_ADDR_WIDTH = 64,
// Width of AXI wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 256
)
(
input wire clk,
input wire rst,
/*
* AXI input (CQ)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_cq_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_cq_tkeep,
input wire s_axis_cq_tvalid,
output wire s_axis_cq_tready,
input wire s_axis_cq_tlast,
input wire [AXIS_PCIE_CQ_USER_WIDTH-1:0] s_axis_cq_tuser,
/*
* AXI output (CC)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep,
output wire m_axis_cc_tvalid,
input wire m_axis_cc_tready,
output wire m_axis_cc_tlast,
output wire [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser,
/*
* AXI master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire m_axi_rvalid,
output wire m_axi_rready,
/*
* Configuration
*/
input wire [15:0] completer_id,
input wire completer_id_enable,
input wire [2:0] max_payload_size,
/*
* Status
*/
output wire status_error_cor,
output wire status_error_uncor
);
parameter PCIE_ADDR_WIDTH = 64;
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
parameter OFFSET_WIDTH = $clog2(AXI_DATA_WIDTH/32);
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
if (AXIS_PCIE_CQ_USER_WIDTH != 183) begin
$error("Error: PCIe CQ tuser width must be 183 (instance %m)");
$finish;
end
if (AXIS_PCIE_CC_USER_WIDTH != 81) begin
$error("Error: PCIe CC tuser width must be 81 (instance %m)");
$finish;
end
end else begin
if (AXIS_PCIE_CQ_USER_WIDTH != 85 && AXIS_PCIE_CQ_USER_WIDTH != 88) begin
$error("Error: PCIe CQ tuser width must be 85 or 88 (instance %m)");
$finish;
end
if (AXIS_PCIE_CC_USER_WIDTH != 33) begin
$error("Error: PCIe CC tuser width must be 33 (instance %m)");
$finish;
end
end
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [2:0]
AXI_STATE_IDLE = 3'd0,
AXI_STATE_HEADER = 3'd1,
AXI_STATE_START = 3'd2,
AXI_STATE_REQ = 3'd3,
AXI_STATE_WAIT_END = 3'd4;
reg [2:0] axi_state_reg = AXI_STATE_IDLE, axi_state_next;
localparam [2:0]
TLP_STATE_IDLE = 3'd0,
TLP_STATE_HEADER_1 = 3'd1,
TLP_STATE_HEADER_2 = 3'd2,
TLP_STATE_TRANSFER = 3'd3,
TLP_STATE_CPL_1 = 3'd4,
TLP_STATE_CPL_2 = 3'd5;
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg transfer_in_save;
reg tlp_cmd_ready;
reg [1:0] first_be_offset;
reg [1:0] last_be_offset;
reg [2:0] single_dword_len;
reg [PCIE_ADDR_WIDTH-1:0] pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, pcie_addr_next;
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
reg [12:0] op_count_reg = 13'd0, op_count_next;
reg [10:0] op_dword_count_reg = 11'd0, op_dword_count_next;
reg [10:0] tr_dword_count_reg = 11'd0, tr_dword_count_next;
reg [10:0] tlp_dword_count_reg = 11'd0, tlp_dword_count_next;
reg [3:0] first_be_reg = 4'd0, first_be_next;
reg [3:0] last_be_reg = 4'd0, last_be_next;
reg [1:0] at_reg = 2'd0, at_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_addr_next;
reg [12:0] tlp_len_reg = 13'd0, tlp_len_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [10:0] dword_count_reg = 11'd0, dword_count_next;
reg [9:0] input_cycle_count_reg = 10'd0, input_cycle_count_next;
reg [9:0] output_cycle_count_reg = 10'd0, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg last_tlp_reg = 1'b0, last_tlp_next;
reg [2:0] status_reg = 3'd0, status_next;
reg [15:0] requester_id_reg = 16'd0, requester_id_next;
reg [7:0] tag_reg = 8'd0, tag_next;
reg [2:0] tc_reg = 3'd0, tc_next;
reg [2:0] attr_reg = 3'd0, attr_next;
reg [1:0] tlp_cmd_at_reg = 2'd0, tlp_cmd_at_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_cmd_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_cmd_addr_next;
reg [12:0] tlp_cmd_byte_len_reg = 13'd0, tlp_cmd_byte_len_next;
reg [10:0] tlp_cmd_dword_len_reg = 11'd0, tlp_cmd_dword_len_next;
reg [9:0] tlp_cmd_input_cycle_len_reg = 10'd0, tlp_cmd_input_cycle_len_next;
reg [9:0] tlp_cmd_output_cycle_len_reg = 10'd0, tlp_cmd_output_cycle_len_next;
reg [OFFSET_WIDTH-1:0] tlp_cmd_offset_reg = {OFFSET_WIDTH{1'b0}}, tlp_cmd_offset_next;
reg [2:0] tlp_cmd_status_reg = 3'd0, tlp_cmd_status_next;
reg [15:0] tlp_cmd_requester_id_reg = 16'd0, tlp_cmd_requester_id_next;
reg [7:0] tlp_cmd_tag_reg = 8'd0, tlp_cmd_tag_next;
reg [2:0] tlp_cmd_tc_reg = 3'd0, tlp_cmd_tc_next;
reg [2:0] tlp_cmd_attr_reg = 3'd0, tlp_cmd_attr_next;
reg tlp_cmd_bubble_cycle_reg = 1'b0, tlp_cmd_bubble_cycle_next;
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
reg [10:0] max_payload_size_dw_reg = 11'd0;
reg s_axis_cq_tready_reg = 1'b0, s_axis_cq_tready_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_araddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
reg [AXI_DATA_WIDTH-1:0] save_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axi_rdata = {m_axi_rdata, save_axi_rdata_reg} >> ((AXI_STRB_WIDTH/4-offset_reg)*32);
reg status_error_cor_reg = 1'b0, status_error_cor_next;
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep_int;
reg m_axis_cc_tvalid_int;
reg m_axis_cc_tready_int_reg = 1'b0;
reg m_axis_cc_tlast_int;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser_int;
wire m_axis_cc_tready_int_early;
assign s_axis_cq_tready = s_axis_cq_tready_reg;
assign m_axi_arid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = AXI_BURST_SIZE;
assign m_axi_arburst = 2'b01;
assign m_axi_arlock = 1'b0;
assign m_axi_arcache = 4'b0011;
assign m_axi_arprot = 3'b010;
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
assign status_error_cor = status_error_cor_reg;
assign status_error_uncor = status_error_uncor_reg;
always @* begin
casez (first_be_next)
4'b0000: single_dword_len = 3'd0;
4'b0001: single_dword_len = 3'd1;
4'b0010: single_dword_len = 3'd1;
4'b0100: single_dword_len = 3'd1;
4'b1000: single_dword_len = 3'd1;
4'b0011: single_dword_len = 3'd2;
4'b0110: single_dword_len = 3'd2;
4'b1100: single_dword_len = 3'd2;
4'b01z1: single_dword_len = 3'd3;
4'b1z10: single_dword_len = 3'd3;
4'b1zz1: single_dword_len = 3'd4;
endcase
casez (first_be_next)
4'b0000: first_be_offset = 2'b00;
4'bzzz1: first_be_offset = 2'b00;
4'bzz10: first_be_offset = 2'b01;
4'bz100: first_be_offset = 2'b10;
4'b1000: first_be_offset = 2'b11;
endcase
casez (last_be_next)
4'b0000: last_be_offset = 2'b00;
4'b1zzz: last_be_offset = 2'b00;
4'b01zz: last_be_offset = 2'b01;
4'b001z: last_be_offset = 2'b10;
4'b0001: last_be_offset = 2'b11;
endcase
end
always @* begin
axi_state_next = AXI_STATE_IDLE;
s_axis_cq_tready_next = 1'b0;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
pcie_addr_next = pcie_addr_reg;
axi_addr_next = axi_addr_reg;
op_count_next = op_count_reg;
op_dword_count_next = op_dword_count_reg;
tr_dword_count_next = tr_dword_count_reg;
tlp_dword_count_next = tlp_dword_count_reg;
first_be_next = first_be_reg;
last_be_next = last_be_reg;
tlp_cmd_at_next = tlp_cmd_at_reg;
tlp_cmd_addr_next = tlp_cmd_addr_reg;
tlp_cmd_byte_len_next = tlp_cmd_byte_len_reg;
tlp_cmd_dword_len_next = tlp_cmd_dword_len_reg;
tlp_cmd_input_cycle_len_next = tlp_cmd_input_cycle_len_reg;
tlp_cmd_output_cycle_len_next = tlp_cmd_output_cycle_len_reg;
tlp_cmd_offset_next = tlp_cmd_offset_reg;
tlp_cmd_status_next = tlp_cmd_status_reg;
tlp_cmd_requester_id_next = tlp_cmd_requester_id_reg;
tlp_cmd_tag_next = tlp_cmd_tag_reg;
tlp_cmd_attr_next = tlp_cmd_attr_reg;
tlp_cmd_tc_next = tlp_cmd_tc_reg;
tlp_cmd_bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
tlp_cmd_last_next = tlp_cmd_last_reg;
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
status_error_cor_next = 1'b0;
status_error_uncor_next = 1'b0;
// TLP segmentation and AXI read request generation
case (axi_state_reg)
AXI_STATE_IDLE: begin
// idle state, wait for completion request
s_axis_cq_tready_next = !tlp_cmd_valid_reg;
if (s_axis_cq_tready & s_axis_cq_tvalid) begin
// header fields
tlp_cmd_at_next = s_axis_cq_tdata[1:0];
pcie_addr_next = {s_axis_cq_tdata[63:2], first_be_offset};
tlp_cmd_status_next = CPL_STATUS_SC; // successful completion
if (AXIS_PCIE_DATA_WIDTH > 64) begin
op_dword_count_next = s_axis_cq_tdata[74:64];
if (op_dword_count_next == 1) begin
op_count_next = single_dword_len;
end else begin
op_count_next = (op_dword_count_next << 2) - first_be_offset - last_be_offset;
end
tlp_cmd_requester_id_next = s_axis_cq_tdata[95:80];
tlp_cmd_tag_next = s_axis_cq_tdata[103:96];
tlp_cmd_tc_next = s_axis_cq_tdata[123:121];
tlp_cmd_attr_next = s_axis_cq_tdata[126:124];
end
// tuser fields
if (AXIS_PCIE_DATA_WIDTH == 512) begin
first_be_next = s_axis_cq_tuser[3:0];
last_be_next = s_axis_cq_tuser[11:8];
end else begin
first_be_next = s_axis_cq_tuser[3:0];
last_be_next = s_axis_cq_tuser[7:4];
end
if (AXIS_PCIE_DATA_WIDTH == 64) begin
// 64 bit interface hasn't processed the whole header yet
s_axis_cq_tready_next = 1'b1;
if (s_axis_cq_tlast) begin
// truncated packet
// report uncorrectable error
status_error_uncor_next = 1'b1;
axi_state_next = AXI_STATE_IDLE;
end else begin
axi_state_next = AXI_STATE_HEADER;
end
end else begin
// processed whole header; check request type
if (s_axis_cq_tdata[78:75] == REQ_MEM_READ) begin
// read request
s_axis_cq_tready_next = 1'b0;
axi_state_next = AXI_STATE_START;
end else if (s_axis_cq_tdata[78:75] == REQ_MEM_WRITE || (s_axis_cq_tdata[78:75] & 4'b1100) == 4'b1100) begin
// posted request (memory write or message), drop and report uncorrectable error
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
axi_state_next = AXI_STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
axi_state_next = AXI_STATE_WAIT_END;
end
end else begin
// invalid request, send UR completion
tlp_cmd_status_next = CPL_STATUS_UR; // unsupported request
tlp_cmd_valid_next = 1'b1;
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
axi_state_next = AXI_STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
axi_state_next = AXI_STATE_WAIT_END;
end
end
end
end else begin
axi_state_next = AXI_STATE_IDLE;
end
end
AXI_STATE_HEADER: begin
// header state, store rest of header (64 bit interface only)
s_axis_cq_tready_next = 1'b1;
if (s_axis_cq_tready & s_axis_cq_tvalid) begin
// header fields
op_dword_count_next = s_axis_cq_tdata[10:0];
if (op_dword_count_next == 1) begin
op_count_next = single_dword_len;
end else begin
op_count_next = (op_dword_count_next << 2) - first_be_offset - last_be_offset;
end
tlp_cmd_requester_id_next = s_axis_cq_tdata[31:16];
tlp_cmd_tag_next = s_axis_cq_tdata[39:32];
tlp_cmd_tc_next = s_axis_cq_tdata[59:57];
tlp_cmd_attr_next = s_axis_cq_tdata[62:60];
// processed whole header; check request type
if (s_axis_cq_tdata[14:11] == REQ_MEM_READ) begin
// read request
s_axis_cq_tready_next = 1'b0;
axi_state_next = AXI_STATE_START;
end else if (s_axis_cq_tdata[14:11] == REQ_MEM_WRITE || (s_axis_cq_tdata[14:11] & 4'b1100) == 4'b1100) begin
// posted request (memory write or message), drop and report uncorrectable error
// write request - drop
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
axi_state_next = AXI_STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
axi_state_next = AXI_STATE_WAIT_END;
end
end else begin
// invalid request, send UR completion
tlp_cmd_status_next = CPL_STATUS_UR; // unsupported request
tlp_cmd_valid_next = 1'b1;
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
axi_state_next = AXI_STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
axi_state_next = AXI_STATE_WAIT_END;
end
end
end else begin
axi_state_next = AXI_STATE_HEADER;
end
end
AXI_STATE_START: begin
// start state, compute TLP length
if (!tlp_cmd_valid_reg) begin
if (op_dword_count_reg <= max_payload_size_dw_reg) begin
// packet smaller than max payload size
// assumed to not cross 4k boundary, send one TLP
tlp_dword_count_next = op_dword_count_reg;
end else begin
// packet larger than max payload size
// assumed to not cross 4k boundary, send one TLP, align to 128 byte RCB
tlp_dword_count_next = max_payload_size_dw_reg - pcie_addr_reg[6:2];
end
// read completion TLP will transfer DWORD count minus offset into first DWORD
op_count_next = op_count_reg - (tlp_dword_count_next << 2) + pcie_addr_reg[1:0];
op_dword_count_next = op_dword_count_reg - tlp_dword_count_next;
// number of bus transfers from AXI, DWORD count plus DWORD offset, divided by bus width in DWORDS
tlp_cmd_input_cycle_len_next = (tlp_dword_count_next + pcie_addr_reg[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
// number of bus transfers in TLP, DOWRD count plus payload start DWORD offset, divided by bus width in DWORDS
if (AXIS_PCIE_DATA_WIDTH == 64) begin
tlp_cmd_output_cycle_len_next = (tlp_dword_count_next + 1 - 1) >> (AXI_BURST_SIZE-2);
end else begin
tlp_cmd_output_cycle_len_next = (tlp_dword_count_next + 3 - 1) >> (AXI_BURST_SIZE-2);
end
tlp_cmd_addr_next = pcie_addr_reg;
tlp_cmd_byte_len_next = op_count_reg;
tlp_cmd_dword_len_next = tlp_dword_count_next;
// required DWORD shift to place first DWORD read from AXI into proper position in payload
// bubble cycle required if first AXI transfer does not fill first payload transfer
if (AXIS_PCIE_DATA_WIDTH == 64) begin
tlp_cmd_offset_next = 1-pcie_addr_reg[OFFSET_WIDTH+2-1:2];
tlp_cmd_bubble_cycle_next = 1'b0;
end else begin
tlp_cmd_offset_next = 3-pcie_addr_reg[OFFSET_WIDTH+2-1:2];
tlp_cmd_bubble_cycle_next = pcie_addr_reg[OFFSET_WIDTH+2-1:2] > 3;
end
tlp_cmd_last_next = op_dword_count_next == 0;
tlp_cmd_valid_next = 1'b1;
axi_state_next = AXI_STATE_REQ;
end else begin
axi_state_next = AXI_STATE_START;
end
end
AXI_STATE_REQ: begin
// request state, generate AXI read requests
if (!m_axi_arvalid) begin
if (tlp_dword_count_reg <= AXI_MAX_BURST_SIZE/4) begin
// packet smaller than max burst size
// assumed to not cross 4k boundary, send one request
tr_dword_count_next = tlp_dword_count_reg;
end else begin
// packet larger than max burst size
// assumed to not cross 4k boundary, send one request
tr_dword_count_next = AXI_MAX_BURST_SIZE/4 - pcie_addr_reg[OFFSET_WIDTH+2-1:2];
end
m_axi_araddr_next = pcie_addr_reg;
m_axi_arlen_next = (tr_dword_count_next + pcie_addr_reg[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
m_axi_arvalid_next = 1;
// increment address by transfer size
pcie_addr_next = pcie_addr_reg + (tr_dword_count_next << 2);
// first transfer will end on DWORD boundary, so subsequent transfers will be DWORD aligned
pcie_addr_next[1:0] = 2'b0;
// keep track of how much more needs to be read to fill the TLP
tlp_dword_count_next = tlp_dword_count_reg - tr_dword_count_next;
if (tlp_dword_count_next > 0) begin
axi_state_next = AXI_STATE_REQ;
end else if (op_dword_count_next > 0) begin
axi_state_next = AXI_STATE_START;
end else begin
axi_state_next = AXI_STATE_IDLE;
end
end else begin
axi_state_next = AXI_STATE_REQ;
end
end
AXI_STATE_WAIT_END: begin
// wait end state, wait for end of TLP
s_axis_cq_tready_next = 1'b1;
if (s_axis_cq_tready & s_axis_cq_tvalid) begin
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = !tlp_cmd_valid_reg;
axi_state_next = AXI_STATE_IDLE;
end else begin
axi_state_next = AXI_STATE_WAIT_END;
end
end else begin
axi_state_next = AXI_STATE_WAIT_END;
end
end
endcase
end
always @* begin
tlp_state_next = TLP_STATE_IDLE;
transfer_in_save = 1'b0;
tlp_cmd_ready = 1'b0;
m_axi_rready_next = 1'b0;
at_next = at_reg;
tlp_addr_next = tlp_addr_reg;
tlp_len_next = tlp_len_reg;
dword_count_next = dword_count_reg;
offset_next = offset_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
bubble_cycle_next = bubble_cycle_reg;
last_cycle_next = last_cycle_reg;
last_tlp_next = last_tlp_reg;
status_next = status_reg;
requester_id_next = requester_id_reg;
tag_next = tag_reg;
tc_next = tc_reg;
attr_next = attr_reg;
m_axis_cc_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
m_axis_cc_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
m_axis_cc_tvalid_int = 1'b0;
m_axis_cc_tlast_int = 1'b0;
m_axis_cc_tuser_int = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
m_axis_cc_tdata_int[6:0] = tlp_addr_reg; // lower address
m_axis_cc_tdata_int[9:8] = at_reg;
m_axis_cc_tdata_int[28:16] = tlp_len_reg; // byte count
m_axis_cc_tdata_int[42:32] = dword_count_reg;
m_axis_cc_tdata_int[45:43] = status_reg;
m_axis_cc_tdata_int[63:48] = requester_id_reg;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_cc_tdata_int[71:64] = tag_reg;
m_axis_cc_tdata_int[87:72] = completer_id;
m_axis_cc_tdata_int[88] = completer_id_enable;
m_axis_cc_tdata_int[91:89] = tc_reg;
m_axis_cc_tdata_int[94:92] = attr_reg;
m_axis_cc_tdata_int[95] = 1'b0; // force ECRC
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tdata_int[255:96] = shift_axi_rdata[255:96];
end else begin
m_axis_cc_tdata_int[127:96] = shift_axi_rdata[127:96];
end
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000000111;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00000111;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b0111;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[1:0] = 2'b01; // is_sop
m_axis_cc_tuser_int[3:2] = 2'd0; // is_sop0_ptr
m_axis_cc_tuser_int[5:4] = 2'd0; // is_sop1_ptr
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd3; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
m_axis_cc_tuser_int[16] = 1'b0; // discontinue
m_axis_cc_tuser_int[80:17] = 64'd0; // parity
end else begin
m_axis_cc_tuser_int[0] = 1'b0; // discontinue
m_axis_cc_tuser_int[32:1] = 32'd0; // parity
end
// AXI read response processing and TLP generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for command
m_axi_rready_next = 1'b0;
// store TLP fields and transfer parameters
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
if (status_next == CPL_STATUS_SC) begin
// SC status, output TLP header
if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axi_rready_next = 1'b0;
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early;
end
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
// status other than SC
tlp_state_next = TLP_STATE_CPL_1;
end
end else begin
tlp_state_next = TLP_STATE_IDLE;
end
end
TLP_STATE_HEADER_1: begin
// header 1 state, send TLP header
if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axi_rready_next = 1'b0;
if (m_axis_cc_tready_int_reg) begin
// output first part of header
m_axis_cc_tvalid_int = 1'b1;
m_axi_rready_next = m_axis_cc_tready_int_early;
tlp_state_next = TLP_STATE_HEADER_2;
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_reg;
if (m_axis_cc_tready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = m_axi_rready && m_axi_rvalid;
if (AXIS_PCIE_DATA_WIDTH >= 256 && bubble_cycle_reg) begin
// bubble cycle; store input data and update input cycle count
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
// some data is transferred with header
dword_count_next = dword_count_reg - (AXIS_PCIE_KEEP_WIDTH-3);
// update cycle counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
// transfer data
m_axis_cc_tdata_int[AXIS_PCIE_DATA_WIDTH-1:96] = shift_axi_rdata[AXIS_PCIE_DATA_WIDTH-1:96];
// generate tvalid and tkeep signals for header and data
m_axis_cc_tvalid_int = 1'b1;
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH-3) begin
m_axis_cc_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
end else begin
m_axis_cc_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH-3 - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_cc_tlast_int = 1'b1;
// skip idle state if possible
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = m_axis_cc_tready_int_early;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end
end
TLP_STATE_HEADER_2: begin
// header 2 state, send rest of TLP header (64 bit interface only)
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_reg;
m_axis_cc_tdata_int[7:0] = tag_reg;
m_axis_cc_tdata_int[23:8] = completer_id;
m_axis_cc_tdata_int[24] = completer_id_enable;
m_axis_cc_tdata_int[27:25] = tc_reg;
m_axis_cc_tdata_int[30:28] = attr_reg;
m_axis_cc_tdata_int[31] = 1'b0; // force ECRC
m_axis_cc_tdata_int[63:32] = shift_axi_rdata[63:32];
if (m_axis_cc_tready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = m_axi_rready && m_axi_rvalid;
// some data is transferred with header
dword_count_next = dword_count_reg - 1;
// update cycle counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
// generate tvalid and tkeep signals for header and data
m_axis_cc_tvalid_int = 1'b1;
if (dword_count_reg >= 1) begin
m_axis_cc_tkeep_int = 2'b11;
end else begin
m_axis_cc_tkeep_int = 2'b11 >> (1 - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_cc_tlast_int = 1'b1;
// skip idle state if possible
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end else begin
tlp_state_next = TLP_STATE_HEADER_2;
end
end
TLP_STATE_TRANSFER: begin
// transfer state, transfer data
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_reg;
if (m_axis_cc_tready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = 1'b1;
if (bubble_cycle_reg) begin
// bubble cycle; store input data and update input cycle count
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
// update DWORD count
dword_count_next = dword_count_reg - AXI_STRB_WIDTH/4;
// update cycle counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
// output data and generate tvalid and tkeep signals
m_axis_cc_tdata_int = shift_axi_rdata;
m_axis_cc_tvalid_int = 1'b1;
if (dword_count_reg >= AXI_STRB_WIDTH/4) begin
m_axis_cc_tkeep_int = {AXI_STRB_WIDTH{1'b1}};
end else begin
m_axis_cc_tkeep_int = {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_cc_tlast_int = 1'b1;
// skip idle state if possible
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axi_rready_next = 1'b0;
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early;
end
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = m_axis_cc_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_CPL_1: begin
// send completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[28:16] = 13'd0; // byte count
m_axis_cc_tdata_int[42:32] = 11'd0; // DWORD count
m_axis_cc_tdata_int[45:43] = status_reg;
// generate tvalid and tkeep signals for completion
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b0111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
m_axis_cc_tlast_int = 1'b0;
end
if (m_axis_cc_tready_int_reg) begin
if (AXIS_PCIE_DATA_WIDTH == 64) begin
tlp_state_next = TLP_STATE_CPL_2;
end else begin
// skip idle state if possible
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = m_axis_cc_tready_int_early;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end
end else begin
tlp_state_next = TLP_STATE_CPL_1;
end
end
TLP_STATE_CPL_2: begin
// send rest of completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[7:0] = tag_reg;
m_axis_cc_tdata_int[23:8] = completer_id;
m_axis_cc_tdata_int[24] = completer_id_enable;
m_axis_cc_tdata_int[27:25] = tc_reg;
m_axis_cc_tdata_int[30:28] = attr_reg;
m_axis_cc_tdata_int[31] = 1'b0; // force ECRC
m_axis_cc_tdata_int[63:32] = 32'd0;
m_axis_cc_tkeep_int = 2'b01;
m_axis_cc_tlast_int = 1'b1;
if (m_axis_cc_tready_int_reg) begin
// skip idle state if possible
at_next = tlp_cmd_at_reg;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_CPL_2;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
axi_state_reg <= AXI_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
tlp_cmd_valid_reg <= 1'b0;
s_axis_cq_tready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
status_error_cor_reg <= 1'b0;
status_error_uncor_reg <= 1'b0;
end else begin
axi_state_reg <= axi_state_next;
tlp_state_reg <= tlp_state_next;
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
s_axis_cq_tready_reg <= s_axis_cq_tready_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
status_error_cor_reg <= status_error_cor_next;
status_error_uncor_reg <= status_error_uncor_next;
end
pcie_addr_reg <= pcie_addr_next;
axi_addr_reg <= axi_addr_next;
op_count_reg <= op_count_next;
op_dword_count_reg <= op_dword_count_next;
tr_dword_count_reg <= tr_dword_count_next;
tlp_dword_count_reg <= tlp_dword_count_next;
first_be_reg <= first_be_next;
last_be_reg <= last_be_next;
at_reg <= at_next;
tlp_addr_reg <= tlp_addr_next;
tlp_len_reg <= tlp_len_next;
dword_count_reg <= dword_count_next;
offset_reg <= offset_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
bubble_cycle_reg <= bubble_cycle_next;
last_cycle_reg <= last_cycle_next;
last_tlp_reg <= last_tlp_next;
status_reg <= status_next;
requester_id_reg <= requester_id_next;
tag_reg <= tag_next;
tc_reg <= tc_next;
attr_reg <= attr_next;
tlp_cmd_at_reg <= tlp_cmd_at_next;
tlp_cmd_addr_reg <= tlp_cmd_addr_next;
tlp_cmd_byte_len_reg <= tlp_cmd_byte_len_next;
tlp_cmd_dword_len_reg <= tlp_cmd_dword_len_next;
tlp_cmd_input_cycle_len_reg <= tlp_cmd_input_cycle_len_next;
tlp_cmd_output_cycle_len_reg <= tlp_cmd_output_cycle_len_next;
tlp_cmd_offset_reg <= tlp_cmd_offset_next;
tlp_cmd_status_reg <= tlp_cmd_status_next;
tlp_cmd_requester_id_reg <= tlp_cmd_requester_id_next;
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
tlp_cmd_tc_reg <= tlp_cmd_tc_next;
tlp_cmd_attr_reg <= tlp_cmd_attr_next;
tlp_cmd_bubble_cycle_reg <= tlp_cmd_bubble_cycle_next;
tlp_cmd_last_reg <= tlp_cmd_last_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
max_payload_size_dw_reg <= 11'd32 << (max_payload_size > 5 ? 5 : max_payload_size);
if (transfer_in_save) begin
save_axi_rdata_reg <= m_axi_rdata;
end
end
// output datapath logic (PCIe TLP)
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_cc_tvalid_reg = 1'b0, m_axis_cc_tvalid_next;
reg m_axis_cc_tlast_reg = 1'b0;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser_reg = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_cc_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_cc_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_cc_tvalid_reg = 1'b0, temp_m_axis_cc_tvalid_next;
reg temp_m_axis_cc_tlast_reg = 1'b0;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] temp_m_axis_cc_tuser_reg = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_cc_int_to_output;
reg store_axis_cc_int_to_temp;
reg store_axis_cc_temp_to_output;
assign m_axis_cc_tdata = m_axis_cc_tdata_reg;
assign m_axis_cc_tkeep = m_axis_cc_tkeep_reg;
assign m_axis_cc_tvalid = m_axis_cc_tvalid_reg;
assign m_axis_cc_tlast = m_axis_cc_tlast_reg;
assign m_axis_cc_tuser = m_axis_cc_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_cc_tready_int_early = m_axis_cc_tready || (!temp_m_axis_cc_tvalid_reg && (!m_axis_cc_tvalid_reg || !m_axis_cc_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_cc_tvalid_next = m_axis_cc_tvalid_reg;
temp_m_axis_cc_tvalid_next = temp_m_axis_cc_tvalid_reg;
store_axis_cc_int_to_output = 1'b0;
store_axis_cc_int_to_temp = 1'b0;
store_axis_cc_temp_to_output = 1'b0;
if (m_axis_cc_tready_int_reg) begin
// input is ready
if (m_axis_cc_tready || !m_axis_cc_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_cc_tvalid_next = m_axis_cc_tvalid_int;
store_axis_cc_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_cc_tvalid_next = m_axis_cc_tvalid_int;
store_axis_cc_int_to_temp = 1'b1;
end
end else if (m_axis_cc_tready) begin
// input is not ready, but output is ready
m_axis_cc_tvalid_next = temp_m_axis_cc_tvalid_reg;
temp_m_axis_cc_tvalid_next = 1'b0;
store_axis_cc_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_cc_tvalid_reg <= 1'b0;
m_axis_cc_tready_int_reg <= 1'b0;
temp_m_axis_cc_tvalid_reg <= 1'b0;
end else begin
m_axis_cc_tvalid_reg <= m_axis_cc_tvalid_next;
m_axis_cc_tready_int_reg <= m_axis_cc_tready_int_early;
temp_m_axis_cc_tvalid_reg <= temp_m_axis_cc_tvalid_next;
end
// datapath
if (store_axis_cc_int_to_output) begin
m_axis_cc_tdata_reg <= m_axis_cc_tdata_int;
m_axis_cc_tkeep_reg <= m_axis_cc_tkeep_int;
m_axis_cc_tlast_reg <= m_axis_cc_tlast_int;
m_axis_cc_tuser_reg <= m_axis_cc_tuser_int;
end else if (store_axis_cc_temp_to_output) begin
m_axis_cc_tdata_reg <= temp_m_axis_cc_tdata_reg;
m_axis_cc_tkeep_reg <= temp_m_axis_cc_tkeep_reg;
m_axis_cc_tlast_reg <= temp_m_axis_cc_tlast_reg;
m_axis_cc_tuser_reg <= temp_m_axis_cc_tuser_reg;
end
if (store_axis_cc_int_to_temp) begin
temp_m_axis_cc_tdata_reg <= m_axis_cc_tdata_int;
temp_m_axis_cc_tkeep_reg <= m_axis_cc_tkeep_int;
temp_m_axis_cc_tlast_reg <= m_axis_cc_tlast_int;
temp_m_axis_cc_tuser_reg <= m_axis_cc_tuser_int;
end
end
endmodule