libevent/evmap.c

1015 lines
27 KiB
C
Raw Normal View History

/*
2012-02-10 17:29:53 -05:00
* Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "event2/event-config.h"
#include "evconfig-private.h"
#ifdef _WIN32
#include <winsock2.h>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#undef WIN32_LEAN_AND_MEAN
#endif
#include <sys/types.h>
#if !defined(_WIN32) && defined(_EVENT_HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include "event-internal.h"
#include "evmap-internal.h"
#include "mm-internal.h"
#include "changelist-internal.h"
/** An entry for an evmap_io list: notes all the events that want to read or
write on a given fd, and the number of each.
*/
struct evmap_io {
struct event_dlist events;
ev_uint16_t nread;
ev_uint16_t nwrite;
};
/* An entry for an evmap_signal list: notes all the events that want to know
when a signal triggers. */
struct evmap_signal {
struct event_dlist events;
};
/* On some platforms, fds start at 0 and increment by 1 as they are
allocated, and old numbers get used. For these platforms, we
implement io maps just like signal maps: as an array of pointers to
struct evmap_io. But on other platforms (windows), sockets are not
0-indexed, not necessarily consecutive, and not necessarily reused.
There, we use a hashtable to implement evmap_io.
*/
#ifdef EVMAP_USE_HT
struct event_map_entry {
HT_ENTRY(event_map_entry) map_node;
evutil_socket_t fd;
union { /* This is a union in case we need to make more things that can
be in the hashtable. */
struct evmap_io evmap_io;
} ent;
};
/* Helper used by the event_io_map hashtable code; tries to return a good hash
* of the fd in e->fd. */
static inline unsigned
hashsocket(struct event_map_entry *e)
{
/* On win32, in practice, the low 2-3 bits of a SOCKET seem not to
* matter. Our hashtable implementation really likes low-order bits,
* though, so let's do the rotate-and-add trick. */
unsigned h = (unsigned) e->fd;
h += (h >> 2) | (h << 30);
return h;
}
/* Helper used by the event_io_map hashtable code; returns true iff e1 and e2
* have the same e->fd. */
static inline int
eqsocket(struct event_map_entry *e1, struct event_map_entry *e2)
{
return e1->fd == e2->fd;
}
HT_PROTOTYPE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket)
HT_GENERATE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket,
0.5, mm_malloc, mm_realloc, mm_free)
#define GET_IO_SLOT(x, map, slot, type) \
do { \
struct event_map_entry _key, *_ent; \
_key.fd = slot; \
_ent = HT_FIND(event_io_map, map, &_key); \
(x) = _ent ? &_ent->ent.type : NULL; \
} while (0);
#define GET_IO_SLOT_AND_CTOR(x, map, slot, type, ctor, fdinfo_len) \
do { \
struct event_map_entry _key, *_ent; \
_key.fd = slot; \
HT_FIND_OR_INSERT_(event_io_map, map_node, hashsocket, map, \
event_map_entry, &_key, ptr, \
{ \
_ent = *ptr; \
}, \
{ \
_ent = mm_calloc(1,sizeof(struct event_map_entry)+fdinfo_len); \
if (EVUTIL_UNLIKELY(_ent == NULL)) \
return (-1); \
_ent->fd = slot; \
(ctor)(&_ent->ent.type); \
HT_FOI_INSERT_(map_node, map, &_key, _ent, ptr) \
}); \
(x) = &_ent->ent.type; \
} while (0)
void evmap_io_initmap(struct event_io_map *ctx)
{
HT_INIT(event_io_map, ctx);
}
void evmap_io_clear(struct event_io_map *ctx)
{
struct event_map_entry **ent, **next, *this;
for (ent = HT_START(event_io_map, ctx); ent; ent = next) {
this = *ent;
next = HT_NEXT_RMV(event_io_map, ctx, ent);
mm_free(this);
}
HT_CLEAR(event_io_map, ctx); /* remove all storage held by the ctx. */
}
#endif
/* Set the variable 'x' to the field in event_map 'map' with fields of type
'struct type *' corresponding to the fd or signal 'slot'. Set 'x' to NULL
if there are no entries for 'slot'. Does no bounds-checking. */
#define GET_SIGNAL_SLOT(x, map, slot, type) \
(x) = (struct type *)((map)->entries[slot])
/* As GET_SLOT, but construct the entry for 'slot' if it is not present,
by allocating enough memory for a 'struct type', and initializing the new
value by calling the function 'ctor' on it. Makes the function
return -1 on allocation failure.
*/
#define GET_SIGNAL_SLOT_AND_CTOR(x, map, slot, type, ctor, fdinfo_len) \
do { \
if ((map)->entries[slot] == NULL) { \
(map)->entries[slot] = \
mm_calloc(1,sizeof(struct type)+fdinfo_len); \
if (EVUTIL_UNLIKELY((map)->entries[slot] == NULL)) \
return (-1); \
(ctor)((struct type *)(map)->entries[slot]); \
} \
(x) = (struct type *)((map)->entries[slot]); \
} while (0)
/* If we aren't using hashtables, then define the IO_SLOT macros and functions
as thin aliases over the SIGNAL_SLOT versions. */
#ifndef EVMAP_USE_HT
#define GET_IO_SLOT(x,map,slot,type) GET_SIGNAL_SLOT(x,map,slot,type)
#define GET_IO_SLOT_AND_CTOR(x,map,slot,type,ctor,fdinfo_len) \
GET_SIGNAL_SLOT_AND_CTOR(x,map,slot,type,ctor,fdinfo_len)
#define FDINFO_OFFSET sizeof(struct evmap_io)
void
evmap_io_initmap(struct event_io_map* ctx)
{
evmap_signal_initmap(ctx);
}
void
evmap_io_clear(struct event_io_map* ctx)
{
evmap_signal_clear(ctx);
}
#endif
/** Expand 'map' with new entries of width 'msize' until it is big enough
to store a value in 'slot'.
*/
2008-12-23 22:31:27 +00:00
static int
evmap_make_space(struct event_signal_map *map, int slot, int msize)
{
if (map->nentries <= slot) {
int nentries = map->nentries ? map->nentries : 32;
void **tmp;
while (nentries <= slot)
nentries <<= 1;
tmp = (void **)mm_realloc(map->entries, nentries * msize);
if (tmp == NULL)
2008-12-23 22:31:27 +00:00
return (-1);
memset(&tmp[map->nentries], 0,
(nentries - map->nentries) * msize);
map->nentries = nentries;
map->entries = tmp;
}
2008-12-23 22:31:27 +00:00
return (0);
}
void
evmap_signal_initmap(struct event_signal_map *ctx)
{
ctx->nentries = 0;
ctx->entries = NULL;
}
void
evmap_signal_clear(struct event_signal_map *ctx)
{
if (ctx->entries != NULL) {
int i;
for (i = 0; i < ctx->nentries; ++i) {
if (ctx->entries[i] != NULL)
mm_free(ctx->entries[i]);
}
mm_free(ctx->entries);
ctx->entries = NULL;
}
ctx->nentries = 0;
}
/* code specific to file descriptors */
/** Constructor for struct evmap_io */
static void
evmap_io_init(struct evmap_io *entry)
{
LIST_INIT(&entry->events);
entry->nread = 0;
entry->nwrite = 0;
}
/* return -1 on error, 0 on success if nothing changed in the event backend,
* and 1 on success if something did. */
int
evmap_io_add(struct event_base *base, evutil_socket_t fd, struct event *ev)
{
const struct eventop *evsel = base->evsel;
struct event_io_map *io = &base->io;
struct evmap_io *ctx = NULL;
int nread, nwrite, retval = 0;
short res = 0, old = 0;
struct event *old_ev;
EVUTIL_ASSERT(fd == ev->ev_fd);
if (fd < 0)
return 0;
#ifndef EVMAP_USE_HT
if (fd >= io->nentries) {
if (evmap_make_space(io, fd, sizeof(struct evmap_io *)) == -1)
return (-1);
}
#endif
GET_IO_SLOT_AND_CTOR(ctx, io, fd, evmap_io, evmap_io_init,
evsel->fdinfo_len);
nread = ctx->nread;
nwrite = ctx->nwrite;
if (nread)
old |= EV_READ;
if (nwrite)
old |= EV_WRITE;
if (ev->ev_events & EV_READ) {
if (++nread == 1)
res |= EV_READ;
}
if (ev->ev_events & EV_WRITE) {
if (++nwrite == 1)
res |= EV_WRITE;
}
if (EVUTIL_UNLIKELY(nread > 0xffff || nwrite > 0xffff)) {
event_warnx("Too many events reading or writing on fd %d",
(int)fd);
return -1;
}
if (EVENT_DEBUG_MODE_IS_ON() &&
(old_ev = LIST_FIRST(&ctx->events)) &&
(old_ev->ev_events&EV_ET) != (ev->ev_events&EV_ET)) {
event_warnx("Tried to mix edge-triggered and non-edge-triggered"
" events on fd %d", (int)fd);
return -1;
}
if (res) {
void *extra = ((char*)ctx) + sizeof(struct evmap_io);
/* XXX(niels): we cannot mix edge-triggered and
* level-triggered, we should probably assert on
* this. */
if (evsel->add(base, ev->ev_fd,
old, (ev->ev_events & EV_ET) | res, extra) == -1)
return (-1);
retval = 1;
}
ctx->nread = (ev_uint16_t) nread;
ctx->nwrite = (ev_uint16_t) nwrite;
LIST_INSERT_HEAD(&ctx->events, ev, ev_io_next);
return (retval);
}
/* return -1 on error, 0 on success if nothing changed in the event backend,
* and 1 on success if something did. */
int
evmap_io_del(struct event_base *base, evutil_socket_t fd, struct event *ev)
{
const struct eventop *evsel = base->evsel;
struct event_io_map *io = &base->io;
struct evmap_io *ctx;
int nread, nwrite, retval = 0;
short res = 0, old = 0;
if (fd < 0)
return 0;
EVUTIL_ASSERT(fd == ev->ev_fd);
#ifndef EVMAP_USE_HT
if (fd >= io->nentries)
return (-1);
#endif
GET_IO_SLOT(ctx, io, fd, evmap_io);
nread = ctx->nread;
nwrite = ctx->nwrite;
if (nread)
old |= EV_READ;
if (nwrite)
old |= EV_WRITE;
if (ev->ev_events & EV_READ) {
if (--nread == 0)
res |= EV_READ;
EVUTIL_ASSERT(nread >= 0);
}
if (ev->ev_events & EV_WRITE) {
if (--nwrite == 0)
res |= EV_WRITE;
EVUTIL_ASSERT(nwrite >= 0);
}
if (res) {
void *extra = ((char*)ctx) + sizeof(struct evmap_io);
if (evsel->del(base, ev->ev_fd, old, res, extra) == -1)
return (-1);
retval = 1;
}
ctx->nread = nread;
ctx->nwrite = nwrite;
LIST_REMOVE(ev, ev_io_next);
return (retval);
}
void
evmap_io_active(struct event_base *base, evutil_socket_t fd, short events)
{
struct event_io_map *io = &base->io;
struct evmap_io *ctx;
struct event *ev;
#ifndef EVMAP_USE_HT
EVUTIL_ASSERT(fd < io->nentries);
#endif
GET_IO_SLOT(ctx, io, fd, evmap_io);
EVUTIL_ASSERT(ctx);
LIST_FOREACH(ev, &ctx->events, ev_io_next) {
if (ev->ev_events & events)
event_active_nolock(ev, ev->ev_events & events, 1);
}
}
/* code specific to signals */
static void
evmap_signal_init(struct evmap_signal *entry)
{
LIST_INIT(&entry->events);
}
int
evmap_signal_add(struct event_base *base, int sig, struct event *ev)
{
const struct eventop *evsel = base->evsigsel;
struct event_signal_map *map = &base->sigmap;
struct evmap_signal *ctx = NULL;
if (sig >= map->nentries) {
2008-12-23 22:31:27 +00:00
if (evmap_make_space(
map, sig, sizeof(struct evmap_signal *)) == -1)
return (-1);
}
GET_SIGNAL_SLOT_AND_CTOR(ctx, map, sig, evmap_signal, evmap_signal_init,
base->evsigsel->fdinfo_len);
if (LIST_EMPTY(&ctx->events)) {
if (evsel->add(base, ev->ev_fd, 0, EV_SIGNAL, NULL)
== -1)
return (-1);
}
LIST_INSERT_HEAD(&ctx->events, ev, ev_signal_next);
return (1);
}
int
evmap_signal_del(struct event_base *base, int sig, struct event *ev)
{
const struct eventop *evsel = base->evsigsel;
struct event_signal_map *map = &base->sigmap;
struct evmap_signal *ctx;
if (sig >= map->nentries)
return (-1);
GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal);
LIST_REMOVE(ev, ev_signal_next);
if (LIST_FIRST(&ctx->events) == NULL) {
if (evsel->del(base, ev->ev_fd, 0, EV_SIGNAL, NULL) == -1)
return (-1);
}
return (1);
}
void
evmap_signal_active(struct event_base *base, evutil_socket_t sig, int ncalls)
{
struct event_signal_map *map = &base->sigmap;
struct evmap_signal *ctx;
struct event *ev;
EVUTIL_ASSERT(sig < map->nentries);
GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal);
LIST_FOREACH(ev, &ctx->events, ev_signal_next)
event_active_nolock(ev, EV_SIGNAL, ncalls);
}
void *
evmap_io_get_fdinfo(struct event_io_map *map, evutil_socket_t fd)
{
struct evmap_io *ctx;
GET_IO_SLOT(ctx, map, fd, evmap_io);
if (ctx)
return ((char*)ctx) + sizeof(struct evmap_io);
else
return NULL;
}
/* Callback type for evmap_io_foreach_fd */
typedef int (*evmap_io_foreach_fd_cb)(
struct event_base *, evutil_socket_t, struct evmap_io *, void *);
/* Multipurpose helper function: Iterate over every file descriptor event_base
* for which we could have EV_READ or EV_WRITE events. For each such fd, call
* fn(base, signum, evmap_io, arg), where fn is the user-provided
* function, base is the event_base, signum is the signal number, evmap_io
* is an evmap_io structure containing a list of events pending on the
* file descriptor, and arg is the user-supplied argument.
*
* If fn returns 0, continue on to the next signal. Otherwise, return the same
* value that fn returned.
*
* Note that there is no guarantee that the file descriptors will be processed
* in any particular order.
*/
static int
evmap_io_foreach_fd(struct event_base *base,
evmap_io_foreach_fd_cb fn,
void *arg)
{
evutil_socket_t fd;
struct event_io_map *iomap = &base->io;
int r = 0;
#ifdef EVMAP_USE_HT
struct event_map_entry **mapent;
HT_FOREACH(mapent, event_io_map, iomap) {
struct evmap_io *ctx = &(*mapent)->ent.evmap_io;
fd = (*mapent)->fd;
#else
for (fd = 0; fd < iomap->nentries; ++fd) {
struct evmap_io *ctx = iomap->entries[fd];
if (!ctx)
continue;
#endif
if ((r = fn(base, fd, ctx, arg)))
break;
}
return r;
}
/* Callback type for evmap_signal_foreach_signal */
typedef int (*evmap_signal_foreach_signal_cb)(
struct event_base *, int, struct evmap_signal *, void *);
/* Multipurpose helper function: Iterate over every signal number in the
* event_base for which we could have signal events. For each such signal,
* call fn(base, signum, evmap_signal, arg), where fn is the user-provided
* function, base is the event_base, signum is the signal number, evmap_signal
* is an evmap_signal structure containing a list of events pending on the
* signal, and arg is the user-supplied argument.
*
* If fn returns 0, continue on to the next signal. Otherwise, return the same
* value that fn returned.
*/
static int
evmap_signal_foreach_signal(struct event_base *base,
evmap_signal_foreach_signal_cb fn,
void *arg)
{
struct event_signal_map *sigmap = &base->sigmap;
int r = 0;
int signum;
for (signum = 0; signum < sigmap->nentries; ++signum) {
struct evmap_signal *ctx = sigmap->entries[signum];
if (!ctx)
continue;
if ((r = fn(base, signum, ctx, arg)))
break;
}
return r;
}
/* Helper for evmap_reinit: tell the backend to add every fd for which we have
* pending events, with the appropriate combination of EV_READ, EV_WRITE, and
* EV_ET. */
static int
evmap_io_reinit_iter_fn(struct event_base *base, evutil_socket_t fd,
struct evmap_io *ctx, void *arg)
{
const struct eventop *evsel = base->evsel;
void *extra;
int *result = arg;
short events = 0;
struct event *ev;
EVUTIL_ASSERT(ctx);
extra = ((char*)ctx) + sizeof(struct evmap_io);
if (ctx->nread)
events |= EV_READ;
if (ctx->nread)
events |= EV_WRITE;
if (evsel->fdinfo_len)
memset(extra, 0, evsel->fdinfo_len);
if (events &&
(ev = LIST_FIRST(&ctx->events)) &&
(ev->ev_events & EV_ET))
events |= EV_ET;
if (evsel->add(base, fd, 0, events, extra) == -1)
*result = -1;
return 0;
}
/* Helper for evmap_reinit: tell the backend to add every signal for which we
* have pending events. */
static int
evmap_signal_reinit_iter_fn(struct event_base *base,
int signum, struct evmap_signal *ctx, void *arg)
{
const struct eventop *evsel = base->evsigsel;
int *result = arg;
if (!LIST_EMPTY(&ctx->events)) {
if (evsel->add(base, signum, 0, EV_SIGNAL, NULL) == -1)
*result = -1;
}
return 0;
}
int
evmap_reinit(struct event_base *base)
{
int result = 0;
evmap_io_foreach_fd(base, evmap_io_reinit_iter_fn, &result);
if (result < 0)
return -1;
evmap_signal_foreach_signal(base, evmap_signal_reinit_iter_fn, &result);
if (result < 0)
return -1;
return 0;
}
/* Helper for evmap_delete_all: delete every event in an event_dlist. */
static int
delete_all_in_dlist(struct event_dlist *dlist)
{
struct event *ev;
while ((ev = LIST_FIRST(dlist)))
event_del(ev);
return 0;
}
/* Helper for evmap_delete_all: delete every event pending on an fd. */
static int
evmap_io_delete_all_iter_fn(struct event_base *base, evutil_socket_t fd,
struct evmap_io *io_info, void *arg)
{
return delete_all_in_dlist(&io_info->events);
}
/* Helper for evmap_delete_all: delete every event pending on a signal. */
static int
evmap_signal_delete_all_iter_fn(struct event_base *base, int signum,
struct evmap_signal *sig_info, void *arg)
{
return delete_all_in_dlist(&sig_info->events);
}
void
evmap_delete_all(struct event_base *base)
{
evmap_signal_foreach_signal(base, evmap_signal_delete_all_iter_fn, NULL);
evmap_io_foreach_fd(base, evmap_io_delete_all_iter_fn, NULL);
}
/** Per-fd structure for use with changelists. It keeps track, for each fd or
* signal using the changelist, of where its entry in the changelist is.
*/
struct event_changelist_fdinfo {
int idxplus1; /* this is the index +1, so that memset(0) will make it
* a no-such-element */
};
void
event_changelist_init(struct event_changelist *changelist)
{
changelist->changes = NULL;
changelist->changes_size = 0;
changelist->n_changes = 0;
}
/** Helper: return the changelist_fdinfo corresponding to a given change. */
static inline struct event_changelist_fdinfo *
event_change_get_fdinfo(struct event_base *base,
const struct event_change *change)
{
char *ptr;
if (change->read_change & EV_CHANGE_SIGNAL) {
struct evmap_signal *ctx;
GET_SIGNAL_SLOT(ctx, &base->sigmap, change->fd, evmap_signal);
ptr = ((char*)ctx) + sizeof(struct evmap_signal);
} else {
struct evmap_io *ctx;
GET_IO_SLOT(ctx, &base->io, change->fd, evmap_io);
ptr = ((char*)ctx) + sizeof(struct evmap_io);
}
return (void*)ptr;
}
/** Callback helper for event_changelist_assert_ok */
static int
event_changelist_assert_ok_foreach_iter_fn(
struct event_base *base,
evutil_socket_t fd, struct evmap_io *io, void *arg)
{
struct event_changelist *changelist = &base->changelist;
struct event_changelist_fdinfo *f;
f = (void*)
( ((char*)io) + sizeof(struct evmap_io) );
if (f->idxplus1) {
struct event_change *c = &changelist->changes[f->idxplus1 - 1];
EVUTIL_ASSERT(c->fd == fd);
}
return 0;
}
/** Make sure that the changelist is consistent with the evmap structures. */
static void
event_changelist_assert_ok(struct event_base *base)
{
int i;
struct event_changelist *changelist = &base->changelist;
EVUTIL_ASSERT(changelist->changes_size >= changelist->n_changes);
for (i = 0; i < changelist->n_changes; ++i) {
struct event_change *c = &changelist->changes[i];
struct event_changelist_fdinfo *f;
EVUTIL_ASSERT(c->fd >= 0);
f = event_change_get_fdinfo(base, c);
EVUTIL_ASSERT(f);
EVUTIL_ASSERT(f->idxplus1 == i + 1);
}
evmap_io_foreach_fd(base,
event_changelist_assert_ok_foreach_iter_fn,
NULL);
}
#ifdef DEBUG_CHANGELIST
#define event_changelist_check(base) event_changelist_assert_ok((base))
#else
#define event_changelist_check(base) ((void)0)
#endif
void
event_changelist_remove_all(struct event_changelist *changelist,
struct event_base *base)
{
int i;
event_changelist_check(base);
for (i = 0; i < changelist->n_changes; ++i) {
struct event_change *ch = &changelist->changes[i];
struct event_changelist_fdinfo *fdinfo =
event_change_get_fdinfo(base, ch);
EVUTIL_ASSERT(fdinfo->idxplus1 == i + 1);
fdinfo->idxplus1 = 0;
}
changelist->n_changes = 0;
event_changelist_check(base);
}
void
event_changelist_freemem(struct event_changelist *changelist)
{
if (changelist->changes)
mm_free(changelist->changes);
event_changelist_init(changelist); /* zero it all out. */
}
/** Increase the size of 'changelist' to hold more changes. */
static int
event_changelist_grow(struct event_changelist *changelist)
{
int new_size;
struct event_change *new_changes;
if (changelist->changes_size < 64)
new_size = 64;
else
new_size = changelist->changes_size * 2;
new_changes = mm_realloc(changelist->changes,
new_size * sizeof(struct event_change));
if (EVUTIL_UNLIKELY(new_changes == NULL))
return (-1);
changelist->changes = new_changes;
changelist->changes_size = new_size;
return (0);
}
/** Return a pointer to the changelist entry for the file descriptor or signal
* 'fd', whose fdinfo is 'fdinfo'. If none exists, construct it, setting its
* old_events field to old_events.
*/
static struct event_change *
event_changelist_get_or_construct(struct event_changelist *changelist,
evutil_socket_t fd,
short old_events,
struct event_changelist_fdinfo *fdinfo)
{
struct event_change *change;
if (fdinfo->idxplus1 == 0) {
int idx;
EVUTIL_ASSERT(changelist->n_changes <= changelist->changes_size);
if (changelist->n_changes == changelist->changes_size) {
if (event_changelist_grow(changelist) < 0)
return NULL;
}
idx = changelist->n_changes++;
change = &changelist->changes[idx];
fdinfo->idxplus1 = idx + 1;
memset(change, 0, sizeof(struct event_change));
change->fd = fd;
change->old_events = old_events;
} else {
change = &changelist->changes[fdinfo->idxplus1 - 1];
EVUTIL_ASSERT(change->fd == fd);
}
return change;
}
int
event_changelist_add(struct event_base *base, evutil_socket_t fd, short old, short events,
void *p)
{
struct event_changelist *changelist = &base->changelist;
struct event_changelist_fdinfo *fdinfo = p;
struct event_change *change;
event_changelist_check(base);
change = event_changelist_get_or_construct(changelist, fd, old, fdinfo);
if (!change)
return -1;
/* An add replaces any previous delete, but doesn't result in a no-op,
* since the delete might fail (because the fd had been closed since
* the last add, for instance. */
if (events & (EV_READ|EV_SIGNAL)) {
change->read_change = EV_CHANGE_ADD |
(events & (EV_ET|EV_PERSIST|EV_SIGNAL));
}
if (events & EV_WRITE) {
change->write_change = EV_CHANGE_ADD |
(events & (EV_ET|EV_PERSIST|EV_SIGNAL));
}
event_changelist_check(base);
return (0);
}
int
event_changelist_del(struct event_base *base, evutil_socket_t fd, short old, short events,
void *p)
{
struct event_changelist *changelist = &base->changelist;
struct event_changelist_fdinfo *fdinfo = p;
struct event_change *change;
event_changelist_check(base);
change = event_changelist_get_or_construct(changelist, fd, old, fdinfo);
event_changelist_check(base);
if (!change)
return -1;
/* A delete on an event set that doesn't contain the event to be
deleted produces a no-op. This effectively emoves any previous
uncommitted add, rather than replacing it: on those platforms where
"add, delete, dispatch" is not the same as "no-op, dispatch", we
want the no-op behavior.
Possible fix to 100% cpu usage with epoll and openssl I'm running a fairly simple bit of test code using libevent2 with epoll and openssl bufferevents and I've run into a 100% cpu usage problem. Looking into it 100% usage was caused by epoll_wait constantly returning write events on the openssl socket when it shouldn't really have been looking for write events at all (N_ACTIVE_CALLBACKS() was returning 0 also). Looking a bit deeper eventbuffer_openssl socket seems to be requesting that the EV_WRITE event be removed when it should, but the event isn't actually being removed from epoll. Continuing to follow this I think I've found a bug in event_changelist_del. For evpoll event_del calls event_changelist_del which caches the change which is then actioned later when evpoll_dispatch is called. In event_changlist_del there is a check so that if the currently changed action is an add then the cached action is changed to a no-op rather than a delete (which makes sense). The problem arises if there are more than two add or delete operations between calls to dispatch, in this case it's possible that the delete is turned into a no-op when it shouldn't have been. For example starting with the event on, a delete followed by an add and then another delete results in a no-op when it should have been a delete (I added a fair bit of debug output that seems to confirm this behaviour). I've applied a small change that checks the original old_event stored with the change and only converts the delete to a no-op if the event isn't on in old_event. This seems to have fixed my problem.
2010-07-19 13:44:56 +12:00
If we have a no-op item, we could remove it it from the list
entirely, but really there's not much point: skipping the no-op
change when we do the dispatch later is far cheaper than rejuggling
the array now.
Possible fix to 100% cpu usage with epoll and openssl I'm running a fairly simple bit of test code using libevent2 with epoll and openssl bufferevents and I've run into a 100% cpu usage problem. Looking into it 100% usage was caused by epoll_wait constantly returning write events on the openssl socket when it shouldn't really have been looking for write events at all (N_ACTIVE_CALLBACKS() was returning 0 also). Looking a bit deeper eventbuffer_openssl socket seems to be requesting that the EV_WRITE event be removed when it should, but the event isn't actually being removed from epoll. Continuing to follow this I think I've found a bug in event_changelist_del. For evpoll event_del calls event_changelist_del which caches the change which is then actioned later when evpoll_dispatch is called. In event_changlist_del there is a check so that if the currently changed action is an add then the cached action is changed to a no-op rather than a delete (which makes sense). The problem arises if there are more than two add or delete operations between calls to dispatch, in this case it's possible that the delete is turned into a no-op when it shouldn't have been. For example starting with the event on, a delete followed by an add and then another delete results in a no-op when it should have been a delete (I added a fair bit of debug output that seems to confirm this behaviour). I've applied a small change that checks the original old_event stored with the change and only converts the delete to a no-op if the event isn't on in old_event. This seems to have fixed my problem.
2010-07-19 13:44:56 +12:00
2010-07-19 15:03:43 +02:00
As this stands, it also lets through deletions of events that are
Possible fix to 100% cpu usage with epoll and openssl I'm running a fairly simple bit of test code using libevent2 with epoll and openssl bufferevents and I've run into a 100% cpu usage problem. Looking into it 100% usage was caused by epoll_wait constantly returning write events on the openssl socket when it shouldn't really have been looking for write events at all (N_ACTIVE_CALLBACKS() was returning 0 also). Looking a bit deeper eventbuffer_openssl socket seems to be requesting that the EV_WRITE event be removed when it should, but the event isn't actually being removed from epoll. Continuing to follow this I think I've found a bug in event_changelist_del. For evpoll event_del calls event_changelist_del which caches the change which is then actioned later when evpoll_dispatch is called. In event_changlist_del there is a check so that if the currently changed action is an add then the cached action is changed to a no-op rather than a delete (which makes sense). The problem arises if there are more than two add or delete operations between calls to dispatch, in this case it's possible that the delete is turned into a no-op when it shouldn't have been. For example starting with the event on, a delete followed by an add and then another delete results in a no-op when it should have been a delete (I added a fair bit of debug output that seems to confirm this behaviour). I've applied a small change that checks the original old_event stored with the change and only converts the delete to a no-op if the event isn't on in old_event. This seems to have fixed my problem.
2010-07-19 13:44:56 +12:00
not currently set.
*/
if (events & (EV_READ|EV_SIGNAL)) {
if (!(change->old_events & (EV_READ | EV_SIGNAL)))
change->read_change = 0;
else
change->read_change = EV_CHANGE_DEL;
}
if (events & EV_WRITE) {
if (!(change->old_events & EV_WRITE))
change->write_change = 0;
else
change->write_change = EV_CHANGE_DEL;
}
event_changelist_check(base);
return (0);
}
/* Helper for evmap_check_integrity: verify that all of the events pending on
* given fd are set up correctly, and that the nread and nwrite counts on that
* fd are correct. */
static int
evmap_io_check_integrity_fn(struct event_base *base, evutil_socket_t fd,
struct evmap_io *io_info, void *arg)
{
struct event *ev;
int n_read = 0, n_write = 0;
/* First, make sure the list itself isn't corrupt. Otherwise,
* running LIST_FOREACH could be an exciting adventure. */
EVUTIL_ASSERT_LIST_OK(&io_info->events, event, ev_io_next);
LIST_FOREACH(ev, &io_info->events, ev_io_next) {
EVUTIL_ASSERT(ev->ev_flags & EVLIST_INSERTED);
EVUTIL_ASSERT(ev->ev_fd == fd);
EVUTIL_ASSERT(!(ev->ev_events & EV_SIGNAL));
EVUTIL_ASSERT((ev->ev_events & (EV_READ|EV_WRITE)));
if (ev->ev_events & EV_READ)
++n_read;
if (ev->ev_events & EV_WRITE)
++n_write;
}
EVUTIL_ASSERT(n_read == io_info->nread);
EVUTIL_ASSERT(n_write == io_info->nwrite);
return 0;
}
/* Helper for evmap_check_integrity: verify that all of the events pending
* on given signal are set up correctly. */
static int
evmap_signal_check_integrity_fn(struct event_base *base,
int signum, struct evmap_signal *sig_info, void *arg)
{
struct event *ev;
/* First, make sure the list itself isn't corrupt. */
EVUTIL_ASSERT_LIST_OK(&sig_info->events, event, ev_signal_next);
LIST_FOREACH(ev, &sig_info->events, ev_io_next) {
EVUTIL_ASSERT(ev->ev_flags & EVLIST_INSERTED);
EVUTIL_ASSERT(ev->ev_fd == signum);
EVUTIL_ASSERT((ev->ev_events & EV_SIGNAL));
EVUTIL_ASSERT(!(ev->ev_events & (EV_READ|EV_WRITE)));
}
return 0;
}
void
evmap_check_integrity(struct event_base *base)
{
evmap_io_foreach_fd(base, evmap_io_check_integrity_fn, NULL);
evmap_signal_foreach_signal(base, evmap_signal_check_integrity_fn, NULL);
if (base->evsel->add == event_changelist_add)
event_changelist_assert_ok(base);
}
/* Helper type for evmap_foreach_event: Bundles a function to call on every
* event, and the user-provided void* to use as its third argument. */
struct evmap_foreach_event_helper {
int (*fn)(struct event_base *, struct event *, void *);
void *arg;
};
/* Helper for evmap_foreach_event: calls a provided function on every event
* pending on a given fd. */
static int
evmap_io_foreach_event_fn(struct event_base *base, evutil_socket_t fd,
struct evmap_io *io_info, void *arg)
{
struct evmap_foreach_event_helper *h = arg;
struct event *ev;
int r;
LIST_FOREACH(ev, &io_info->events, ev_io_next) {
if ((r = h->fn(base, ev, h->arg)))
return r;
}
return 0;
}
/* Helper for evmap_foreach_event: calls a provided function on every event
* pending on a given signal. */
static int
evmap_signal_foreach_event_fn(struct event_base *base, int signum,
struct evmap_signal *sig_info, void *arg)
{
struct event *ev;
struct evmap_foreach_event_helper *h = arg;
int r;
LIST_FOREACH(ev, &sig_info->events, ev_signal_next) {
if ((r = h->fn(base, ev, h->arg)))
return r;
}
return 0;
}
int
evmap_foreach_event(struct event_base *base,
int (*fn)(struct event_base *, struct event *, void *), void *arg)
{
struct evmap_foreach_event_helper h;
int r;
h.fn = fn;
h.arg = arg;
if ((r = evmap_io_foreach_fd(base, evmap_io_foreach_event_fn, &h)))
return r;
return evmap_signal_foreach_signal(base, evmap_signal_foreach_event_fn, &h);
}