Add caching for evdns (#1717)

No evdns will do caching by default (with respect to TTL), to disable this set EVDNS_BASE_NO_CACHE

There are also helpers for manually manage the cache:
- evdns_cache_write()
- evdns_cache_lookup()

Initial PR: #571
Fixes: #1715

Co-authored-by: Greg Hazel <ghazel@gmail.com>
Co-authored-by: Keith Moore <kmoore@clostra.com>
This commit is contained in:
Kirill Rd 2024-10-24 06:28:53 +00:00 committed by GitHub
parent 267e808eb7
commit e30b215f34
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 1030 additions and 10 deletions

View File

@ -466,6 +466,7 @@ else()
sys/ioctl.h
sys/mman.h
sys/queue.h
sys/tree.h
sys/select.h
sys/sendfile.h
sys/uio.h
@ -839,7 +840,8 @@ set(HDR_PRIVATE
openssl-compat.h
evconfig-private.h
sha1.h
compat/sys/queue.h)
compat/sys/queue.h
compat/sys/tree.h)
set(HDR_COMPAT
include/evdns.h

View File

@ -323,6 +323,7 @@ noinst_HEADERS += \
bufferevent-internal.h \
changelist-internal.h \
compat/sys/queue.h \
compat/sys/tree.h \
defer-internal.h \
epolltable-internal.h \
evbuffer-internal.h \

677
compat/sys/tree.h Normal file
View File

@ -0,0 +1,677 @@
/* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SYS_TREE_H_
#define _SYS_TREE_H_
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \
struct name { \
struct type *sph_root; /* root of the tree */ \
}
#define SPLAY_INITIALIZER(root) \
{ NULL }
#define SPLAY_INIT(root) do { \
(root)->sph_root = NULL; \
} while (0)
#define SPLAY_ENTRY(type) \
struct { \
struct type *spe_left; /* left element */ \
struct type *spe_right; /* right element */ \
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
(head)->sph_root = tmp; \
} while (0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \
SPLAY_LEFT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
} while (0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
tmp = (head)->sph_root; \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
} while (0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
} while (0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \
void name##_SPLAY(struct name *, struct type *); \
void name##_SPLAY_MINMAX(struct name *, int); \
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
\
/* Finds the node with the same key as elm */ \
static __inline struct type * \
name##_SPLAY_FIND(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) \
return(NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) \
return (head->sph_root); \
return (NULL); \
} \
\
static __inline struct type * \
name##_SPLAY_NEXT(struct name *head, struct type *elm) \
{ \
name##_SPLAY(head, elm); \
if (SPLAY_RIGHT(elm, field) != NULL) { \
elm = SPLAY_RIGHT(elm, field); \
while (SPLAY_LEFT(elm, field) != NULL) { \
elm = SPLAY_LEFT(elm, field); \
} \
} else \
elm = NULL; \
return (elm); \
} \
\
static __inline struct type * \
name##_SPLAY_MIN_MAX(struct name *head, int val) \
{ \
name##_SPLAY_MINMAX(head, val); \
return (SPLAY_ROOT(head)); \
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \
struct type * \
name##_SPLAY_INSERT(struct name *head, struct type *elm) \
{ \
if (SPLAY_EMPTY(head)) { \
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
} else { \
int __comp; \
name##_SPLAY(head, elm); \
__comp = (cmp)(elm, (head)->sph_root); \
if(__comp < 0) { \
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \
SPLAY_LEFT((head)->sph_root, field) = NULL; \
} else if (__comp > 0) { \
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
SPLAY_LEFT(elm, field) = (head)->sph_root; \
SPLAY_RIGHT((head)->sph_root, field) = NULL; \
} else \
return ((head)->sph_root); \
} \
(head)->sph_root = (elm); \
return (NULL); \
} \
\
struct type * \
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *__tmp; \
if (SPLAY_EMPTY(head)) \
return (NULL); \
name##_SPLAY(head, elm); \
if ((cmp)(elm, (head)->sph_root) == 0) { \
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
} else { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
name##_SPLAY(head, elm); \
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
} \
return (elm); \
} \
return (NULL); \
} \
\
void \
name##_SPLAY(struct name *head, struct type *elm) \
{ \
struct type __node, *__left, *__right, *__tmp; \
int __comp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while ((__comp = (cmp)(elm, (head)->sph_root))) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if ((cmp)(elm, __tmp) > 0){ \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
} \
\
/* Splay with either the minimum or the maximum element \
* Used to find minimum or maximum element in tree. \
*/ \
void name##_SPLAY_MINMAX(struct name *head, int __comp) \
{ \
struct type __node, *__left, *__right, *__tmp; \
\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
__left = __right = &__node; \
\
while (1) { \
if (__comp < 0) { \
__tmp = SPLAY_LEFT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp < 0){ \
SPLAY_ROTATE_RIGHT(head, __tmp, field); \
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKLEFT(head, __right, field); \
} else if (__comp > 0) { \
__tmp = SPLAY_RIGHT((head)->sph_root, field); \
if (__tmp == NULL) \
break; \
if (__comp > 0) { \
SPLAY_ROTATE_LEFT(head, __tmp, field); \
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
break; \
} \
SPLAY_LINKRIGHT(head, __left, field); \
} \
} \
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \
for ((x) = SPLAY_MIN(name, head); \
(x) != NULL; \
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-back tree */
#define RB_HEAD(name, type) \
struct name { \
struct type *rbh_root; /* root of the tree */ \
}
#define RB_INITIALIZER(root) \
{ NULL }
#define RB_INIT(root) do { \
(root)->rbh_root = NULL; \
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \
struct { \
struct type *rbe_left; /* left element */ \
struct type *rbe_right; /* right element */ \
struct type *rbe_parent; /* parent element */ \
int rbe_color; /* node color */ \
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \
RB_PARENT(elm, field) = parent; \
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
RB_COLOR(elm, field) = RB_RED; \
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \
RB_COLOR(black, field) = RB_BLACK; \
RB_COLOR(red, field) = RB_RED; \
} while (0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
(tmp) = RB_RIGHT(elm, field); \
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_LEFT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
(tmp) = RB_LEFT(elm, field); \
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
} \
RB_AUGMENT(elm); \
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
else \
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
} else \
(head)->rbh_root = (tmp); \
RB_RIGHT(tmp, field) = (elm); \
RB_PARENT(elm, field) = (tmp); \
RB_AUGMENT(tmp); \
if ((RB_PARENT(tmp, field))) \
RB_AUGMENT(RB_PARENT(tmp, field)); \
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \
void name##_RB_INSERT_COLOR(struct name *, struct type *); \
void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
struct type *name##_RB_REMOVE(struct name *, struct type *); \
struct type *name##_RB_INSERT(struct name *, struct type *); \
struct type *name##_RB_FIND(struct name *, struct type *); \
struct type *name##_RB_NEXT(struct type *); \
struct type *name##_RB_MINMAX(struct name *, int); \
\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, type, field, cmp) \
void \
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
{ \
struct type *parent, *gparent, *tmp; \
while ((parent = RB_PARENT(elm, field)) && \
RB_COLOR(parent, field) == RB_RED) { \
gparent = RB_PARENT(parent, field); \
if (parent == RB_LEFT(gparent, field)) { \
tmp = RB_RIGHT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_RIGHT(parent, field) == elm) { \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_RIGHT(head, gparent, tmp, field); \
} else { \
tmp = RB_LEFT(gparent, field); \
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
RB_COLOR(tmp, field) = RB_BLACK; \
RB_SET_BLACKRED(parent, gparent, field);\
elm = gparent; \
continue; \
} \
if (RB_LEFT(parent, field) == elm) { \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = parent; \
parent = elm; \
elm = tmp; \
} \
RB_SET_BLACKRED(parent, gparent, field); \
RB_ROTATE_LEFT(head, gparent, tmp, field); \
} \
} \
RB_COLOR(head->rbh_root, field) = RB_BLACK; \
} \
\
void \
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
{ \
struct type *tmp; \
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
elm != RB_ROOT(head)) { \
if (RB_LEFT(parent, field) == elm) { \
tmp = RB_RIGHT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_LEFT(head, parent, tmp, field);\
tmp = RB_RIGHT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
struct type *oleft; \
if ((oleft = RB_LEFT(tmp, field)))\
RB_COLOR(oleft, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_RIGHT(head, tmp, oleft, field);\
tmp = RB_RIGHT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_RIGHT(tmp, field)) \
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_LEFT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} else { \
tmp = RB_LEFT(parent, field); \
if (RB_COLOR(tmp, field) == RB_RED) { \
RB_SET_BLACKRED(tmp, parent, field); \
RB_ROTATE_RIGHT(head, parent, tmp, field);\
tmp = RB_LEFT(parent, field); \
} \
if ((RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
(RB_RIGHT(tmp, field) == NULL || \
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
RB_COLOR(tmp, field) = RB_RED; \
elm = parent; \
parent = RB_PARENT(elm, field); \
} else { \
if (RB_LEFT(tmp, field) == NULL || \
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
struct type *oright; \
if ((oright = RB_RIGHT(tmp, field)))\
RB_COLOR(oright, field) = RB_BLACK;\
RB_COLOR(tmp, field) = RB_RED; \
RB_ROTATE_LEFT(head, tmp, oright, field);\
tmp = RB_LEFT(parent, field); \
} \
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
RB_COLOR(parent, field) = RB_BLACK; \
if (RB_LEFT(tmp, field)) \
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
RB_ROTATE_RIGHT(head, parent, tmp, field);\
elm = RB_ROOT(head); \
break; \
} \
} \
} \
if (elm) \
RB_COLOR(elm, field) = RB_BLACK; \
} \
\
struct type * \
name##_RB_REMOVE(struct name *head, struct type *elm) \
{ \
struct type *child, *parent, *old = elm; \
int color; \
if (RB_LEFT(elm, field) == NULL) \
child = RB_RIGHT(elm, field); \
else if (RB_RIGHT(elm, field) == NULL) \
child = RB_LEFT(elm, field); \
else { \
struct type *left; \
elm = RB_RIGHT(elm, field); \
while ((left = RB_LEFT(elm, field))) \
elm = left; \
child = RB_RIGHT(elm, field); \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
if (RB_PARENT(elm, field) == old) \
parent = elm; \
(elm)->field = (old)->field; \
if (RB_PARENT(old, field)) { \
if (RB_LEFT(RB_PARENT(old, field), field) == old)\
RB_LEFT(RB_PARENT(old, field), field) = elm;\
else \
RB_RIGHT(RB_PARENT(old, field), field) = elm;\
RB_AUGMENT(RB_PARENT(old, field)); \
} else \
RB_ROOT(head) = elm; \
RB_PARENT(RB_LEFT(old, field), field) = elm; \
if (RB_RIGHT(old, field)) \
RB_PARENT(RB_RIGHT(old, field), field) = elm; \
if (parent) { \
left = parent; \
do { \
RB_AUGMENT(left); \
} while ((left = RB_PARENT(left, field))); \
} \
goto color; \
} \
parent = RB_PARENT(elm, field); \
color = RB_COLOR(elm, field); \
if (child) \
RB_PARENT(child, field) = parent; \
if (parent) { \
if (RB_LEFT(parent, field) == elm) \
RB_LEFT(parent, field) = child; \
else \
RB_RIGHT(parent, field) = child; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = child; \
color: \
if (color == RB_BLACK) \
name##_RB_REMOVE_COLOR(head, parent, child); \
return (old); \
} \
\
/* Inserts a node into the RB tree */ \
struct type * \
name##_RB_INSERT(struct name *head, struct type *elm) \
{ \
struct type *tmp; \
struct type *parent = NULL; \
int comp = 0; \
tmp = RB_ROOT(head); \
while (tmp) { \
parent = tmp; \
comp = (cmp)(elm, parent); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
RB_SET(elm, parent, field); \
if (parent != NULL) { \
if (comp < 0) \
RB_LEFT(parent, field) = elm; \
else \
RB_RIGHT(parent, field) = elm; \
RB_AUGMENT(parent); \
} else \
RB_ROOT(head) = elm; \
name##_RB_INSERT_COLOR(head, elm); \
return (NULL); \
} \
\
/* Finds the node with the same key as elm */ \
struct type * \
name##_RB_FIND(struct name *head, struct type *elm) \
{ \
struct type *tmp = RB_ROOT(head); \
int comp; \
while (tmp) { \
comp = cmp(elm, tmp); \
if (comp < 0) \
tmp = RB_LEFT(tmp, field); \
else if (comp > 0) \
tmp = RB_RIGHT(tmp, field); \
else \
return (tmp); \
} \
return (NULL); \
} \
\
struct type * \
name##_RB_NEXT(struct type *elm) \
{ \
if (RB_RIGHT(elm, field)) { \
elm = RB_RIGHT(elm, field); \
while (RB_LEFT(elm, field)) \
elm = RB_LEFT(elm, field); \
} else { \
if (RB_PARENT(elm, field) && \
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \
elm = RB_PARENT(elm, field); \
else { \
while (RB_PARENT(elm, field) && \
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
elm = RB_PARENT(elm, field); \
elm = RB_PARENT(elm, field); \
} \
} \
return (elm); \
} \
\
struct type * \
name##_RB_MINMAX(struct name *head, int val) \
{ \
struct type *tmp = RB_ROOT(head); \
struct type *parent = NULL; \
while (tmp) { \
parent = tmp; \
if (val < 0) \
tmp = RB_LEFT(tmp, field); \
else \
tmp = RB_RIGHT(tmp, field); \
} \
return (parent); \
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \
for ((x) = RB_MIN(name, head); \
(x) != NULL; \
(x) = name##_RB_NEXT(x))
#endif /* _SYS_TREE_H_ */

160
evdns.c
View File

@ -74,6 +74,7 @@
#include <sys/stat.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/tree.h>
#ifdef _WIN32
#include <winsock2.h>
#include <winerror.h>
@ -82,6 +83,7 @@
#define _WIN32_IE 0x400
#endif
#include <shlobj.h>
#define strcasecmp strcmpi
#endif
#include "event2/buffer.h"
@ -422,11 +424,14 @@ struct evdns_base {
TAILQ_HEAD(hosts_list, hosts_entry) hostsdb;
SPLAY_HEAD(evdns_tree, evdns_cache) cache_root;
#ifndef EVENT__DISABLE_THREAD_SUPPORT
void *lock;
#endif
int disable_when_inactive;
int disable_cache;
/* Maximum timeout between two probe packets
* will change `global_nameserver_probe_initial_timeout`
@ -447,6 +452,14 @@ struct hosts_entry {
char hostname[1];
};
struct evdns_cache {
SPLAY_ENTRY(evdns_cache) node;
char *name;
struct evutil_addrinfo *ai;
struct event ev_timeout;
struct evdns_base *base;
};
static struct evdns_base *current_base = NULL;
struct evdns_base *
@ -495,7 +508,7 @@ static void incoming_conn_cb(struct evconnlistener *listener, evutil_socket_t fd
static int strtoint(const char *const str);
#ifdef EVENT__DISABLE_THREAD_SUPPORT
#define EVDNS_LOCK(base) EVUTIL_NIL_STMT_
#define EVDNS_LOCK(base) EVUTIL_NIL_CONDITION_(base)
#define EVDNS_UNLOCK(base) EVUTIL_NIL_STMT_
#define ASSERT_LOCKED(base) EVUTIL_NIL_STMT_
#else
@ -2026,7 +2039,7 @@ evdns_request_data_build(const struct evdns_base *base,
APPEND16(class);
if (EDNS_ENABLED(base)) {
/* The OPT pseudo-RR format
/* The OPT pseudo-RR format
* (https://tools.ietf.org/html/rfc6891#section-6.1.2)
* +------------+--------------+------------------------------+
* | Field Name | Field Type | Description |
@ -4865,11 +4878,13 @@ evdns_base_new(struct event_base *event_base, int flags)
base->global_tcp_idle_timeout.tv_sec = CLIENT_IDLE_CONN_TIMEOUT;
TAILQ_INIT(&base->hostsdb);
SPLAY_INIT(&base->cache_root);
#define EVDNS_BASE_ALL_FLAGS ( \
EVDNS_BASE_INITIALIZE_NAMESERVERS | \
EVDNS_BASE_DISABLE_WHEN_INACTIVE | \
EVDNS_BASE_NAMESERVERS_NO_DEFAULT | \
EVDNS_BASE_NO_CACHE | \
0)
if (flags & ~EVDNS_BASE_ALL_FLAGS) {
@ -4902,6 +4917,8 @@ evdns_base_new(struct event_base *event_base, int flags)
}
}
base->disable_cache = flags & EVDNS_BASE_NO_CACHE;
EVDNS_UNLOCK(base);
return base;
}
@ -4957,6 +4974,25 @@ evdns_nameserver_free(struct nameserver *server)
mm_free(server);
}
static int
evdns_cache_compare(struct evdns_cache *a, struct evdns_cache *b)
{
return strcasecmp(a->name, b->name);
}
SPLAY_PROTOTYPE(evdns_tree, evdns_cache, node, evdns_cache_compare);
SPLAY_GENERATE(evdns_tree, evdns_cache, node, evdns_cache_compare);
static void
evdns_cache_free(struct evdns_cache *cache)
{
SPLAY_REMOVE(evdns_tree, &cache->base->cache_root, cache);
mm_free(cache->name);
evtimer_del(&cache->ev_timeout);
evutil_freeaddrinfo(cache->ai);
mm_free(cache);
}
static void
evdns_base_free_and_unlock(struct evdns_base *base, int fail_requests)
{
@ -5012,6 +5048,10 @@ evdns_base_free_and_unlock(struct evdns_base *base, int fail_requests)
mm_free(base->req_heads);
while (!SPLAY_EMPTY(&base->cache_root)) {
evdns_cache_free(SPLAY_ROOT(&base->cache_root));
}
EVDNS_UNLOCK(base);
EVTHREAD_FREE_LOCK(base->lock, EVTHREAD_LOCKTYPE_RECURSIVE);
@ -5165,6 +5205,8 @@ struct evdns_getaddrinfo_request {
/* Copy of the modified 'hints' data that we'll use to build
* answers. */
struct evutil_addrinfo hints;
/* The original requested nodename */
char *nodename;
/* The callback to invoke when we're done */
evdns_getaddrinfo_cb user_cb;
/* User-supplied data to give to the callback. */
@ -5182,6 +5224,7 @@ struct evdns_getaddrinfo_request {
/* If we have one request answered and one request still inflight,
* then this field holds the answer from the first request... */
struct evutil_addrinfo *pending_result;
int pending_result_ttl;
/* And this event is a timeout that will tell us to cancel the second
* request if it's taking a long time. */
struct event timeout;
@ -5229,6 +5272,7 @@ free_getaddrinfo_request(struct evdns_getaddrinfo_request *data)
if (data->cname_result)
mm_free(data->cname_result);
event_del(&data->timeout);
mm_free(data->nodename);
mm_free(data);
return;
}
@ -5313,6 +5357,98 @@ evdns_result_is_answer(int result)
result != DNS_ERR_SERVERFAILED && result != DNS_ERR_CANCEL);
}
static void
evdns_ttl_expired(evutil_socket_t fd, short what, void *arg)
{
struct evdns_cache *cache = arg;
struct evdns_base *base = cache->base;
log(EVDNS_LOG_DEBUG, "Expiring cache for %s", cache->name);
EVDNS_LOCK(base);
evdns_cache_free(cache);
EVDNS_UNLOCK(base);
}
void
evdns_cache_write(struct evdns_base *dns_base, char *nodename, struct evutil_addrinfo *res, int ttl)
{
struct timeval tv;
struct evdns_cache *cache;
struct evdns_cache find;
log(EVDNS_LOG_DEBUG, "Writing cache for %s", nodename);
EVDNS_LOCK(dns_base);
find.name = (char *)nodename;
cache = SPLAY_FIND(evdns_tree, &dns_base->cache_root, &find);
if (cache) {
log(EVDNS_LOG_DEBUG, "Ejecting old cache for %s", nodename);
evdns_cache_free(cache);
}
cache = mm_malloc(sizeof(struct evdns_cache));
cache->base = dns_base;
cache->name = strdup(nodename);
cache->ai = evutil_dup_addrinfo_(res);
SPLAY_INSERT(evdns_tree, &cache->base->cache_root, cache);
evtimer_assign(&cache->ev_timeout, dns_base->event_base, evdns_ttl_expired, cache);
timerclear(&tv);
tv.tv_sec = ttl;
evtimer_add(&cache->ev_timeout, &tv);
EVDNS_UNLOCK(dns_base);
}
int
evdns_cache_lookup(struct evdns_base *base,
const char *nodename, struct evutil_addrinfo *hints, ev_uint16_t port,
struct evutil_addrinfo **res)
{
int n_found = 0;
struct evdns_cache *cache;
struct evdns_cache find;
struct evutil_addrinfo *ai = NULL;
int want_cname = hints->ai_flags & EVUTIL_AI_CANONNAME;
int f = hints->ai_family;
log(EVDNS_LOG_DEBUG, "Looking in cache for %s", nodename);
EVDNS_LOCK(base);
find.name = (char *)nodename;
cache = SPLAY_FIND(evdns_tree, &base->cache_root, &find);
if (cache) {
struct evutil_addrinfo *e = cache->ai;
log(EVDNS_LOG_DEBUG, "Found cache for %s", cache->name);
for (; e; e = e->ai_next) {
struct evutil_addrinfo *ai_new;
// an existing record might not have the canonname
if (want_cname && e->ai_canonname == NULL)
continue;
++n_found;
if ((e->ai_addr->sa_family == AF_INET && f == PF_INET6) ||
(e->ai_addr->sa_family == AF_INET6 && f == PF_INET))
continue;
ai_new = evutil_new_addrinfo_(e->ai_addr, e->ai_addrlen, hints);
if (want_cname) {
ai_new->ai_canonname = strdup(e->ai_canonname);
}
if (!ai_new) {
n_found = 0;
goto out;
}
sockaddr_setport(ai_new->ai_addr, port);
ai = evutil_addrinfo_append_(ai, ai_new);
}
}
EVDNS_UNLOCK(base);
out:
if (n_found) {
/* Note that we return an empty answer if we found entries for
* this hostname but none were of the right address type. */
*res = ai;
return 0;
} else {
if (ai)
evutil_freeaddrinfo(ai);
return -1;
}
}
static void
evdns_getaddrinfo_gotresolve(int result, char type, int count,
int ttl, void *addresses, void *arg)
@ -5404,6 +5540,9 @@ evdns_getaddrinfo_gotresolve(int result, char type, int count,
/* If we have an answer waiting, and we weren't
* canceled, ignore this error. */
add_cname_to_reply(data, data->pending_result);
if (data->evdns_base && !data->evdns_base->disable_cache) {
evdns_cache_write(data->evdns_base, data->nodename, data->pending_result, data->pending_result_ttl);
}
data->user_cb(0, data->pending_result, data->user_data);
data->pending_result = NULL;
} else {
@ -5481,10 +5620,12 @@ evdns_getaddrinfo_gotresolve(int result, char type, int count,
/* XXXX handle failure from set_timeout */
evdns_getaddrinfo_set_timeout(data->evdns_base, data);
data->pending_result = res;
data->pending_result_ttl = ttl;
return;
} else {
/* The other request is done or never started; append its
* results (if any) and return them. */
int res_ttl = ttl;
if (data->pending_result) {
if (req->type == DNS_IPv4_A)
res = evutil_addrinfo_append_(res,
@ -5492,11 +5633,15 @@ evdns_getaddrinfo_gotresolve(int result, char type, int count,
else
res = evutil_addrinfo_append_(
data->pending_result, res);
res_ttl = data->pending_result_ttl;
data->pending_result = NULL;
}
/* Call the user callback. */
add_cname_to_reply(data, res);
if (data->evdns_base && !data->evdns_base->disable_cache) {
evdns_cache_write(data->evdns_base, data->nodename, res, res_ttl);
}
data->user_cb(0, res, data->user_data);
/* Free data. */
@ -5529,7 +5674,7 @@ evdns_getaddrinfo_fromhosts(struct evdns_base *base,
{
int n_found = 0;
struct hosts_entry *e;
struct evutil_addrinfo *ai=NULL;
struct evutil_addrinfo *ai = NULL;
int f = hints->ai_family;
EVDNS_LOCK(base);
@ -5621,6 +5766,12 @@ evdns_getaddrinfo(struct evdns_base *dns_base,
return NULL;
}
/* See if we have it in the cache */
if (!dns_base->disable_cache && !evdns_cache_lookup(dns_base, nodename, &hints, port, &res)) {
cb(0, res, arg);
return NULL;
}
/* Okay, things are serious now. We're going to need to actually
* launch a request.
*/
@ -5637,6 +5788,7 @@ evdns_getaddrinfo(struct evdns_base *dns_base,
data->user_cb = cb;
data->user_data = arg;
data->evdns_base = dns_base;
data->nodename = strdup(nodename);
want_cname = (hints.ai_flags & EVUTIL_AI_CANONNAME);
@ -5688,7 +5840,7 @@ evdns_getaddrinfo(struct evdns_base *dns_base,
if (started) {
return data;
} else {
mm_free(data);
free_getaddrinfo_request(data);
cb(EVUTIL_EAI_FAIL, NULL, arg);
return NULL;
}

View File

@ -1778,6 +1778,29 @@ evutil_freeaddrinfo(struct evutil_addrinfo *ai)
#endif
}
struct evutil_addrinfo *
evutil_dup_addrinfo_(struct evutil_addrinfo *ai)
{
struct evutil_addrinfo *first = NULL;
struct evutil_addrinfo *prev = NULL;
for (; ai; ai = ai->ai_next) {
int len = sizeof(struct evutil_addrinfo) + ai->ai_addrlen;
struct evutil_addrinfo *n = calloc(1, len);
memcpy(n, ai, len);
if (ai->ai_canonname) {
n->ai_canonname = strdup(ai->ai_canonname);
}
n->ai_addr = (struct sockaddr*)(((char*)n) + sizeof(struct evutil_addrinfo));
if (!first) {
first = n;
} else {
prev->ai_next = n;
}
prev = n;
}
return first;
}
static evdns_getaddrinfo_fn evdns_getaddrinfo_impl = NULL;
static evdns_getaddrinfo_cancel_fn evdns_getaddrinfo_cancel_impl = NULL;

View File

@ -253,6 +253,9 @@ struct event_base;
/** Flag for evdns_base_new: process resolv.conf. */
#define EVDNS_BASE_INITIALIZE_NAMESERVERS 1
/** Flag for evdns_base_new: disable caching of DNS responses by default
* for async resolver. */
#define EVDNS_BASE_NO_CACHE 0x10
/** Flag for evdns_base_new: Do not prevent the libevent event loop from
* exiting when we have no active dns requests. */
#define EVDNS_BASE_DISABLE_WHEN_INACTIVE 0x8000
@ -285,7 +288,8 @@ struct event_base;
@param event_base the event base to associate the dns client with
@param flags any of EVDNS_BASE_INITIALIZE_NAMESERVERS|
EVDNS_BASE_DISABLE_WHEN_INACTIVE|EVDNS_BASE_NAMESERVERS_NO_DEFAULT
EVDNS_BASE_DISABLE_WHEN_INACTIVE|EVDNS_BASE_NAMESERVERS_NO_DEFAULT|
EVDNS_BASE_NO_CACHE
@return evdns_base object if successful, or NULL if an error occurred.
@see evdns_base_free()
*/
@ -317,6 +321,29 @@ void evdns_base_free(struct evdns_base *base, int fail_requests);
EVENT2_EXPORT_SYMBOL
void evdns_base_clear_host_addresses(struct evdns_base *base);
/**
Write an entry to the evdns cache
@param dns_base the evdns base to add the entry to
@param nodename the DNS name
@param res the address information associated with the DNS name
@param ttl the time to live associated with the address information
*/
EVENT2_EXPORT_SYMBOL
void evdns_cache_write(struct evdns_base *dns_base, char *nodename, struct evutil_addrinfo *res, int ttl);
/**
Lookup an entry from the evdns cache
@param base the evdns base associated with the cache
@param nodename the DNS name for which information is being sought
@param hints see man getaddrinfo()
@param port used to fill in port numbers in the resulting address list
@param res pointer to an evutil_addrinfo struct for result
*/
EVENT2_EXPORT_SYMBOL
int evdns_cache_lookup(struct evdns_base *base, const char *nodename, struct evutil_addrinfo *hints, ev_uint16_t port, struct evutil_addrinfo **res);
/**
Convert a DNS error code to a string.
@ -776,8 +803,9 @@ struct evdns_getaddrinfo_request;
/** Make a non-blocking getaddrinfo request using the dns_base in 'dns_base'.
*
* If we can answer the request immediately (with an error or not!), then we
* invoke cb immediately and return NULL. Otherwise we return
* an evdns_getaddrinfo_request and invoke cb later.
* invoke cb immediately and return NULL. This can happen e.g. if the
* requested address is in the hosts file, or cached, or invalid. Otherwise
* we return an evdns_getaddrinfo_request and invoke cb later.
*
* When the callback is invoked, we pass as its first argument the error code
* that getaddrinfo would return (or 0 for no error). As its second argument,
@ -789,6 +817,12 @@ struct evdns_getaddrinfo_request;
* - The AI_V4MAPPED and AI_ALL flags are not currently implemented.
* - For ai_socktype, we only handle SOCKTYPE_STREAM, SOCKTYPE_UDP, and 0.
* - For ai_protocol, we only handle IPPROTO_TCP, IPPROTO_UDP, and 0.
* - If we cached a response exclusively for a different address type (e.g.
* PF_INET), we will set addrinfo to NULL (e.g. queried with PF_INET6)
* - Cache isn't hit when AI_CANONNAME is set but cached server response
* doesn't contain CNAME.
* - If we can answer immediately (e.g. using hosts file, there is an error
* or when cache is hit), we invoke the call back and return NULL.
*/
EVENT2_EXPORT_SYMBOL
struct evdns_getaddrinfo_request *evdns_getaddrinfo(

View File

@ -1749,7 +1749,7 @@ test_getaddrinfo_async(void *arg)
struct basic_test_data *data = arg;
struct evutil_addrinfo hints, *a;
struct gai_outcome local_outcome;
struct gai_outcome a_out[13];
struct gai_outcome a_out[13], b_out[13];
unsigned i;
struct evdns_getaddrinfo_request *r;
char buf[128];
@ -1759,6 +1759,7 @@ test_getaddrinfo_async(void *arg)
struct evdns_base *dns_base;
memset(a_out, 0, sizeof(a_out));
memset(b_out, 0, sizeof(b_out));
memset(&local_outcome, 0, sizeof(local_outcome));
dns_base = evdns_base_new(data->base, 0);
@ -2026,7 +2027,7 @@ test_getaddrinfo_async(void *arg)
*/
n_gai_results_pending = 12;
n_gai_results_pending = 13;
exit_base_on_no_pending_results = data->base;
event_base_dispatch(data->base);
@ -2120,6 +2121,130 @@ test_getaddrinfo_async(void *arg)
test_ai_eq(a_out[12].ai, "18.52.86.120:8000", SOCK_STREAM, IPPROTO_TCP);
tt_str_op(a_out[12].ai->ai_canonname, ==, HOST_NAME_MAX_NAME);
/* 3. Let's make sure the results are all cached */
n_gai_results_pending = 13;
/* 0: both.example.com should have been replaced (evicted) in cache with no canonname */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = EVUTIL_AI_CANONNAME;
r = evdns_getaddrinfo(dns_base, "both.example.com", "8000",
&hints, gai_cb, &b_out[0]);
tt_assert(r);
/* 1: v4only.example.com should have been cached, but CNAME was not replied with and the client wants CNAME. */
// XXX ideally, cache should hit with no CNAME if AI_CANONNAME on the previous call didn't obtain it with this flag.
hints.ai_flags = AI_CANONNAME;
r = evdns_getaddrinfo(dns_base, "v4only.example.com", "8001",
&hints, gai_cb, &b_out[1]);
tt_assert(r);
/* 2: v6only.example.com should have been cached */
hints.ai_family = PF_INET6;
hints.ai_flags = 0;
r = evdns_getaddrinfo(dns_base, "v6only.example.com", "8002",
&hints, gai_cb, &b_out[2]);
tt_assert(!r);
// check
tt_int_op(b_out[2].err, ==, 0);
tt_assert(b_out[2].ai);
tt_assert(!b_out[2].ai->ai_next);
test_ai_eq(b_out[2].ai, "[b0b::f00d]:8002", SOCK_STREAM, IPPROTO_TCP);
/* 2.5: v6only.example.com cache lookup with PF_INET should return NULL addressinfo. */
hints.ai_family = PF_INET;
hints.ai_flags = 0;
evutil_freeaddrinfo(b_out[2].ai); // since this is reused
++n_gai_results_pending;
r = evdns_getaddrinfo(dns_base, "v6only.example.com", "8002",
&hints, gai_cb, &b_out[2]);
tt_assert(!r);
// check
tt_int_op(b_out[2].err, ==, 0);
tt_assert(!b_out[2].ai);
/* 3: v4assert.example.com should have been cached */
hints.ai_family = PF_INET;
r = evdns_getaddrinfo(dns_base, "v4assert.example.com", "8003",
&hints, gai_cb, &b_out[3]);
tt_assert(!r);
// check
tt_int_op(b_out[3].err, ==, 0);
tt_assert(b_out[3].ai);
tt_assert(!b_out[3].ai->ai_next);
test_ai_eq(b_out[3].ai, "18.52.86.120:8003", SOCK_STREAM, IPPROTO_TCP);
/* 4: v6assert.example.com should have been cached. */
hints.ai_family = PF_INET6;
r = evdns_getaddrinfo(dns_base, "v6assert.example.com", "8004",
&hints, gai_cb, &b_out[4]);
tt_assert(!r);
/* check */
tt_int_op(b_out[4].err, ==, 0);
tt_assert(b_out[4].ai);
tt_assert(!b_out[4].ai->ai_next);
test_ai_eq(b_out[4].ai, "[b0b::f00d]:8004", SOCK_STREAM, IPPROTO_TCP);
/* 5: NEXIST shouldn't be cached, as it is instant. */
hints.ai_family = PF_INET;
r = evdns_getaddrinfo(dns_base, "nosuchplace.example.com", "8005",
&hints, gai_cb, &b_out[5]);
tt_assert(r);
/* 6: NEXIST shouldn't be cached. */
hints.ai_family = PF_UNSPEC;
r = evdns_getaddrinfo(dns_base, "nosuchplace.example.com", "8006",
&hints, gai_cb, &b_out[6]);
tt_assert(r);
/* 7: v6timeout.example.com timed out and therefore shouldn't be in cache. */
hints.ai_family = PF_UNSPEC;
r = evdns_getaddrinfo(dns_base, "v6timeout.example.com", "8007",
&hints, gai_cb, &b_out[7]);
tt_assert(r);
/* 8: v6timeout-nonexist.example.com produced NEXIST and shouldn't be cached */
hints.ai_family = PF_UNSPEC;
r = evdns_getaddrinfo(dns_base, "v6timeout-nonexist.example.com",
"8008", &hints, gai_cb, &b_out[8]);
tt_assert(r);
/* 9: AI_ADDRCONFIG should at least not crash. */
hints.ai_flags |= EVUTIL_AI_ADDRCONFIG;
r = evdns_getaddrinfo(dns_base, "both.example.com",
"8009", &hints, gai_cb, &b_out[9]);
tt_assert(!r);
/* 10: v4timeout.example.com shouldn't cache as it didn't succeed. */
hints.ai_family = PF_UNSPEC;
hints.ai_flags = 0;
r = evdns_getaddrinfo(dns_base, "v4timeout.example.com", "8010",
&hints, gai_cb, &b_out[10]);
tt_assert(r);
/* 11: timeout.example.com: shouldn't have cached as it was cancelled. */
r = evdns_getaddrinfo(dns_base, "all-timeout.example.com", "8011",
&hints, gai_cb, &b_out[11]);
tt_assert(r);
/* 12: HOST_NAME_MAX_NAME should've cached and match the original value */
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = EVUTIL_AI_CANONNAME;
r = evdns_getaddrinfo(dns_base, "long.example.com", "8000",
&hints, gai_cb, &b_out[12]);
tt_assert(!r);
//check
tt_int_op(b_out[12].err, ==, 0);
tt_assert(b_out[12].ai);
tt_assert(!b_out[12].ai->ai_next);
test_ai_eq(b_out[12].ai, "18.52.86.120:8000", SOCK_STREAM, IPPROTO_TCP);
tt_str_op(b_out[12].ai->ai_canonname, ==, HOST_NAME_MAX_NAME);
exit_base_on_no_pending_results = data->base;
event_base_dispatch(data->base);
end:
if (local_outcome.ai)
@ -2128,6 +2253,10 @@ end:
if (a_out[i].ai)
evutil_freeaddrinfo(a_out[i].ai);
}
for (i = 0; i < ARRAY_SIZE(b_out); ++i) {
if (b_out[i].ai)
evutil_freeaddrinfo(b_out[i].ai);
}
if (port)
evdns_close_server_port(port);
if (dns_base)

View File

@ -429,6 +429,8 @@ EVENT2_EXPORT_SYMBOL
struct evutil_addrinfo *evutil_new_addrinfo_(struct sockaddr *sa,
ev_socklen_t socklen, const struct evutil_addrinfo *hints);
EVENT2_EXPORT_SYMBOL
struct evutil_addrinfo *evutil_dup_addrinfo_(struct evutil_addrinfo *ai);
EVENT2_EXPORT_SYMBOL
struct evutil_addrinfo *evutil_addrinfo_append_(struct evutil_addrinfo *first,
struct evutil_addrinfo *append);
EVENT2_EXPORT_SYMBOL