libevent/test/regress_util.c
2014-08-29 14:28:09 -04:00

1414 lines
35 KiB
C

/*
* Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "../util-internal.h"
#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#include <ws2tcpip.h>
#endif
#include "event2/event-config.h"
#include <sys/types.h>
#ifndef _WIN32
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#endif
#ifdef EVENT__HAVE_NETINET_IN6_H
#include <netinet/in6.h>
#endif
#ifdef EVENT__HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "event2/event.h"
#include "event2/util.h"
#include "../ipv6-internal.h"
#include "../log-internal.h"
#include "../strlcpy-internal.h"
#include "../mm-internal.h"
#include "../time-internal.h"
#include "regress.h"
enum entry_status { NORMAL, CANONICAL, BAD };
/* This is a big table of results we expect from generating and parsing */
static struct ipv4_entry {
const char *addr;
ev_uint32_t res;
enum entry_status status;
} ipv4_entries[] = {
{ "1.2.3.4", 0x01020304u, CANONICAL },
{ "255.255.255.255", 0xffffffffu, CANONICAL },
{ "256.0.0.0", 0, BAD },
{ "ABC", 0, BAD },
{ "1.2.3.4.5", 0, BAD },
{ "176.192.208.244", 0xb0c0d0f4, CANONICAL },
{ NULL, 0, BAD },
};
static struct ipv6_entry {
const char *addr;
ev_uint32_t res[4];
enum entry_status status;
} ipv6_entries[] = {
{ "::", { 0, 0, 0, 0, }, CANONICAL },
{ "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
{ "::1", { 0, 0, 0, 1, }, CANONICAL },
{ "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
{ "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
{ "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
{ "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
{ "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
{ "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
{ "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
{ "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
{ "foobar.", { 0, 0, 0, 0 }, BAD },
{ "foobar", { 0, 0, 0, 0 }, BAD },
{ "fo:obar", { 0, 0, 0, 0 }, BAD },
{ "ffff", { 0, 0, 0, 0 }, BAD },
{ "fffff::", { 0, 0, 0, 0 }, BAD },
{ "fffff::", { 0, 0, 0, 0 }, BAD },
{ "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
{ "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
{ "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
{ "1::2::3", { 0, 0, 0, 0 }, BAD },
{ ":::1", { 0, 0, 0, 0 }, BAD },
{ NULL, { 0, 0, 0, 0, }, BAD },
};
static void
regress_ipv4_parse(void *ptr)
{
int i;
for (i = 0; ipv4_entries[i].addr; ++i) {
char written[128];
struct ipv4_entry *ent = &ipv4_entries[i];
struct in_addr in;
int r;
r = evutil_inet_pton(AF_INET, ent->addr, &in);
if (r == 0) {
if (ent->status != BAD) {
TT_FAIL(("%s did not parse, but it's a good address!",
ent->addr));
}
continue;
}
if (ent->status == BAD) {
TT_FAIL(("%s parsed, but we expected an error", ent->addr));
continue;
}
if (ntohl(in.s_addr) != ent->res) {
TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
(unsigned long)ntohl(in.s_addr),
(unsigned long)ent->res));
continue;
}
if (ent->status == CANONICAL) {
const char *w = evutil_inet_ntop(AF_INET, &in, written,
sizeof(written));
if (!w) {
TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
continue;
}
if (strcmp(written, ent->addr)) {
TT_FAIL(("Tried to write out %s; got %s",
ent->addr, written));
continue;
}
}
}
}
static void
regress_ipv6_parse(void *ptr)
{
#ifdef AF_INET6
int i, j;
for (i = 0; ipv6_entries[i].addr; ++i) {
char written[128];
struct ipv6_entry *ent = &ipv6_entries[i];
struct in6_addr in6;
int r;
r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
if (r == 0) {
if (ent->status != BAD)
TT_FAIL(("%s did not parse, but it's a good address!",
ent->addr));
continue;
}
if (ent->status == BAD) {
TT_FAIL(("%s parsed, but we expected an error", ent->addr));
continue;
}
for (j = 0; j < 4; ++j) {
/* Can't use s6_addr32 here; some don't have it. */
ev_uint32_t u =
((ev_uint32_t)in6.s6_addr[j*4 ] << 24) |
((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
((ev_uint32_t)in6.s6_addr[j*4+3]);
if (u != ent->res[j]) {
TT_FAIL(("%s did not parse as expected.", ent->addr));
continue;
}
}
if (ent->status == CANONICAL) {
const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
sizeof(written));
if (!w) {
TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
continue;
}
if (strcmp(written, ent->addr)) {
TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
continue;
}
}
}
#else
TT_BLATHER(("Skipping IPv6 address parsing."));
#endif
}
static struct sa_port_ent {
const char *parse;
int safamily;
const char *addr;
int port;
} sa_port_ents[] = {
{ "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
{ "[ffff::1]", AF_INET6, "ffff::1", 0 },
{ "[ffff::1", 0, NULL, 0 },
{ "[ffff::1]:65599", 0, NULL, 0 },
{ "[ffff::1]:0", 0, NULL, 0 },
{ "[ffff::1]:-1", 0, NULL, 0 },
{ "::1", AF_INET6, "::1", 0 },
{ "1:2::1", AF_INET6, "1:2::1", 0 },
{ "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
{ "1.2.3.4", AF_INET, "1.2.3.4", 0 },
{ NULL, 0, NULL, 0 },
};
static void
regress_sockaddr_port_parse(void *ptr)
{
struct sockaddr_storage ss;
int i, r;
for (i = 0; sa_port_ents[i].parse; ++i) {
struct sa_port_ent *ent = &sa_port_ents[i];
int len = sizeof(ss);
memset(&ss, 0, sizeof(ss));
r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
if (r < 0) {
if (ent->safamily)
TT_FAIL(("Couldn't parse %s!", ent->parse));
continue;
} else if (! ent->safamily) {
TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
continue;
}
if (ent->safamily == AF_INET) {
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
#ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
sin.sin_len = sizeof(sin);
#endif
sin.sin_family = AF_INET;
sin.sin_port = htons(ent->port);
r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
if (1 != r) {
TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
} else if (memcmp(&sin, &ss, sizeof(sin))) {
TT_FAIL(("Parse for %s was not as expected.", ent->parse));
} else if (len != sizeof(sin)) {
TT_FAIL(("Length for %s not as expected.",ent->parse));
}
} else {
struct sockaddr_in6 sin6;
memset(&sin6, 0, sizeof(sin6));
#ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
sin6.sin6_len = sizeof(sin6);
#endif
sin6.sin6_family = AF_INET6;
sin6.sin6_port = htons(ent->port);
r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
if (1 != r) {
TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
} else if (memcmp(&sin6, &ss, sizeof(sin6))) {
TT_FAIL(("Parse for %s was not as expected.", ent->parse));
} else if (len != sizeof(sin6)) {
TT_FAIL(("Length for %s not as expected.",ent->parse));
}
}
}
}
static void
regress_sockaddr_port_format(void *ptr)
{
struct sockaddr_storage ss;
int len;
const char *cp;
char cbuf[128];
int r;
len = sizeof(ss);
r = evutil_parse_sockaddr_port("192.168.1.1:80",
(struct sockaddr*)&ss, &len);
tt_int_op(r,==,0);
cp = evutil_format_sockaddr_port_(
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
tt_ptr_op(cp,==,cbuf);
tt_str_op(cp,==,"192.168.1.1:80");
len = sizeof(ss);
r = evutil_parse_sockaddr_port("[ff00::8010]:999",
(struct sockaddr*)&ss, &len);
tt_int_op(r,==,0);
cp = evutil_format_sockaddr_port_(
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
tt_ptr_op(cp,==,cbuf);
tt_str_op(cp,==,"[ff00::8010]:999");
ss.ss_family=99;
cp = evutil_format_sockaddr_port_(
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
tt_ptr_op(cp,==,cbuf);
tt_str_op(cp,==,"<addr with socktype 99>");
end:
;
}
static struct sa_pred_ent {
const char *parse;
int is_loopback;
} sa_pred_entries[] = {
{ "127.0.0.1", 1 },
{ "127.0.3.2", 1 },
{ "128.1.2.3", 0 },
{ "18.0.0.1", 0 },
{ "129.168.1.1", 0 },
{ "::1", 1 },
{ "::0", 0 },
{ "f::1", 0 },
{ "::501", 0 },
{ NULL, 0 },
};
static void
test_evutil_sockaddr_predicates(void *ptr)
{
struct sockaddr_storage ss;
int r, i;
for (i=0; sa_pred_entries[i].parse; ++i) {
struct sa_pred_ent *ent = &sa_pred_entries[i];
int len = sizeof(ss);
r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
if (r<0) {
TT_FAIL(("Couldn't parse %s!", ent->parse));
continue;
}
/* sockaddr_is_loopback */
if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
ent->parse));
}
}
}
static void
test_evutil_strtoll(void *ptr)
{
const char *s;
char *endptr;
tt_want(evutil_strtoll("5000000000", NULL, 10) ==
((ev_int64_t)5000000)*1000);
tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
((ev_int64_t)5000000)*-1000);
s = " 99999stuff";
tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
tt_want(endptr == s+6);
tt_want(evutil_strtoll("foo", NULL, 10) == 0);
}
static void
test_evutil_snprintf(void *ptr)
{
char buf[16];
int r;
ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
ev_int64_t i64 = -1 * (ev_int64_t) u64;
size_t size = 8000;
ev_ssize_t ssize = -9000;
r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
tt_str_op(buf, ==, "50 100");
tt_int_op(r, ==, 6);
r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
tt_str_op(buf, ==, "longish 1234567");
tt_int_op(r, ==, 18);
r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
tt_str_op(buf, ==, "200000000000");
tt_int_op(r, ==, 12);
r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
tt_str_op(buf, ==, "-200000000000");
tt_int_op(r, ==, 13);
r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
tt_str_op(buf, ==, "8000 -9000");
tt_int_op(r, ==, 10);
end:
;
}
static void
test_evutil_casecmp(void *ptr)
{
tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
end:
;
}
static void
test_evutil_rtrim(void *ptr)
{
#define TEST_TRIM(s, result) \
do { \
if (cp) mm_free(cp); \
cp = mm_strdup(s); \
tt_assert(cp); \
evutil_rtrim_lws_(cp); \
tt_str_op(cp, ==, result); \
} while(0)
char *cp = NULL;
(void) ptr;
TEST_TRIM("", "");
TEST_TRIM("a", "a");
TEST_TRIM("abcdef ghi", "abcdef ghi");
TEST_TRIM(" ", "");
TEST_TRIM(" ", "");
TEST_TRIM("a ", "a");
TEST_TRIM("abcdef gH ", "abcdef gH");
TEST_TRIM("\t\t", "");
TEST_TRIM(" \t", "");
TEST_TRIM("\t", "");
TEST_TRIM("a \t", "a");
TEST_TRIM("a\t ", "a");
TEST_TRIM("a\t", "a");
TEST_TRIM("abcdef gH \t ", "abcdef gH");
end:
if (cp)
mm_free(cp);
}
static int logsev = 0;
static char *logmsg = NULL;
static void
logfn(int severity, const char *msg)
{
logsev = severity;
tt_want(msg);
if (msg) {
if (logmsg)
free(logmsg);
logmsg = strdup(msg);
}
}
static int fatal_want_severity = 0;
static const char *fatal_want_message = NULL;
static void
fatalfn(int exitcode)
{
if (logsev != fatal_want_severity ||
!logmsg ||
strcmp(logmsg, fatal_want_message))
exit(0);
else
exit(exitcode);
}
#ifndef _WIN32
#define CAN_CHECK_ERR
static void
check_error_logging(void (*fn)(void), int wantexitcode,
int wantseverity, const char *wantmsg)
{
pid_t pid;
int status = 0, exitcode;
fatal_want_severity = wantseverity;
fatal_want_message = wantmsg;
if ((pid = regress_fork()) == 0) {
/* child process */
fn();
exit(0); /* should be unreachable. */
} else {
wait(&status);
exitcode = WEXITSTATUS(status);
tt_int_op(wantexitcode, ==, exitcode);
}
end:
;
}
static void
errx_fn(void)
{
event_errx(2, "Fatal error; too many kumquats (%d)", 5);
}
static void
err_fn(void)
{
errno = ENOENT;
event_err(5,"Couldn't open %s", "/very/bad/file");
}
static void
sock_err_fn(void)
{
evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
#ifdef _WIN32
EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
#else
errno = EAGAIN;
#endif
event_sock_err(20, fd, "Unhappy socket");
}
#endif
static void
test_evutil_log(void *ptr)
{
evutil_socket_t fd = -1;
char buf[128];
event_set_log_callback(logfn);
event_set_fatal_callback(fatalfn);
#define RESET() do { \
logsev = 0; \
if (logmsg) free(logmsg); \
logmsg = NULL; \
} while (0)
#define LOGEQ(sev,msg) do { \
tt_int_op(logsev,==,sev); \
tt_assert(logmsg != NULL); \
tt_str_op(logmsg,==,msg); \
} while (0)
#ifdef CAN_CHECK_ERR
/* We need to disable these tests for now. Previously, the logging
* module didn't enforce the requirement that a fatal callback
* actually exit. Now, it exits no matter what, so if we wan to
* reinstate these tests, we'll need to fork for each one. */
check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
"Fatal error; too many kumquats (5)");
RESET();
#endif
event_warnx("Far too many %s (%d)", "wombats", 99);
LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
RESET();
event_msgx("Connecting lime to coconut");
LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
RESET();
event_debug(("A millisecond passed! We should log that!"));
#ifdef USE_DEBUG
LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
#else
tt_int_op(logsev,==,0);
tt_ptr_op(logmsg,==,NULL);
#endif
RESET();
/* Try with an errno. */
errno = ENOENT;
event_warn("Couldn't open %s", "/bad/file");
evutil_snprintf(buf, sizeof(buf),
"Couldn't open /bad/file: %s",strerror(ENOENT));
LOGEQ(EVENT_LOG_WARN,buf);
RESET();
#ifdef CAN_CHECK_ERR
evutil_snprintf(buf, sizeof(buf),
"Couldn't open /very/bad/file: %s",strerror(ENOENT));
check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
RESET();
#endif
/* Try with a socket errno. */
fd = socket(AF_INET, SOCK_STREAM, 0);
#ifdef _WIN32
evutil_snprintf(buf, sizeof(buf),
"Unhappy socket: %s",
evutil_socket_error_to_string(WSAEWOULDBLOCK));
EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
#else
evutil_snprintf(buf, sizeof(buf),
"Unhappy socket: %s", strerror(EAGAIN));
errno = EAGAIN;
#endif
event_sock_warn(fd, "Unhappy socket");
LOGEQ(EVENT_LOG_WARN, buf);
RESET();
#ifdef CAN_CHECK_ERR
check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
RESET();
#endif
#undef RESET
#undef LOGEQ
end:
if (logmsg)
free(logmsg);
if (fd >= 0)
evutil_closesocket(fd);
}
static void
test_evutil_strlcpy(void *arg)
{
char buf[8];
/* Successful case. */
tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
tt_str_op(buf, ==, "Hello");
/* Overflow by a lot. */
tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
tt_str_op(buf, ==, "pentasy");
/* Overflow by exactly one. */
tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
tt_str_op(buf, ==, "overlon");
end:
;
}
struct example_struct {
const char *a;
const char *b;
long c;
};
static void
test_evutil_upcast(void *arg)
{
struct example_struct es1;
const char **cp;
es1.a = "World";
es1.b = "Hello";
es1.c = -99;
tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
cp = &es1.b;
tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
end:
;
}
static void
test_evutil_integers(void *arg)
{
ev_int64_t i64;
ev_uint64_t u64;
ev_int32_t i32;
ev_uint32_t u32;
ev_int16_t i16;
ev_uint16_t u16;
ev_int8_t i8;
ev_uint8_t u8;
void *ptr;
ev_intptr_t iptr;
ev_uintptr_t uptr;
ev_ssize_t ssize;
tt_int_op(sizeof(u64), ==, 8);
tt_int_op(sizeof(i64), ==, 8);
tt_int_op(sizeof(u32), ==, 4);
tt_int_op(sizeof(i32), ==, 4);
tt_int_op(sizeof(u16), ==, 2);
tt_int_op(sizeof(i16), ==, 2);
tt_int_op(sizeof(u8), ==, 1);
tt_int_op(sizeof(i8), ==, 1);
tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
u64 = 1000000000;
u64 *= 1000000000;
tt_assert(u64 / 1000000000 == 1000000000);
i64 = -1000000000;
i64 *= 1000000000;
tt_assert(i64 / 1000000000 == -1000000000);
u64 = EV_UINT64_MAX;
i64 = EV_INT64_MAX;
tt_assert(u64 > 0);
tt_assert(i64 > 0);
u64++;
/* i64++; */
tt_assert(u64 == 0);
/* tt_assert(i64 == EV_INT64_MIN); */
/* tt_assert(i64 < 0); */
u32 = EV_UINT32_MAX;
i32 = EV_INT32_MAX;
tt_assert(u32 > 0);
tt_assert(i32 > 0);
u32++;
/* i32++; */
tt_assert(u32 == 0);
/* tt_assert(i32 == EV_INT32_MIN); */
/* tt_assert(i32 < 0); */
u16 = EV_UINT16_MAX;
i16 = EV_INT16_MAX;
tt_assert(u16 > 0);
tt_assert(i16 > 0);
u16++;
/* i16++; */
tt_assert(u16 == 0);
/* tt_assert(i16 == EV_INT16_MIN); */
/* tt_assert(i16 < 0); */
u8 = EV_UINT8_MAX;
i8 = EV_INT8_MAX;
tt_assert(u8 > 0);
tt_assert(i8 > 0);
u8++;
/* i8++;*/
tt_assert(u8 == 0);
/* tt_assert(i8 == EV_INT8_MIN); */
/* tt_assert(i8 < 0); */
/*
ssize = EV_SSIZE_MAX;
tt_assert(ssize > 0);
ssize++;
tt_assert(ssize < 0);
tt_assert(ssize == EV_SSIZE_MIN);
*/
ptr = &ssize;
iptr = (ev_intptr_t)ptr;
uptr = (ev_uintptr_t)ptr;
ptr = (void *)iptr;
tt_assert(ptr == &ssize);
ptr = (void *)uptr;
tt_assert(ptr == &ssize);
iptr = -1;
tt_assert(iptr < 0);
end:
;
}
struct evutil_addrinfo *
ai_find_by_family(struct evutil_addrinfo *ai, int family)
{
while (ai) {
if (ai->ai_family == family)
return ai;
ai = ai->ai_next;
}
return NULL;
}
struct evutil_addrinfo *
ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
{
while (ai) {
if (ai->ai_protocol == protocol)
return ai;
ai = ai->ai_next;
}
return NULL;
}
int
test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
int socktype, int protocol, int line)
{
struct sockaddr_storage ss;
int slen = sizeof(ss);
int gotport;
char buf[128];
memset(&ss, 0, sizeof(ss));
if (socktype > 0)
tt_int_op(ai->ai_socktype, ==, socktype);
if (protocol > 0)
tt_int_op(ai->ai_protocol, ==, protocol);
if (evutil_parse_sockaddr_port(
sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
TT_FAIL(("Couldn't parse expected address %s on line %d",
sockaddr_port, line));
return -1;
}
if (ai->ai_family != ss.ss_family) {
TT_FAIL(("Address family %d did not match %d on line %d",
ai->ai_family, ss.ss_family, line));
return -1;
}
if (ai->ai_addr->sa_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
gotport = ntohs(sin->sin_port);
if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
TT_FAIL(("Addr size mismatch on line %d", line));
return -1;
}
} else {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
gotport = ntohs(sin6->sin6_port);
if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
TT_FAIL(("Addr size mismatch on line %d", line));
return -1;
}
}
if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
buf, gotport, line));
return -1;
} else {
TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
buf, gotport, line));
}
return 0;
end:
TT_FAIL(("Test failed on line %d", line));
return -1;
}
static void
test_evutil_rand(void *arg)
{
char buf1[32];
char buf2[32];
int counts[256];
int i, j, k, n=0;
struct evutil_weakrand_state seed = { 12346789U };
memset(buf2, 0, sizeof(buf2));
memset(counts, 0, sizeof(counts));
for (k=0;k<32;++k) {
/* Try a few different start and end points; try to catch
* the various misaligned cases of arc4random_buf */
int startpoint = evutil_weakrand_(&seed) % 4;
int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
memset(buf2, 0, sizeof(buf2));
/* Do 6 runs over buf1, or-ing the result into buf2 each
* time, to make sure we're setting each byte that we mean
* to set. */
for (i=0;i<8;++i) {
memset(buf1, 0, sizeof(buf1));
evutil_secure_rng_get_bytes(buf1 + startpoint,
endpoint-startpoint);
n += endpoint - startpoint;
for (j=0; j<32; ++j) {
if (j >= startpoint && j < endpoint) {
buf2[j] |= buf1[j];
++counts[(unsigned char)buf1[j]];
} else {
tt_assert(buf1[j] == 0);
tt_int_op(buf1[j], ==, 0);
}
}
}
/* This will give a false positive with P=(256**8)==(2**64)
* for each character. */
for (j=startpoint;j<endpoint;++j) {
tt_int_op(buf2[j], !=, 0);
}
}
evutil_weakrand_seed_(&seed, 0);
for (i = 0; i < 10000; ++i) {
ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
tt_int_op(0, <=, r);
tt_int_op(r, <, 9999);
}
/* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
end:
;
}
static void
test_evutil_getaddrinfo(void *arg)
{
struct evutil_addrinfo *ai = NULL, *a;
struct evutil_addrinfo hints;
int r;
/* Try using it as a pton. */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
tt_int_op(r, ==, 0);
tt_assert(ai);
tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_protocol = IPPROTO_UDP;
r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
tt_int_op(r, ==, 0);
tt_assert(ai);
tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
evutil_freeaddrinfo(ai);
ai = NULL;
/* Try out the behavior of nodename=NULL */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_INET;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
tt_int_op(r,==,0);
tt_assert(ai);
tt_ptr_op(ai->ai_next, ==, NULL);
test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
hints.ai_flags = 0; /* as if for connect */
r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
tt_assert(ai);
tt_int_op(r,==,0);
test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
tt_ptr_op(ai->ai_next, ==, NULL);
evutil_freeaddrinfo(ai);
ai = NULL;
hints.ai_flags = 0; /* as if for connect */
hints.ai_family = PF_INET6;
r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
tt_assert(ai);
tt_int_op(r,==,0);
tt_ptr_op(ai->ai_next, ==, NULL);
test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
hints.ai_family = PF_INET6;
r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
tt_assert(ai);
tt_int_op(r,==,0);
tt_ptr_op(ai->ai_next, ==, NULL);
test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
/* Now try an unspec one. We should get a v6 and a v4. */
hints.ai_family = PF_UNSPEC;
r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
tt_assert(ai);
tt_int_op(r,==,0);
a = ai_find_by_family(ai, PF_INET6);
tt_assert(a);
test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
a = ai_find_by_family(ai, PF_INET);
tt_assert(a);
test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
/* Try out AI_NUMERICHOST: successful case. Also try
* multiprotocol. */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_flags = EVUTIL_AI_NUMERICHOST;
r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
tt_int_op(r, ==, 0);
a = ai_find_by_protocol(ai, IPPROTO_TCP);
tt_assert(a);
test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
a = ai_find_by_protocol(ai, IPPROTO_UDP);
tt_assert(a);
test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
evutil_freeaddrinfo(ai);
ai = NULL;
/* Try the failing case of AI_NUMERICHOST */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_flags = EVUTIL_AI_NUMERICHOST;
r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
tt_int_op(r, ==, EVUTIL_EAI_NONAME);
tt_ptr_op(ai, ==, NULL);
/* Try symbolic service names wit AI_NUMERICSERV */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = EVUTIL_AI_NUMERICSERV;
r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
tt_int_op(r,==,EVUTIL_EAI_NONAME);
/* Try symbolic service names */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
if (r!=0) {
TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
} else {
tt_assert(ai);
test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
evutil_freeaddrinfo(ai);
ai = NULL;
}
end:
if (ai)
evutil_freeaddrinfo(ai);
}
static void
test_evutil_getaddrinfo_live(void *arg)
{
struct evutil_addrinfo *ai = NULL;
struct evutil_addrinfo hints;
struct sockaddr_in6 *sin6;
struct sockaddr_in *sin;
char buf[128];
const char *cp;
int r;
/* Now do some actual lookups. */
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_INET;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_socktype = SOCK_STREAM;
r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
if (r != 0) {
TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
} else {
tt_assert(ai);
tt_int_op(ai->ai_family, ==, PF_INET);
tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
sin = (struct sockaddr_in*)ai->ai_addr;
tt_int_op(sin->sin_family, ==, AF_INET);
tt_int_op(sin->sin_port, ==, htons(80));
tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
TT_BLATHER(("www.google.com resolved to %s",
cp?cp:"<unwriteable>"));
evutil_freeaddrinfo(ai);
ai = NULL;
}
hints.ai_family = PF_INET6;
r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
if (r != 0) {
TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
} else {
tt_assert(ai);
tt_int_op(ai->ai_family, ==, PF_INET6);
tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
sin6 = (struct sockaddr_in6*)ai->ai_addr;
tt_int_op(sin6->sin6_port, ==, htons(80));
cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
sizeof(buf));
TT_BLATHER(("ipv6.google.com resolved to %s",
cp?cp:"<unwriteable>"));
}
end:
if (ai)
evutil_freeaddrinfo(ai);
}
#ifdef _WIN32
static void
test_evutil_loadsyslib(void *arg)
{
HMODULE h=NULL;
h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
tt_assert(h);
end:
if (h)
CloseHandle(h);
}
#endif
/** Test mm_malloc(). */
static void
test_event_malloc(void *arg)
{
void *p = NULL;
(void)arg;
/* mm_malloc(0) should simply return NULL. */
#ifndef EVENT__DISABLE_MM_REPLACEMENT
errno = 0;
p = mm_malloc(0);
tt_assert(p == NULL);
tt_int_op(errno, ==, 0);
#endif
/* Trivial case. */
errno = 0;
p = mm_malloc(8);
tt_assert(p != NULL);
tt_int_op(errno, ==, 0);
mm_free(p);
end:
errno = 0;
return;
}
static void
test_event_calloc(void *arg)
{
void *p = NULL;
(void)arg;
#ifndef EVENT__DISABLE_MM_REPLACEMENT
/* mm_calloc() should simply return NULL
* if either argument is zero. */
errno = 0;
p = mm_calloc(0, 0);
tt_assert(p == NULL);
tt_int_op(errno, ==, 0);
errno = 0;
p = mm_calloc(0, 1);
tt_assert(p == NULL);
tt_int_op(errno, ==, 0);
errno = 0;
p = mm_calloc(1, 0);
tt_assert(p == NULL);
tt_int_op(errno, ==, 0);
#endif
/* Trivial case. */
errno = 0;
p = mm_calloc(8, 8);
tt_assert(p != NULL);
tt_int_op(errno, ==, 0);
mm_free(p);
p = NULL;
/* mm_calloc() should set errno = ENOMEM and return NULL
* in case of potential overflow. */
errno = 0;
p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
tt_assert(p == NULL);
tt_int_op(errno, ==, ENOMEM);
end:
errno = 0;
if (p)
mm_free(p);
return;
}
static void
test_event_strdup(void *arg)
{
void *p = NULL;
(void)arg;
#ifndef EVENT__DISABLE_MM_REPLACEMENT
/* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
errno = 0;
p = mm_strdup(NULL);
tt_assert(p == NULL);
tt_int_op(errno, ==, EINVAL);
#endif
/* Trivial cases. */
errno = 0;
p = mm_strdup("");
tt_assert(p != NULL);
tt_int_op(errno, ==, 0);
tt_str_op(p, ==, "");
mm_free(p);
errno = 0;
p = mm_strdup("foo");
tt_assert(p != NULL);
tt_int_op(errno, ==, 0);
tt_str_op(p, ==, "foo");
mm_free(p);
/* XXX
* mm_strdup(str) where str is a string of length EV_SIZE_MAX
* should set errno = ENOMEM and return NULL. */
end:
errno = 0;
return;
}
static void
test_evutil_usleep(void *arg)
{
struct timeval tv1, tv2, tv3, diff1, diff2;
const struct timeval quarter_sec = {0, 250*1000};
const struct timeval tenth_sec = {0, 100*1000};
long usec1, usec2;
evutil_gettimeofday(&tv1, NULL);
evutil_usleep_(&quarter_sec);
evutil_gettimeofday(&tv2, NULL);
evutil_usleep_(&tenth_sec);
evutil_gettimeofday(&tv3, NULL);
evutil_timersub(&tv2, &tv1, &diff1);
evutil_timersub(&tv3, &tv2, &diff2);
usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
tt_int_op(usec1, >, 200000);
tt_int_op(usec1, <, 300000);
tt_int_op(usec2, >, 80000);
tt_int_op(usec2, <, 120000);
end:
;
}
static void
test_evutil_monotonic_res(void *data_)
{
/* Basic santity-test for monotonic timers. What we'd really like
* to do is make sure that they can't go backwards even when the
* system clock goes backwards. But we haven't got a good way to
* move the system clock backwards.
*/
struct basic_test_data *data = data_;
struct evutil_monotonic_timer timer;
const int precise = strstr(data->setup_data, "precise") != NULL;
const int fallback = strstr(data->setup_data, "fallback") != NULL;
struct timeval tv[10], delay;
int total_diff = 0;
int flags = 0, wantres, acceptdiff, i;
if (precise)
flags |= EV_MONOT_PRECISE;
if (fallback)
flags |= EV_MONOT_FALLBACK;
if (precise || fallback) {
#ifdef _WIN32
wantres = 10*1000;
acceptdiff = 1000;
#else
wantres = 1000;
acceptdiff = 300;
#endif
} else {
wantres = 40*1000;
acceptdiff = 20*1000;
}
TT_BLATHER(("Precise = %d", precise));
TT_BLATHER(("Fallback = %d", fallback));
/* First, make sure we match up with usleep. */
delay.tv_sec = 0;
delay.tv_usec = wantres;
tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
for (i = 0; i < 10; ++i) {
evutil_gettime_monotonic_(&timer, &tv[i]);
evutil_usleep_(&delay);
}
for (i = 0; i < 9; ++i) {
struct timeval diff;
tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
evutil_timersub(&tv[i+1], &tv[i], &diff);
tt_int_op(diff.tv_sec, ==, 0);
total_diff += diff.tv_usec;
TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
}
tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
end:
;
}
static void
test_evutil_monotonic_prc(void *data_)
{
struct basic_test_data *data = data_;
struct evutil_monotonic_timer timer;
const int precise = strstr(data->setup_data, "precise") != NULL;
const int fallback = strstr(data->setup_data, "fallback") != NULL;
struct timeval tv[10];
int total_diff = 0;
int i, maxstep = 25*1000,flags=0;
if (precise)
maxstep = 500;
if (precise)
flags |= EV_MONOT_PRECISE;
if (fallback)
flags |= EV_MONOT_FALLBACK;
tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
/* find out what precision we actually see. */
evutil_gettime_monotonic_(&timer, &tv[0]);
for (i = 1; i < 10; ++i) {
do {
evutil_gettime_monotonic_(&timer, &tv[i]);
} while (evutil_timercmp(&tv[i-1], &tv[i], ==));
}
total_diff = 0;
for (i = 0; i < 9; ++i) {
struct timeval diff;
tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
evutil_timersub(&tv[i+1], &tv[i], &diff);
tt_int_op(diff.tv_sec, ==, 0);
total_diff += diff.tv_usec;
TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
}
TT_BLATHER(("Average step difference = %d", total_diff / 9));
tt_int_op(total_diff/9, <, maxstep);
end:
;
}
struct testcase_t util_testcases[] = {
{ "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
{ "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
{ "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
{ "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
{ "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
{ "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
{ "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
{ "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
{ "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
{ "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
{ "log", test_evutil_log, TT_FORK, NULL, NULL },
{ "upcast", test_evutil_upcast, 0, NULL, NULL },
{ "integers", test_evutil_integers, 0, NULL, NULL },
{ "rand", test_evutil_rand, TT_FORK, NULL, NULL },
{ "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
{ "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
#ifdef _WIN32
{ "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
#endif
{ "mm_malloc", test_event_malloc, 0, NULL, NULL },
{ "mm_calloc", test_event_calloc, 0, NULL, NULL },
{ "mm_strdup", test_event_strdup, 0, NULL, NULL },
{ "usleep", test_evutil_usleep, 0, NULL, NULL },
{ "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" },
{ "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" },
{ "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" },
{ "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" },
{ "monotonic_prc_precise", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"precise" },
{ "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" },
END_OF_TESTCASES,
};