libevent/test/regress.c

3062 lines
71 KiB
C

/*
* Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
* Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "util-internal.h"
#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#endif
#include "event2/event-config.h"
#include <sys/types.h>
#include <sys/stat.h>
#ifdef EVENT__HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <sys/queue.h>
#ifndef _WIN32
#include <sys/socket.h>
#include <sys/wait.h>
#include <signal.h>
#include <unistd.h>
#include <netdb.h>
#endif
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <ctype.h>
#include "event2/event.h"
#include "event2/event_struct.h"
#include "event2/event_compat.h"
#include "event2/tag.h"
#include "event2/buffer.h"
#include "event2/buffer_compat.h"
#include "event2/util.h"
#include "event-internal.h"
#include "evthread-internal.h"
#include "log-internal.h"
#include "time-internal.h"
#include "regress.h"
#ifndef _WIN32
#include "regress.gen.h"
#endif
evutil_socket_t pair[2];
int test_ok;
int called;
struct event_base *global_base;
static char wbuf[4096];
static char rbuf[4096];
static int woff;
static int roff;
static int usepersist;
static struct timeval tset;
static struct timeval tcalled;
#define TEST1 "this is a test"
#ifndef SHUT_WR
#define SHUT_WR 1
#endif
#ifdef _WIN32
#define write(fd,buf,len) send((fd),(buf),(int)(len),0)
#define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
#endif
struct basic_cb_args
{
struct event_base *eb;
struct event *ev;
unsigned int callcount;
};
static void
simple_read_cb(evutil_socket_t fd, short event, void *arg)
{
char buf[256];
int len;
len = read(fd, buf, sizeof(buf));
if (len) {
if (!called) {
if (event_add(arg, NULL) == -1)
exit(1);
}
} else if (called == 1)
test_ok = 1;
called++;
}
static void
basic_read_cb(evutil_socket_t fd, short event, void *data)
{
char buf[256];
int len;
struct basic_cb_args *arg = data;
len = read(fd, buf, sizeof(buf));
if (len < 0) {
tt_fail_perror("read (callback)");
} else {
switch (arg->callcount++) {
case 0: /* first call: expect to read data; cycle */
if (len > 0)
return;
tt_fail_msg("EOF before data read");
break;
case 1: /* second call: expect EOF; stop */
if (len > 0)
tt_fail_msg("not all data read on first cycle");
break;
default: /* third call: should not happen */
tt_fail_msg("too many cycles");
}
}
event_del(arg->ev);
event_base_loopexit(arg->eb, NULL);
}
static void
dummy_read_cb(evutil_socket_t fd, short event, void *arg)
{
}
static void
simple_write_cb(evutil_socket_t fd, short event, void *arg)
{
int len;
len = write(fd, TEST1, strlen(TEST1) + 1);
if (len == -1)
test_ok = 0;
else
test_ok = 1;
}
static void
multiple_write_cb(evutil_socket_t fd, short event, void *arg)
{
struct event *ev = arg;
int len;
len = 128;
if (woff + len >= (int)sizeof(wbuf))
len = sizeof(wbuf) - woff;
len = write(fd, wbuf + woff, len);
if (len == -1) {
fprintf(stderr, "%s: write\n", __func__);
if (usepersist)
event_del(ev);
return;
}
woff += len;
if (woff >= (int)sizeof(wbuf)) {
shutdown(fd, SHUT_WR);
if (usepersist)
event_del(ev);
return;
}
if (!usepersist) {
if (event_add(ev, NULL) == -1)
exit(1);
}
}
static void
multiple_read_cb(evutil_socket_t fd, short event, void *arg)
{
struct event *ev = arg;
int len;
len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
if (len == -1)
fprintf(stderr, "%s: read\n", __func__);
if (len <= 0) {
if (usepersist)
event_del(ev);
return;
}
roff += len;
if (!usepersist) {
if (event_add(ev, NULL) == -1)
exit(1);
}
}
static void
timeout_cb(evutil_socket_t fd, short event, void *arg)
{
evutil_gettimeofday(&tcalled, NULL);
}
struct both {
struct event ev;
int nread;
};
static void
combined_read_cb(evutil_socket_t fd, short event, void *arg)
{
struct both *both = arg;
char buf[128];
int len;
len = read(fd, buf, sizeof(buf));
if (len == -1)
fprintf(stderr, "%s: read\n", __func__);
if (len <= 0)
return;
both->nread += len;
if (event_add(&both->ev, NULL) == -1)
exit(1);
}
static void
combined_write_cb(evutil_socket_t fd, short event, void *arg)
{
struct both *both = arg;
char buf[128];
int len;
len = sizeof(buf);
if (len > both->nread)
len = both->nread;
memset(buf, 'q', len);
len = write(fd, buf, len);
if (len == -1)
fprintf(stderr, "%s: write\n", __func__);
if (len <= 0) {
shutdown(fd, SHUT_WR);
return;
}
both->nread -= len;
if (event_add(&both->ev, NULL) == -1)
exit(1);
}
/* These macros used to replicate the work of the legacy test wrapper code */
#define setup_test(x) do { \
if (!in_legacy_test_wrapper) { \
TT_FAIL(("Legacy test %s not wrapped properly", x)); \
return; \
} \
} while (0)
#define cleanup_test() setup_test("cleanup")
static void
test_simpleread(void)
{
struct event ev;
/* Very simple read test */
setup_test("Simple read: ");
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
shutdown(pair[0], SHUT_WR);
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
static void
test_simplewrite(void)
{
struct event ev;
/* Very simple write test */
setup_test("Simple write: ");
event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
static void
simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
{
if (++called == 2)
test_ok = 1;
}
static void
test_simpleread_multiple(void)
{
struct event one, two;
/* Very simple read test */
setup_test("Simple read to multiple evens: ");
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
shutdown(pair[0], SHUT_WR);
event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
if (event_add(&one, NULL) == -1)
exit(1);
event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
if (event_add(&two, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
static int have_closed = 0;
static int premature_event = 0;
static void
simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
{
evutil_socket_t **fds = ptr;
TT_BLATHER(("Closing"));
evutil_closesocket(*fds[0]);
evutil_closesocket(*fds[1]);
*fds[0] = -1;
*fds[1] = -1;
have_closed = 1;
}
static void
record_event_cb(evutil_socket_t s, short what, void *ptr)
{
short *whatp = ptr;
if (!have_closed)
premature_event = 1;
*whatp = what;
TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
}
static void
test_simpleclose(void *ptr)
{
/* Test that a close of FD is detected as a read and as a write. */
struct event_base *base = event_base_new();
evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
evutil_socket_t *to_close[2];
struct event *rev=NULL, *wev=NULL, *closeev=NULL;
struct timeval tv;
short got_read_on_close = 0, got_write_on_close = 0;
char buf[1024];
memset(buf, 99, sizeof(buf));
#ifdef _WIN32
#define LOCAL_SOCKETPAIR_AF AF_INET
#else
#define LOCAL_SOCKETPAIR_AF AF_UNIX
#endif
if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
TT_DIE(("socketpair: %s", strerror(errno)));
if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
TT_DIE(("socketpair: %s", strerror(errno)));
if (evutil_make_socket_nonblocking(pair1[1]) < 0)
TT_DIE(("make_socket_nonblocking"));
if (evutil_make_socket_nonblocking(pair2[1]) < 0)
TT_DIE(("make_socket_nonblocking"));
/** Stuff pair2[1] full of data, until write fails */
while (1) {
int r = write(pair2[1], buf, sizeof(buf));
if (r<0) {
int err = evutil_socket_geterror(pair2[1]);
if (! EVUTIL_ERR_RW_RETRIABLE(err))
TT_DIE(("write failed strangely: %s",
evutil_socket_error_to_string(err)));
break;
}
}
to_close[0] = &pair1[0];
to_close[1] = &pair2[0];
closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
to_close);
rev = event_new(base, pair1[1], EV_READ, record_event_cb,
&got_read_on_close);
TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
&got_write_on_close);
TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
tv.tv_sec = 0;
tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
* sure we get a read event. */
event_add(closeev, &tv);
event_add(rev, NULL);
event_add(wev, NULL);
/* Don't let the test go on too long. */
tv.tv_sec = 0;
tv.tv_usec = 200*1000;
event_base_loopexit(base, &tv);
event_base_loop(base, 0);
tt_int_op(got_read_on_close, ==, EV_READ);
tt_int_op(got_write_on_close, ==, EV_WRITE);
tt_int_op(premature_event, ==, 0);
end:
if (pair1[0] >= 0)
evutil_closesocket(pair1[0]);
if (pair1[1] >= 0)
evutil_closesocket(pair1[1]);
if (pair2[0] >= 0)
evutil_closesocket(pair2[0]);
if (pair2[1] >= 0)
evutil_closesocket(pair2[1]);
if (rev)
event_free(rev);
if (wev)
event_free(wev);
if (closeev)
event_free(closeev);
if (base)
event_base_free(base);
}
static void
test_multiple(void)
{
struct event ev, ev2;
int i;
/* Multiple read and write test */
setup_test("Multiple read/write: ");
memset(rbuf, 0, sizeof(rbuf));
for (i = 0; i < (int)sizeof(wbuf); i++)
wbuf[i] = i;
roff = woff = 0;
usepersist = 0;
event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
if (event_add(&ev2, NULL) == -1)
exit(1);
event_dispatch();
if (roff == woff)
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
cleanup_test();
}
static void
test_persistent(void)
{
struct event ev, ev2;
int i;
/* Multiple read and write test with persist */
setup_test("Persist read/write: ");
memset(rbuf, 0, sizeof(rbuf));
for (i = 0; i < (int)sizeof(wbuf); i++)
wbuf[i] = i;
roff = woff = 0;
usepersist = 1;
event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
if (event_add(&ev2, NULL) == -1)
exit(1);
event_dispatch();
if (roff == woff)
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
cleanup_test();
}
static void
test_combined(void)
{
struct both r1, r2, w1, w2;
setup_test("Combined read/write: ");
memset(&r1, 0, sizeof(r1));
memset(&r2, 0, sizeof(r2));
memset(&w1, 0, sizeof(w1));
memset(&w2, 0, sizeof(w2));
w1.nread = 4096;
w2.nread = 8192;
event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
tt_assert(event_add(&r1.ev, NULL) != -1);
tt_assert(!event_add(&w1.ev, NULL));
tt_assert(!event_add(&r2.ev, NULL));
tt_assert(!event_add(&w2.ev, NULL));
event_dispatch();
if (r1.nread == 8192 && r2.nread == 4096)
test_ok = 1;
end:
cleanup_test();
}
static void
test_simpletimeout(void)
{
struct timeval tv;
struct event ev;
setup_test("Simple timeout: ");
tv.tv_usec = 200*1000;
tv.tv_sec = 0;
evutil_timerclear(&tcalled);
evtimer_set(&ev, timeout_cb, NULL);
evtimer_add(&ev, &tv);
evutil_gettimeofday(&tset, NULL);
event_dispatch();
test_timeval_diff_eq(&tset, &tcalled, 200);
test_ok = 1;
end:
cleanup_test();
}
static void
periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
{
int *count = arg;
(*count)++;
if (*count == 6) {
/* call loopexit only once - on slow machines(?), it is
* apparently possible for this to get called twice. */
test_ok = 1;
event_base_loopexit(global_base, NULL);
}
}
static void
test_persistent_timeout(void)
{
struct timeval tv;
struct event ev;
int count = 0;
evutil_timerclear(&tv);
tv.tv_usec = 10000;
event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
periodic_timeout_cb, &count);
event_add(&ev, &tv);
event_dispatch();
event_del(&ev);
}
static void
test_persistent_timeout_jump(void *ptr)
{
struct basic_test_data *data = ptr;
struct event ev;
int count = 0;
struct timeval msec100 = { 0, 100 * 1000 };
struct timeval msec50 = { 0, 50 * 1000 };
struct timeval msec300 = { 0, 300 * 1000 };
event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
event_add(&ev, &msec100);
/* Wait for a bit */
evutil_usleep_(&msec300);
event_base_loopexit(data->base, &msec50);
event_base_dispatch(data->base);
tt_int_op(count, ==, 1);
end:
event_del(&ev);
}
struct persist_active_timeout_called {
int n;
short events[16];
struct timeval tvs[16];
};
static void
activate_cb(evutil_socket_t fd, short event, void *arg)
{
struct event *ev = arg;
event_active(ev, EV_READ, 1);
}
static void
persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
{
struct persist_active_timeout_called *c = arg;
if (c->n < 15) {
c->events[c->n] = event;
evutil_gettimeofday(&c->tvs[c->n], NULL);
++c->n;
}
}
static void
test_persistent_active_timeout(void *ptr)
{
struct timeval tv, tv2, tv_exit, start;
struct event ev;
struct persist_active_timeout_called res;
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
memset(&res, 0, sizeof(res));
tv.tv_sec = 0;
tv.tv_usec = 200 * 1000;
event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
persist_active_timeout_cb, &res);
event_add(&ev, &tv);
tv2.tv_sec = 0;
tv2.tv_usec = 100 * 1000;
event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
tv_exit.tv_sec = 0;
tv_exit.tv_usec = 600 * 1000;
event_base_loopexit(base, &tv_exit);
event_base_assert_ok_(base);
evutil_gettimeofday(&start, NULL);
event_base_dispatch(base);
event_base_assert_ok_(base);
tt_int_op(res.n, ==, 3);
tt_int_op(res.events[0], ==, EV_READ);
tt_int_op(res.events[1], ==, EV_TIMEOUT);
tt_int_op(res.events[2], ==, EV_TIMEOUT);
test_timeval_diff_eq(&start, &res.tvs[0], 100);
test_timeval_diff_eq(&start, &res.tvs[1], 300);
test_timeval_diff_eq(&start, &res.tvs[2], 500);
end:
event_del(&ev);
}
struct common_timeout_info {
struct event ev;
struct timeval called_at;
int which;
int count;
};
static void
common_timeout_cb(evutil_socket_t fd, short event, void *arg)
{
struct common_timeout_info *ti = arg;
++ti->count;
evutil_gettimeofday(&ti->called_at, NULL);
if (ti->count >= 4)
event_del(&ti->ev);
}
static void
test_common_timeout(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
int i;
struct common_timeout_info info[100];
struct timeval start;
struct timeval tmp_100_ms = { 0, 100*1000 };
struct timeval tmp_200_ms = { 0, 200*1000 };
struct timeval tmp_5_sec = { 5, 0 };
struct timeval tmp_5M_usec = { 0, 5*1000*1000 };
const struct timeval *ms_100, *ms_200, *sec_5;
ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
sec_5 = event_base_init_common_timeout(base, &tmp_5_sec);
tt_assert(ms_100);
tt_assert(ms_200);
tt_assert(sec_5);
tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
==, ms_200);
tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200);
tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5);
tt_int_op(ms_100->tv_sec, ==, 0);
tt_int_op(ms_200->tv_sec, ==, 0);
tt_int_op(sec_5->tv_sec, ==, 5);
tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
tt_int_op(sec_5->tv_usec, ==, 0|0x50200000);
memset(info, 0, sizeof(info));
for (i=0; i<100; ++i) {
info[i].which = i;
event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
common_timeout_cb, &info[i]);
if (i % 2) {
if ((i%20)==1) {
/* Glass-box test: Make sure we survive the
* transition to non-common timeouts. It's
* a little tricky. */
event_add(&info[i].ev, ms_200);
event_add(&info[i].ev, &tmp_100_ms);
} else if ((i%20)==3) {
/* Check heap-to-common too. */
event_add(&info[i].ev, &tmp_200_ms);
event_add(&info[i].ev, ms_100);
} else if ((i%20)==5) {
/* Also check common-to-common. */
event_add(&info[i].ev, ms_200);
event_add(&info[i].ev, ms_100);
} else {
event_add(&info[i].ev, ms_100);
}
} else {
event_add(&info[i].ev, ms_200);
}
}
event_base_assert_ok_(base);
evutil_gettimeofday(&start, NULL);
event_base_dispatch(base);
event_base_assert_ok_(base);
for (i=0; i<10; ++i) {
tt_int_op(info[i].count, ==, 4);
if (i % 2) {
test_timeval_diff_eq(&start, &info[i].called_at, 400);
} else {
test_timeval_diff_eq(&start, &info[i].called_at, 800);
}
}
/* Make sure we can free the base with some events in. */
for (i=0; i<100; ++i) {
if (i % 2) {
event_add(&info[i].ev, ms_100);
} else {
event_add(&info[i].ev, ms_200);
}
}
end:
event_base_free(data->base); /* need to do this here before info is
* out-of-scope */
data->base = NULL;
}
#ifndef _WIN32
static void signal_cb(evutil_socket_t fd, short event, void *arg);
#define current_base event_global_current_base_
extern struct event_base *current_base;
static void
child_signal_cb(evutil_socket_t fd, short event, void *arg)
{
struct timeval tv;
int *pint = arg;
*pint = 1;
tv.tv_usec = 500000;
tv.tv_sec = 0;
event_loopexit(&tv);
}
static void
test_fork(void)
{
int status, got_sigchld = 0;
struct event ev, sig_ev;
pid_t pid;
setup_test("After fork: ");
tt_assert(current_base);
evthread_make_base_notifiable(current_base);
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
evsignal_add(&sig_ev, NULL);
event_base_assert_ok_(current_base);
TT_BLATHER(("Before fork"));
if ((pid = regress_fork()) == 0) {
/* in the child */
TT_BLATHER(("In child, before reinit"));
event_base_assert_ok_(current_base);
if (event_reinit(current_base) == -1) {
fprintf(stdout, "FAILED (reinit)\n");
exit(1);
}
TT_BLATHER(("After reinit"));
event_base_assert_ok_(current_base);
TT_BLATHER(("After assert-ok"));
evsignal_del(&sig_ev);
called = 0;
event_dispatch();
event_base_free(current_base);
/* we do not send an EOF; simple_read_cb requires an EOF
* to set test_ok. we just verify that the callback was
* called. */
exit(test_ok != 0 || called != 2 ? -2 : 76);
}
/* wait for the child to read the data */
{
const struct timeval tv = { 0, 100000 };
evutil_usleep_(&tv);
}
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
TT_BLATHER(("Before waitpid"));
if (waitpid(pid, &status, 0) == -1) {
fprintf(stdout, "FAILED (fork)\n");
exit(1);
}
TT_BLATHER(("After waitpid"));
if (WEXITSTATUS(status) != 76) {
fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
exit(1);
}
/* test that the current event loop still works */
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
fprintf(stderr, "%s: write\n", __func__);
}
shutdown(pair[0], SHUT_WR);
event_dispatch();
if (!got_sigchld) {
fprintf(stdout, "FAILED (sigchld)\n");
exit(1);
}
evsignal_del(&sig_ev);
end:
cleanup_test();
}
static void
signal_cb_sa(int sig)
{
test_ok = 2;
}
static void
signal_cb(evutil_socket_t fd, short event, void *arg)
{
struct event *ev = arg;
evsignal_del(ev);
test_ok = 1;
}
static void
test_simplesignal(void)
{
struct event ev;
struct itimerval itv;
setup_test("Simple signal: ");
evsignal_set(&ev, SIGALRM, signal_cb, &ev);
evsignal_add(&ev, NULL);
/* find bugs in which operations are re-ordered */
evsignal_del(&ev);
evsignal_add(&ev, NULL);
memset(&itv, 0, sizeof(itv));
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 100000;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
goto skip_simplesignal;
event_dispatch();
skip_simplesignal:
if (evsignal_del(&ev) == -1)
test_ok = 0;
cleanup_test();
}
static void
test_multiplesignal(void)
{
struct event ev_one, ev_two;
struct itimerval itv;
setup_test("Multiple signal: ");
evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
evsignal_add(&ev_one, NULL);
evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
evsignal_add(&ev_two, NULL);
memset(&itv, 0, sizeof(itv));
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 100000;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
goto skip_simplesignal;
event_dispatch();
skip_simplesignal:
if (evsignal_del(&ev_one) == -1)
test_ok = 0;
if (evsignal_del(&ev_two) == -1)
test_ok = 0;
cleanup_test();
}
static void
test_immediatesignal(void)
{
struct event ev;
test_ok = 0;
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
evsignal_add(&ev, NULL);
raise(SIGUSR1);
event_loop(EVLOOP_NONBLOCK);
evsignal_del(&ev);
cleanup_test();
}
static void
test_signal_dealloc(void)
{
/* make sure that evsignal_event is event_del'ed and pipe closed */
struct event ev;
struct event_base *base = event_init();
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
evsignal_add(&ev, NULL);
evsignal_del(&ev);
event_base_free(base);
/* If we got here without asserting, we're fine. */
test_ok = 1;
cleanup_test();
}
static void
test_signal_pipeloss(void)
{
/* make sure that the base1 pipe is closed correctly. */
struct event_base *base1, *base2;
int pipe1;
test_ok = 0;
base1 = event_init();
pipe1 = base1->sig.ev_signal_pair[0];
base2 = event_init();
event_base_free(base2);
event_base_free(base1);
if (close(pipe1) != -1 || errno!=EBADF) {
/* fd must be closed, so second close gives -1, EBADF */
printf("signal pipe not closed. ");
test_ok = 0;
} else {
test_ok = 1;
}
cleanup_test();
}
/*
* make two bases to catch signals, use both of them. this only works
* for event mechanisms that use our signal pipe trick. kqueue handles
* signals internally, and all interested kqueues get all the signals.
*/
static void
test_signal_switchbase(void)
{
struct event ev1, ev2;
struct event_base *base1, *base2;
int is_kqueue;
test_ok = 0;
base1 = event_init();
base2 = event_init();
is_kqueue = !strcmp(event_get_method(),"kqueue");
evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
if (event_base_set(base1, &ev1) ||
event_base_set(base2, &ev2) ||
event_add(&ev1, NULL) ||
event_add(&ev2, NULL)) {
fprintf(stderr, "%s: cannot set base, add\n", __func__);
exit(1);
}
tt_ptr_op(event_get_base(&ev1), ==, base1);
tt_ptr_op(event_get_base(&ev2), ==, base2);
test_ok = 0;
/* can handle signal before loop is called */
raise(SIGUSR1);
event_base_loop(base2, EVLOOP_NONBLOCK);
if (is_kqueue) {
if (!test_ok)
goto end;
test_ok = 0;
}
event_base_loop(base1, EVLOOP_NONBLOCK);
if (test_ok && !is_kqueue) {
test_ok = 0;
/* set base1 to handle signals */
event_base_loop(base1, EVLOOP_NONBLOCK);
raise(SIGUSR1);
event_base_loop(base1, EVLOOP_NONBLOCK);
event_base_loop(base2, EVLOOP_NONBLOCK);
}
end:
event_base_free(base1);
event_base_free(base2);
cleanup_test();
}
/*
* assert that a signal event removed from the event queue really is
* removed - with no possibility of it's parent handler being fired.
*/
static void
test_signal_assert(void)
{
struct event ev;
struct event_base *base = event_init();
test_ok = 0;
/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
evsignal_set(&ev, SIGCONT, signal_cb, &ev);
evsignal_add(&ev, NULL);
/*
* if evsignal_del() fails to reset the handler, it's current handler
* will still point to evsig_handler().
*/
evsignal_del(&ev);
raise(SIGCONT);
#if 0
/* only way to verify we were in evsig_handler() */
/* XXXX Now there's no longer a good way. */
if (base->sig.evsig_caught)
test_ok = 0;
else
test_ok = 1;
#else
test_ok = 1;
#endif
event_base_free(base);
cleanup_test();
return;
}
/*
* assert that we restore our previous signal handler properly.
*/
static void
test_signal_restore(void)
{
struct event ev;
struct event_base *base = event_init();
#ifdef EVENT__HAVE_SIGACTION
struct sigaction sa;
#endif
test_ok = 0;
#ifdef EVENT__HAVE_SIGACTION
sa.sa_handler = signal_cb_sa;
sa.sa_flags = 0x0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGUSR1, &sa, NULL) == -1)
goto out;
#else
if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
goto out;
#endif
evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
evsignal_add(&ev, NULL);
evsignal_del(&ev);
raise(SIGUSR1);
/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
if (test_ok != 2)
test_ok = 0;
out:
event_base_free(base);
cleanup_test();
return;
}
static void
signal_cb_swp(int sig, short event, void *arg)
{
called++;
if (called < 5)
raise(sig);
else
event_loopexit(NULL);
}
static void
timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
{
if (called == -1) {
struct timeval tv = {5, 0};
called = 0;
evtimer_add((struct event *)arg, &tv);
raise(SIGUSR1);
return;
}
test_ok = 0;
event_loopexit(NULL);
}
static void
test_signal_while_processing(void)
{
struct event_base *base = event_init();
struct event ev, ev_timer;
struct timeval tv = {0, 0};
setup_test("Receiving a signal while processing other signal: ");
called = -1;
test_ok = 1;
signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
signal_add(&ev, NULL);
evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
evtimer_add(&ev_timer, &tv);
event_dispatch();
event_base_free(base);
cleanup_test();
return;
}
#endif
static void
test_free_active_base(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base1;
struct event ev1;
base1 = event_init();
if (base1) {
event_assign(&ev1, base1, data->pair[1], EV_READ,
dummy_read_cb, NULL);
event_add(&ev1, NULL);
event_base_free(base1); /* should not crash */
} else {
tt_fail_msg("failed to create event_base for test");
}
base1 = event_init();
tt_assert(base1);
event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
event_active(&ev1, EV_READ, 1);
event_base_free(base1);
end:
;
}
static void
test_manipulate_active_events(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event ev1;
event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
/* Make sure an active event is pending. */
event_active(&ev1, EV_READ, 1);
tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
==, EV_READ);
/* Make sure that activating an event twice works. */
event_active(&ev1, EV_WRITE, 1);
tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
==, EV_READ|EV_WRITE);
end:
event_del(&ev1);
}
static void
event_selfarg_cb(evutil_socket_t fd, short event, void *arg)
{
struct event *ev = arg;
struct event_base *base = event_get_base(ev);
event_base_assert_ok_(base);
event_base_loopexit(base, NULL);
tt_want(ev == event_base_get_running_event(base));
}
static void
test_event_new_selfarg(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb,
event_self_cbarg());
event_active(ev, EV_READ, 1);
event_base_dispatch(base);
event_free(ev);
}
static void
test_event_assign_selfarg(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event ev;
event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
event_self_cbarg());
event_active(&ev, EV_READ, 1);
event_base_dispatch(base);
}
static void
test_event_base_get_num_events(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event ev;
int event_count_active;
int event_count_virtual;
int event_count_added;
int event_count_active_virtual;
int event_count_active_added;
int event_count_virtual_added;
int event_count_active_added_virtual;
struct timeval qsec = {0, 100000};
event_assign(&ev, base, -1, EV_READ, event_selfarg_cb,
event_self_cbarg());
event_add(&ev, &qsec);
event_count_active = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE);
event_count_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL);
event_count_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ADDED);
event_count_active_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
event_count_active_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
event_count_virtual_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
event_count_active_added_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|
EVENT_BASE_COUNT_ADDED|
EVENT_BASE_COUNT_VIRTUAL);
tt_int_op(event_count_active, ==, 0);
tt_int_op(event_count_virtual, ==, 0);
/* libevent itself adds a timeout event, so the event_count is 2 here */
tt_int_op(event_count_added, ==, 2);
tt_int_op(event_count_active_virtual, ==, 0);
tt_int_op(event_count_active_added, ==, 2);
tt_int_op(event_count_virtual_added, ==, 2);
tt_int_op(event_count_active_added_virtual, ==, 2);
event_active(&ev, EV_READ, 1);
event_count_active = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE);
event_count_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL);
event_count_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ADDED);
event_count_active_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
event_count_active_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
event_count_virtual_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
event_count_active_added_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|
EVENT_BASE_COUNT_ADDED|
EVENT_BASE_COUNT_VIRTUAL);
tt_int_op(event_count_active, ==, 1);
tt_int_op(event_count_virtual, ==, 0);
tt_int_op(event_count_added, ==, 3);
tt_int_op(event_count_active_virtual, ==, 1);
tt_int_op(event_count_active_added, ==, 4);
tt_int_op(event_count_virtual_added, ==, 3);
tt_int_op(event_count_active_added_virtual, ==, 4);
event_base_loop(base, 0);
event_count_active = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE);
event_count_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL);
event_count_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ADDED);
event_count_active_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
event_count_active_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
event_count_virtual_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
event_count_active_added_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|
EVENT_BASE_COUNT_ADDED|
EVENT_BASE_COUNT_VIRTUAL);
tt_int_op(event_count_active, ==, 0);
tt_int_op(event_count_virtual, ==, 0);
tt_int_op(event_count_added, ==, 0);
tt_int_op(event_count_active_virtual, ==, 0);
tt_int_op(event_count_active_added, ==, 0);
tt_int_op(event_count_virtual_added, ==, 0);
tt_int_op(event_count_active_added_virtual, ==, 0);
event_base_add_virtual_(base);
event_count_active = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE);
event_count_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL);
event_count_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ADDED);
event_count_active_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL);
event_count_active_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED);
event_count_virtual_added = event_base_get_num_events(base,
EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED);
event_count_active_added_virtual = event_base_get_num_events(base,
EVENT_BASE_COUNT_ACTIVE|
EVENT_BASE_COUNT_ADDED|
EVENT_BASE_COUNT_VIRTUAL);
tt_int_op(event_count_active, ==, 0);
tt_int_op(event_count_virtual, ==, 1);
tt_int_op(event_count_added, ==, 0);
tt_int_op(event_count_active_virtual, ==, 1);
tt_int_op(event_count_active_added, ==, 0);
tt_int_op(event_count_virtual_added, ==, 1);
tt_int_op(event_count_active_added_virtual, ==, 1);
end:
;
}
static void
test_bad_assign(void *ptr)
{
struct event ev;
int r;
/* READ|SIGNAL is not allowed */
r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
tt_int_op(r,==,-1);
end:
;
}
static int reentrant_cb_run = 0;
static void
bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
{
struct event_base *base = ptr;
int r;
reentrant_cb_run = 1;
/* This reentrant call to event_base_loop should be detected and
* should fail */
r = event_base_loop(base, 0);
tt_int_op(r, ==, -1);
end:
;
}
static void
test_bad_reentrant(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event ev;
int r;
event_assign(&ev, base, -1,
0, bad_reentrant_run_loop_cb, base);
event_active(&ev, EV_WRITE, 1);
r = event_base_loop(base, 0);
tt_int_op(r, ==, 1);
tt_int_op(reentrant_cb_run, ==, 1);
end:
;
}
static int n_write_a_byte_cb=0;
static int n_read_and_drain_cb=0;
static int n_activate_other_event_cb=0;
static void
write_a_byte_cb(evutil_socket_t fd, short what, void *arg)
{
char buf[] = "x";
if (write(fd, buf, 1) == 1)
++n_write_a_byte_cb;
}
static void
read_and_drain_cb(evutil_socket_t fd, short what, void *arg)
{
char buf[128];
int n;
++n_read_and_drain_cb;
while ((n = read(fd, buf, sizeof(buf))) > 0)
;
}
static void
activate_other_event_cb(evutil_socket_t fd, short what, void *other_)
{
struct event *ev_activate = other_;
++n_activate_other_event_cb;
event_active_later_(ev_activate, EV_READ);
}
static void
test_active_later(void *ptr)
{
struct basic_test_data *data = ptr;
struct event *ev1, *ev2;
struct event ev3, ev4;
struct timeval qsec = {0, 100000};
ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL);
ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL);
event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4);
event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3);
event_add(ev1, NULL);
event_add(ev2, NULL);
event_active_later_(&ev3, EV_READ);
event_base_loopexit(data->base, &qsec);
event_base_loop(data->base, 0);
TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.",
n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb));
event_del(&ev3);
event_del(&ev4);
tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb);
tt_int_op(n_write_a_byte_cb, >, 100);
tt_int_op(n_read_and_drain_cb, >, 100);
tt_int_op(n_activate_other_event_cb, >, 100);
event_active_later_(&ev4, EV_READ);
event_active(&ev4, EV_READ, 1); /* This should make the event
active immediately. */
tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0);
tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0);
/* Now leave this one around, so that event_free sees it and removes
* it. */
event_active_later_(&ev3, EV_READ);
event_base_assert_ok_(data->base);
event_base_free(data->base);
data->base = NULL;
end:
;
}
static void incr_arg_cb(evutil_socket_t fd, short what, void *arg)
{
int *intptr = arg;
(void) fd; (void) what;
++*intptr;
}
static void remove_timers_cb(evutil_socket_t fd, short what, void *arg)
{
struct event **ep = arg;
(void) fd; (void) what;
event_remove_timer(ep[0]);
event_remove_timer(ep[1]);
}
static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg)
{
evutil_socket_t *sockp = arg;
(void) fd; (void) what;
(void) write(*sockp, "A", 1);
}
struct read_not_timeout_param
{
struct event **ev;
int events;
int count;
};
static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg)
{
struct read_not_timeout_param *rntp = arg;
char c;
(void) fd; (void) what;
(void) read(fd, &c, 1);
rntp->events |= what;
++rntp->count;
if(2 == rntp->count) event_del(rntp->ev[0]);
}
static void
test_event_remove_timeout(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = data->base;
struct event *ev[5];
int ev1_fired=0;
struct timeval ms25 = { 0, 25*1000 },
ms40 = { 0, 40*1000 },
ms75 = { 0, 75*1000 },
ms125 = { 0, 125*1000 };
struct read_not_timeout_param rntp = { ev, 0, 0 };
event_base_assert_ok_(base);
ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST,
read_not_timeout_cb, &rntp);
ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired);
ev[2] = evtimer_new(base, remove_timers_cb, ev);
ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]);
tt_assert(base);
event_add(ev[2], &ms25); /* remove timers */
event_add(ev[4], &ms40); /* write to test if timer re-activates */
event_add(ev[0], &ms75); /* read */
event_add(ev[1], &ms75); /* timer */
event_add(ev[3], &ms125); /* timeout. */
event_base_assert_ok_(base);
event_base_dispatch(base);
tt_int_op(ev1_fired, ==, 0);
tt_int_op(rntp.events, ==, EV_READ);
event_base_assert_ok_(base);
end:
event_free(ev[0]);
event_free(ev[1]);
event_free(ev[2]);
event_free(ev[3]);
event_free(ev[4]);
}
static void
test_event_base_new(void *ptr)
{
struct basic_test_data *data = ptr;
struct event_base *base = 0;
struct event ev1;
struct basic_cb_args args;
int towrite = (int)strlen(TEST1)+1;
int len = write(data->pair[0], TEST1, towrite);
if (len < 0)
tt_abort_perror("initial write");
else if (len != towrite)
tt_abort_printf(("initial write fell short (%d of %d bytes)",
len, towrite));
if (shutdown(data->pair[0], SHUT_WR))
tt_abort_perror("initial write shutdown");
base = event_base_new();
if (!base)
tt_abort_msg("failed to create event base");
args.eb = base;
args.ev = &ev1;
args.callcount = 0;
event_assign(&ev1, base, data->pair[1],
EV_READ|EV_PERSIST, basic_read_cb, &args);
if (event_add(&ev1, NULL))
tt_abort_perror("initial event_add");
if (event_base_loop(base, 0))
tt_abort_msg("unsuccessful exit from event loop");
end:
if (base)
event_base_free(base);
}
static void
test_loopexit(void)
{
struct timeval tv, tv_start, tv_end;
struct event ev;
setup_test("Loop exit: ");
tv.tv_usec = 0;
tv.tv_sec = 60*60*24;
evtimer_set(&ev, timeout_cb, NULL);
evtimer_add(&ev, &tv);
tv.tv_usec = 300*1000;
tv.tv_sec = 0;
event_loopexit(&tv);
evutil_gettimeofday(&tv_start, NULL);
event_dispatch();
evutil_gettimeofday(&tv_end, NULL);
evtimer_del(&ev);
tt_assert(event_base_got_exit(global_base));
tt_assert(!event_base_got_break(global_base));
test_timeval_diff_eq(&tv_start, &tv_end, 300);
test_ok = 1;
end:
cleanup_test();
}
static void
test_loopexit_multiple(void)
{
struct timeval tv, tv_start, tv_end;
struct event_base *base;
setup_test("Loop Multiple exit: ");
base = event_base_new();
tv.tv_usec = 200*1000;
tv.tv_sec = 0;
event_base_loopexit(base, &tv);
tv.tv_usec = 0;
tv.tv_sec = 3;
event_base_loopexit(base, &tv);
evutil_gettimeofday(&tv_start, NULL);
event_base_dispatch(base);
evutil_gettimeofday(&tv_end, NULL);
tt_assert(event_base_got_exit(base));
tt_assert(!event_base_got_break(base));
event_base_free(base);
test_timeval_diff_eq(&tv_start, &tv_end, 200);
test_ok = 1;
end:
cleanup_test();
}
static void
break_cb(evutil_socket_t fd, short events, void *arg)
{
test_ok = 1;
event_loopbreak();
}
static void
fail_cb(evutil_socket_t fd, short events, void *arg)
{
test_ok = 0;
}
static void
test_loopbreak(void)
{
struct event ev1, ev2;
struct timeval tv;
setup_test("Loop break: ");
tv.tv_sec = 0;
tv.tv_usec = 0;
evtimer_set(&ev1, break_cb, NULL);
evtimer_add(&ev1, &tv);
evtimer_set(&ev2, fail_cb, NULL);
evtimer_add(&ev2, &tv);
event_dispatch();
tt_assert(!event_base_got_exit(global_base));
tt_assert(event_base_got_break(global_base));
evtimer_del(&ev1);
evtimer_del(&ev2);
end:
cleanup_test();
}
static struct event *readd_test_event_last_added = NULL;
static void
re_add_read_cb(evutil_socket_t fd, short event, void *arg)
{
char buf[256];
struct event *ev_other = arg;
readd_test_event_last_added = ev_other;
if (read(fd, buf, sizeof(buf)) < 0) {
tt_fail_perror("read");
}
event_add(ev_other, NULL);
++test_ok;
}
static void
test_nonpersist_readd(void)
{
struct event ev1, ev2;
setup_test("Re-add nonpersistent events: ");
event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
if (write(pair[0], "Hello", 5) < 0) {
tt_fail_perror("write(pair[0])");
}
if (write(pair[1], "Hello", 5) < 0) {
tt_fail_perror("write(pair[1])\n");
}
if (event_add(&ev1, NULL) == -1 ||
event_add(&ev2, NULL) == -1) {
test_ok = 0;
}
if (test_ok != 0)
exit(1);
event_loop(EVLOOP_ONCE);
if (test_ok != 2)
exit(1);
/* At this point, we executed both callbacks. Whichever one got
* called first added the second, but the second then immediately got
* deleted before its callback was called. At this point, though, it
* re-added the first.
*/
if (!readd_test_event_last_added) {
test_ok = 0;
} else if (readd_test_event_last_added == &ev1) {
if (!event_pending(&ev1, EV_READ, NULL) ||
event_pending(&ev2, EV_READ, NULL))
test_ok = 0;
} else {
if (event_pending(&ev1, EV_READ, NULL) ||
!event_pending(&ev2, EV_READ, NULL))
test_ok = 0;
}
event_del(&ev1);
event_del(&ev2);
cleanup_test();
}
struct test_pri_event {
struct event ev;
int count;
};
static void
test_priorities_cb(evutil_socket_t fd, short what, void *arg)
{
struct test_pri_event *pri = arg;
struct timeval tv;
if (pri->count == 3) {
event_loopexit(NULL);
return;
}
pri->count++;
evutil_timerclear(&tv);
event_add(&pri->ev, &tv);
}
static void
test_priorities_impl(int npriorities)
{
struct test_pri_event one, two;
struct timeval tv;
TT_BLATHER(("Testing Priorities %d: ", npriorities));
event_base_priority_init(global_base, npriorities);
memset(&one, 0, sizeof(one));
memset(&two, 0, sizeof(two));
timeout_set(&one.ev, test_priorities_cb, &one);
if (event_priority_set(&one.ev, 0) == -1) {
fprintf(stderr, "%s: failed to set priority", __func__);
exit(1);
}
timeout_set(&two.ev, test_priorities_cb, &two);
if (event_priority_set(&two.ev, npriorities - 1) == -1) {
fprintf(stderr, "%s: failed to set priority", __func__);
exit(1);
}
evutil_timerclear(&tv);
if (event_add(&one.ev, &tv) == -1)
exit(1);
if (event_add(&two.ev, &tv) == -1)
exit(1);
event_dispatch();
event_del(&one.ev);
event_del(&two.ev);
if (npriorities == 1) {
if (one.count == 3 && two.count == 3)
test_ok = 1;
} else if (npriorities == 2) {
/* Two is called once because event_loopexit is priority 1 */
if (one.count == 3 && two.count == 1)
test_ok = 1;
} else {
if (one.count == 3 && two.count == 0)
test_ok = 1;
}
}
static void
test_priorities(void)
{
test_priorities_impl(1);
if (test_ok)
test_priorities_impl(2);
if (test_ok)
test_priorities_impl(3);
}
/* priority-active-inversion: activate a higher-priority event, and make sure
* it keeps us from running a lower-priority event first. */
static int n_pai_calls = 0;
static struct event pai_events[3];
static void
prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
{
int *call_order = arg;
*call_order = n_pai_calls++;
if (n_pai_calls == 1) {
/* This should activate later, even though it shares a
priority with us. */
event_active(&pai_events[1], EV_READ, 1);
/* This should activate next, since its priority is higher,
even though we activated it second. */
event_active(&pai_events[2], EV_TIMEOUT, 1);
}
}
static void
test_priority_active_inversion(void *data_)
{
struct basic_test_data *data = data_;
struct event_base *base = data->base;
int call_order[3];
int i;
tt_int_op(event_base_priority_init(base, 8), ==, 0);
n_pai_calls = 0;
memset(call_order, 0, sizeof(call_order));
for (i=0;i<3;++i) {
event_assign(&pai_events[i], data->base, -1, 0,
prio_active_inversion_cb, &call_order[i]);
}
event_priority_set(&pai_events[0], 4);
event_priority_set(&pai_events[1], 4);
event_priority_set(&pai_events[2], 0);
event_active(&pai_events[0], EV_WRITE, 1);
event_base_dispatch(base);
tt_int_op(n_pai_calls, ==, 3);
tt_int_op(call_order[0], ==, 0);
tt_int_op(call_order[1], ==, 2);
tt_int_op(call_order[2], ==, 1);
end:
;
}
static void
test_multiple_cb(evutil_socket_t fd, short event, void *arg)
{
if (event & EV_READ)
test_ok |= 1;
else if (event & EV_WRITE)
test_ok |= 2;
}
static void
test_multiple_events_for_same_fd(void)
{
struct event e1, e2;
setup_test("Multiple events for same fd: ");
event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
event_add(&e1, NULL);
event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
event_add(&e2, NULL);
event_loop(EVLOOP_ONCE);
event_del(&e2);
if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
event_loop(EVLOOP_ONCE);
event_del(&e1);
if (test_ok != 3)
test_ok = 0;
cleanup_test();
}
int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
static void
read_once_cb(evutil_socket_t fd, short event, void *arg)
{
char buf[256];
int len;
len = read(fd, buf, sizeof(buf));
if (called) {
test_ok = 0;
} else if (len) {
/* Assumes global pair[0] can be used for writing */
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
test_ok = 0;
} else {
test_ok = 1;
}
}
called++;
}
static void
test_want_only_once(void)
{
struct event ev;
struct timeval tv;
/* Very simple read test */
setup_test("Want read only once: ");
if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
/* Setup the loop termination */
evutil_timerclear(&tv);
tv.tv_usec = 300*1000;
event_loopexit(&tv);
event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
#define TEST_MAX_INT 6
static void
evtag_int_test(void *ptr)
{
struct evbuffer *tmp = evbuffer_new();
ev_uint32_t integers[TEST_MAX_INT] = {
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
};
ev_uint32_t integer;
ev_uint64_t big_int;
int i;
evtag_init();
for (i = 0; i < TEST_MAX_INT; i++) {
int oldlen, newlen;
oldlen = (int)EVBUFFER_LENGTH(tmp);
evtag_encode_int(tmp, integers[i]);
newlen = (int)EVBUFFER_LENGTH(tmp);
TT_BLATHER(("encoded 0x%08x with %d bytes",
(unsigned)integers[i], newlen - oldlen));
big_int = integers[i];
big_int *= 1000000000; /* 1 billion */
evtag_encode_int64(tmp, big_int);
}
for (i = 0; i < TEST_MAX_INT; i++) {
tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
tt_uint_op(integer, ==, integers[i]);
tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
tt_assert((big_int / 1000000000) == integers[i]);
}
tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
end:
evbuffer_free(tmp);
}
static void
evtag_fuzz(void *ptr)
{
u_char buffer[4096];
struct evbuffer *tmp = evbuffer_new();
struct timeval tv;
int i, j;
int not_failed = 0;
evtag_init();
for (j = 0; j < 100; j++) {
for (i = 0; i < (int)sizeof(buffer); i++)
buffer[i] = rand();
evbuffer_drain(tmp, -1);
evbuffer_add(tmp, buffer, sizeof(buffer));
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
not_failed++;
}
/* The majority of decodes should fail */
tt_int_op(not_failed, <, 10);
/* Now insert some corruption into the tag length field */
evbuffer_drain(tmp, -1);
evutil_timerclear(&tv);
tv.tv_sec = 1;
evtag_marshal_timeval(tmp, 0, &tv);
evbuffer_add(tmp, buffer, sizeof(buffer));
((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
tt_abort_msg("evtag_unmarshal_timeval should have failed");
}
end:
evbuffer_free(tmp);
}
static void
evtag_tag_encoding(void *ptr)
{
struct evbuffer *tmp = evbuffer_new();
ev_uint32_t integers[TEST_MAX_INT] = {
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
};
ev_uint32_t integer;
int i;
evtag_init();
for (i = 0; i < TEST_MAX_INT; i++) {
int oldlen, newlen;
oldlen = (int)EVBUFFER_LENGTH(tmp);
evtag_encode_tag(tmp, integers[i]);
newlen = (int)EVBUFFER_LENGTH(tmp);
TT_BLATHER(("encoded 0x%08x with %d bytes",
(unsigned)integers[i], newlen - oldlen));
}
for (i = 0; i < TEST_MAX_INT; i++) {
tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
tt_uint_op(integer, ==, integers[i]);
}
tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
end:
evbuffer_free(tmp);
}
static void
evtag_test_peek(void *ptr)
{
struct evbuffer *tmp = evbuffer_new();
ev_uint32_t u32;
evtag_marshal_int(tmp, 30, 0);
evtag_marshal_string(tmp, 40, "Hello world");
tt_int_op(evtag_peek(tmp, &u32), ==, 1);
tt_int_op(u32, ==, 30);
tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
tt_int_op(u32, ==, 1+1+1);
tt_int_op(evtag_consume(tmp), ==, 0);
tt_int_op(evtag_peek(tmp, &u32), ==, 1);
tt_int_op(u32, ==, 40);
tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
tt_int_op(u32, ==, 1+1+11);
tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
tt_int_op(u32, ==, 11);
end:
evbuffer_free(tmp);
}
static void
test_methods(void *ptr)
{
const char **methods = event_get_supported_methods();
struct event_config *cfg = NULL;
struct event_base *base = NULL;
const char *backend;
int n_methods = 0;
tt_assert(methods);
backend = methods[0];
while (*methods != NULL) {
TT_BLATHER(("Support method: %s", *methods));
++methods;
++n_methods;
}
cfg = event_config_new();
assert(cfg != NULL);
tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
base = event_base_new_with_config(cfg);
if (n_methods > 1) {
tt_assert(base);
tt_str_op(backend, !=, event_base_get_method(base));
} else {
tt_assert(base == NULL);
}
end:
if (base)
event_base_free(base);
if (cfg)
event_config_free(cfg);
}
static void
test_version(void *arg)
{
const char *vstr;
ev_uint32_t vint;
int major, minor, patch, n;
vstr = event_get_version();
vint = event_get_version_number();
tt_assert(vstr);
tt_assert(vint);
tt_str_op(vstr, ==, LIBEVENT_VERSION);
tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
tt_assert(3 == n);
tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
end:
;
}
static void
test_base_features(void *arg)
{
struct event_base *base = NULL;
struct event_config *cfg = NULL;
cfg = event_config_new();
tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
base = event_base_new_with_config(cfg);
if (base) {
tt_int_op(EV_FEATURE_ET, ==,
event_base_get_features(base) & EV_FEATURE_ET);
} else {
base = event_base_new();
tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
}
end:
if (base)
event_base_free(base);
if (cfg)
event_config_free(cfg);
}
#ifdef EVENT__HAVE_SETENV
#define SETENV_OK
#elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV)
static void setenv(const char *k, const char *v, int o_)
{
char b[256];
evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
putenv(b);
}
#define SETENV_OK
#endif
#ifdef EVENT__HAVE_UNSETENV
#define UNSETENV_OK
#elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV)
static void unsetenv(const char *k)
{
char b[256];
evutil_snprintf(b, sizeof(b), "%s=",k);
putenv(b);
}
#define UNSETENV_OK
#endif
#if defined(SETENV_OK) && defined(UNSETENV_OK)
static void
methodname_to_envvar(const char *mname, char *buf, size_t buflen)
{
char *cp;
evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
for (cp = buf; *cp; ++cp) {
*cp = EVUTIL_TOUPPER_(*cp);
}
}
#endif
static void
test_base_environ(void *arg)
{
struct event_base *base = NULL;
struct event_config *cfg = NULL;
#if defined(SETENV_OK) && defined(UNSETENV_OK)
const char **basenames;
int i, n_methods=0;
char varbuf[128];
const char *defaultname, *ignoreenvname;
/* See if unsetenv works before we rely on it. */
setenv("EVENT_NOWAFFLES", "1", 1);
unsetenv("EVENT_NOWAFFLES");
if (getenv("EVENT_NOWAFFLES") != NULL) {
#ifndef EVENT__HAVE_UNSETENV
TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
#else
TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
#endif
tt_skip();
}
basenames = event_get_supported_methods();
for (i = 0; basenames[i]; ++i) {
methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
unsetenv(varbuf);
++n_methods;
}
base = event_base_new();
tt_assert(base);
defaultname = event_base_get_method(base);
TT_BLATHER(("default is <%s>", defaultname));
event_base_free(base);
base = NULL;
/* Can we disable the method with EVENT_NOfoo ? */
if (!strcmp(defaultname, "epoll (with changelist)")) {
setenv("EVENT_NOEPOLL", "1", 1);
ignoreenvname = "epoll";
} else {
methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
setenv(varbuf, "1", 1);
ignoreenvname = defaultname;
}
/* Use an empty cfg rather than NULL so a failure doesn't exit() */
cfg = event_config_new();
base = event_base_new_with_config(cfg);
event_config_free(cfg);
cfg = NULL;
if (n_methods == 1) {
tt_assert(!base);
} else {
tt_assert(base);
tt_str_op(defaultname, !=, event_base_get_method(base));
event_base_free(base);
base = NULL;
}
/* Can we disable looking at the environment with IGNORE_ENV ? */
cfg = event_config_new();
event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
base = event_base_new_with_config(cfg);
tt_assert(base);
tt_str_op(ignoreenvname, ==, event_base_get_method(base));
#else
tt_skip();
#endif
end:
if (base)
event_base_free(base);
if (cfg)
event_config_free(cfg);
}
static void
read_called_once_cb(evutil_socket_t fd, short event, void *arg)
{
tt_int_op(event, ==, EV_READ);
called += 1;
end:
;
}
static void
timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
{
tt_int_op(event, ==, EV_TIMEOUT);
called += 100;
end:
;
}
static void
immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg)
{
tt_int_op(event, ==, EV_TIMEOUT);
called += 1000;
end:
;
}
static void
test_event_once(void *ptr)
{
struct basic_test_data *data = ptr;
struct timeval tv;
int r;
tv.tv_sec = 0;
tv.tv_usec = 50*1000;
called = 0;
r = event_base_once(data->base, data->pair[0], EV_READ,
read_called_once_cb, NULL, NULL);
tt_int_op(r, ==, 0);
r = event_base_once(data->base, -1, EV_TIMEOUT,
timeout_called_once_cb, NULL, &tv);
tt_int_op(r, ==, 0);
r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
tt_int_op(r, <, 0);
r = event_base_once(data->base, -1, EV_TIMEOUT,
immediate_called_twice_cb, NULL, NULL);
tt_int_op(r, ==, 0);
tv.tv_sec = 0;
tv.tv_usec = 0;
r = event_base_once(data->base, -1, EV_TIMEOUT,
immediate_called_twice_cb, NULL, &tv);
tt_int_op(r, ==, 0);
if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
tt_fail_perror("write");
}
shutdown(data->pair[1], SHUT_WR);
event_base_dispatch(data->base);
tt_int_op(called, ==, 2101);
end:
;
}
static void
test_event_once_never(void *ptr)
{
struct basic_test_data *data = ptr;
struct timeval tv;
/* Have one trigger in 10 seconds (don't worry, because) */
tv.tv_sec = 10;
tv.tv_usec = 0;
called = 0;
event_base_once(data->base, -1, EV_TIMEOUT,
timeout_called_once_cb, NULL, &tv);
/* But shut down the base in 75 msec. */
tv.tv_sec = 0;
tv.tv_usec = 75*1000;
event_base_loopexit(data->base, &tv);
event_base_dispatch(data->base);
tt_int_op(called, ==, 0);
end:
;
}
static void
test_event_pending(void *ptr)
{
struct basic_test_data *data = ptr;
struct event *r=NULL, *w=NULL, *t=NULL;
struct timeval tv, now, tv2;
tv.tv_sec = 0;
tv.tv_usec = 500 * 1000;
r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
NULL);
w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
NULL);
t = evtimer_new(data->base, timeout_cb, NULL);
tt_assert(r);
tt_assert(w);
tt_assert(t);
evutil_gettimeofday(&now, NULL);
event_add(r, NULL);
event_add(t, &tv);
tt_assert( event_pending(r, EV_READ, NULL));
tt_assert(!event_pending(w, EV_WRITE, NULL));
tt_assert(!event_pending(r, EV_WRITE, NULL));
tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
tt_assert( event_pending(t, EV_TIMEOUT, NULL));
tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
tt_assert(evutil_timercmp(&tv2, &now, >));
test_timeval_diff_eq(&now, &tv2, 500);
end:
if (r) {
event_del(r);
event_free(r);
}
if (w) {
event_del(w);
event_free(w);
}
if (t) {
event_del(t);
event_free(t);
}
}
#ifndef _WIN32
/* You can't do this test on windows, since dup2 doesn't work on sockets */
static void
dfd_cb(evutil_socket_t fd, short e, void *data)
{
*(int*)data = (int)e;
}
/* Regression test for our workaround for a fun epoll/linux related bug
* where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
* will get you an EEXIST */
static void
test_dup_fd(void *arg)
{
struct basic_test_data *data = arg;
struct event_base *base = data->base;
struct event *ev1=NULL, *ev2=NULL;
int fd, dfd=-1;
int ev1_got, ev2_got;
tt_int_op(write(data->pair[0], "Hello world",
strlen("Hello world")), >, 0);
fd = data->pair[1];
dfd = dup(fd);
tt_int_op(dfd, >=, 0);
ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
ev1_got = ev2_got = 0;
event_add(ev1, NULL);
event_add(ev2, NULL);
event_base_loop(base, EVLOOP_ONCE);
tt_int_op(ev1_got, ==, EV_READ);
tt_int_op(ev2_got, ==, EV_READ);
/* Now close and delete dfd then dispatch. We need to do the
* dispatch here so that when we add it later, we think there
* was an intermediate delete. */
close(dfd);
event_del(ev2);
ev1_got = ev2_got = 0;
event_base_loop(base, EVLOOP_ONCE);
tt_want_int_op(ev1_got, ==, EV_READ);
tt_int_op(ev2_got, ==, 0);
/* Re-duplicate the fd. We need to get the same duplicated
* value that we closed to provoke the epoll quirk. Also, we
* need to change the events to write, or else the old lingering
* read event will make the test pass whether the change was
* successful or not. */
tt_int_op(dup2(fd, dfd), ==, dfd);
event_free(ev2);
ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
event_add(ev2, NULL);
ev1_got = ev2_got = 0;
event_base_loop(base, EVLOOP_ONCE);
tt_want_int_op(ev1_got, ==, EV_READ);
tt_int_op(ev2_got, ==, EV_WRITE);
end:
if (ev1)
event_free(ev1);
if (ev2)
event_free(ev2);
if (dfd >= 0)
close(dfd);
}
#endif
#ifdef EVENT__DISABLE_MM_REPLACEMENT
static void
test_mm_functions(void *arg)
{
tinytest_set_test_skipped_();
}
#else
static int
check_dummy_mem_ok(void *mem_)
{
char *mem = mem_;
mem -= 16;
return !memcmp(mem, "{[<guardedram>]}", 16);
}
static void *
dummy_malloc(size_t len)
{
char *mem = malloc(len+16);
memcpy(mem, "{[<guardedram>]}", 16);
return mem+16;
}
static void *
dummy_realloc(void *mem_, size_t len)
{
char *mem = mem_;
if (!mem)
return dummy_malloc(len);
tt_want(check_dummy_mem_ok(mem_));
mem -= 16;
mem = realloc(mem, len+16);
return mem+16;
}
static void
dummy_free(void *mem_)
{
char *mem = mem_;
tt_want(check_dummy_mem_ok(mem_));
mem -= 16;
free(mem);
}
static void
test_mm_functions(void *arg)
{
struct event_base *b = NULL;
struct event_config *cfg = NULL;
event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
cfg = event_config_new();
event_config_avoid_method(cfg, "Nonesuch");
b = event_base_new_with_config(cfg);
tt_assert(b);
tt_assert(check_dummy_mem_ok(b));
end:
if (cfg)
event_config_free(cfg);
if (b)
event_base_free(b);
}
#endif
static void
many_event_cb(evutil_socket_t fd, short event, void *arg)
{
int *calledp = arg;
*calledp += 1;
}
static void
test_many_events(void *arg)
{
/* Try 70 events that should all be ready at once. This will
* exercise the "resize" code on most of the backends, and will make
* sure that we can get past the 64-handle limit of some windows
* functions. */
#define MANY 70
struct basic_test_data *data = arg;
struct event_base *base = data->base;
int one_at_a_time = data->setup_data != NULL;
evutil_socket_t sock[MANY];
struct event *ev[MANY];
int called[MANY];
int i;
int loopflags = EVLOOP_NONBLOCK, evflags=0;
if (one_at_a_time) {
loopflags |= EVLOOP_ONCE;
evflags = EV_PERSIST;
}
memset(sock, 0xff, sizeof(sock));
memset(ev, 0, sizeof(ev));
memset(called, 0, sizeof(called));
for (i = 0; i < MANY; ++i) {
/* We need an event that will hit the backend, and that will
* be ready immediately. "Send a datagram" is an easy
* instance of that. */
sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
tt_assert(sock[i] >= 0);
called[i] = 0;
ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
many_event_cb, &called[i]);
event_add(ev[i], NULL);
if (one_at_a_time)
event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
}
event_base_loop(base, loopflags);
for (i = 0; i < MANY; ++i) {
if (one_at_a_time)
tt_int_op(called[i], ==, MANY - i + 1);
else
tt_int_op(called[i], ==, 1);
}
end:
for (i = 0; i < MANY; ++i) {
if (ev[i])
event_free(ev[i]);
if (sock[i] >= 0)
evutil_closesocket(sock[i]);
}
#undef MANY
}
static void
test_struct_event_size(void *arg)
{
tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
end:
;
}
static void
test_get_assignment(void *arg)
{
struct basic_test_data *data = arg;
struct event_base *base = data->base;
struct event *ev1 = NULL;
const char *str = "foo";
struct event_base *b;
evutil_socket_t s;
short what;
event_callback_fn cb;
void *cb_arg;
ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str);
event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg);
tt_ptr_op(b, ==, base);
tt_int_op(s, ==, data->pair[1]);
tt_int_op(what, ==, EV_READ);
tt_ptr_op(cb, ==, dummy_read_cb);
tt_ptr_op(cb_arg, ==, str);
/* Now make sure this doesn't crash. */
event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL);
end:
if (ev1)
event_free(ev1);
}
struct foreach_helper {
int count;
const struct event *ev;
};
static int
foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg)
{
struct foreach_helper *h = event_get_callback_arg(ev);
struct timeval *tv = arg;
if (event_get_callback(ev) != timeout_cb)
return 0;
tt_ptr_op(event_get_base(ev), ==, base);
tt_int_op(tv->tv_sec, ==, 10);
h->ev = ev;
h->count++;
return 0;
end:
return -1;
}
static int
foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg)
{
const struct event **ev_out = arg;
struct foreach_helper *h = event_get_callback_arg(ev);
if (event_get_callback(ev) != timeout_cb)
return 0;
if (h->count == 99) {
*ev_out = ev;
return 101;
}
return 0;
}
static void
test_event_foreach(void *arg)
{
struct basic_test_data *data = arg;
struct event_base *base = data->base;
struct event *ev[5];
struct foreach_helper visited[5];
int i;
struct timeval ten_sec = {10,0};
const struct event *ev_found = NULL;
for (i = 0; i < 5; ++i) {
visited[i].count = 0;
visited[i].ev = NULL;
ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]);
}
tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL));
tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL));
event_add(ev[0], &ten_sec);
event_add(ev[1], &ten_sec);
event_active(ev[1], EV_TIMEOUT, 1);
event_active(ev[2], EV_TIMEOUT, 1);
event_add(ev[3], &ten_sec);
/* Don't touch ev[4]. */
tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb,
&ten_sec));
tt_int_op(1, ==, visited[0].count);
tt_int_op(1, ==, visited[1].count);
tt_int_op(1, ==, visited[2].count);
tt_int_op(1, ==, visited[3].count);
tt_ptr_op(ev[0], ==, visited[0].ev);
tt_ptr_op(ev[1], ==, visited[1].ev);
tt_ptr_op(ev[2], ==, visited[2].ev);
tt_ptr_op(ev[3], ==, visited[3].ev);
visited[2].count = 99;
tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb,
&ev_found));
tt_ptr_op(ev_found, ==, ev[2]);
end:
for (i=0; i<5; ++i) {
event_free(ev[i]);
}
}
static struct event_base *cached_time_base = NULL;
static int cached_time_reset = 0;
static int cached_time_sleep = 0;
static void
cache_time_cb(evutil_socket_t fd, short what, void *arg)
{
struct timeval *tv = arg;
tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv));
if (cached_time_sleep) {
struct timeval delay = { 0, 30*1000 };
evutil_usleep_(&delay);
}
if (cached_time_reset) {
event_base_update_cache_time(cached_time_base);
}
end:
;
}
static void
test_gettimeofday_cached(void *arg)
{
struct basic_test_data *data = arg;
struct event_config *cfg = NULL;
struct event_base *base = NULL;
struct timeval tv1, tv2, tv3, now;
struct event *ev1=NULL, *ev2=NULL, *ev3=NULL;
int cached_time_disable = strstr(data->setup_data, "disable") != NULL;
cfg = event_config_new();
if (cached_time_disable) {
event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME);
}
cached_time_base = base = event_base_new_with_config(cfg);
tt_assert(base);
/* Try gettimeofday_cached outside of an event loop. */
evutil_gettimeofday(&now, NULL);
tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1));
tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2));
tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10);
tt_int_op(timeval_msec_diff(&tv1, &now), <, 10);
cached_time_reset = strstr(data->setup_data, "reset") != NULL;
cached_time_sleep = strstr(data->setup_data, "sleep") != NULL;
ev1 = event_new(base, -1, 0, cache_time_cb, &tv1);
ev2 = event_new(base, -1, 0, cache_time_cb, &tv2);
ev3 = event_new(base, -1, 0, cache_time_cb, &tv3);
event_active(ev1, EV_TIMEOUT, 1);
event_active(ev2, EV_TIMEOUT, 1);
event_active(ev3, EV_TIMEOUT, 1);
event_base_dispatch(base);
if (cached_time_reset && cached_time_sleep) {
tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
} else if (cached_time_disable && cached_time_sleep) {
tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10);
tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10);
} else if (! cached_time_disable) {
tt_assert(evutil_timercmp(&tv1, &tv2, ==));
tt_assert(evutil_timercmp(&tv2, &tv3, ==));
}
end:
if (ev1)
event_free(ev1);
if (ev2)
event_free(ev2);
if (ev3)
event_free(ev3);
if (base)
event_base_free(base);
if (cfg)
event_config_free(cfg);
}
struct testcase_t main_testcases[] = {
/* Some converted-over tests */
{ "methods", test_methods, TT_FORK, NULL, NULL },
{ "version", test_version, 0, NULL, NULL },
BASIC(base_features, TT_FORK|TT_NO_LOGS),
{ "base_environ", test_base_environ, TT_FORK, NULL, NULL },
BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE),
BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE),
BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE),
BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
/* These are still using the old API */
LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
{ "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
{ "persistent_active_timeout", test_persistent_active_timeout,
TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
LEGACY(priorities, TT_FORK|TT_NEED_BASE),
BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
{ "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
&basic_setup, NULL },
/* These legacy tests may not all need all of these flags. */
LEGACY(simpleread, TT_ISOLATED),
LEGACY(simpleread_multiple, TT_ISOLATED),
LEGACY(simplewrite, TT_ISOLATED),
{ "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
NULL },
LEGACY(multiple, TT_ISOLATED),
LEGACY(persistent, TT_ISOLATED),
LEGACY(combined, TT_ISOLATED),
LEGACY(simpletimeout, TT_ISOLATED),
LEGACY(loopbreak, TT_ISOLATED),
LEGACY(loopexit, TT_ISOLATED),
LEGACY(loopexit_multiple, TT_ISOLATED),
LEGACY(nonpersist_readd, TT_ISOLATED),
LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
LEGACY(want_only_once, TT_ISOLATED),
{ "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
{ "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL },
{ "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
NULL },
#ifndef _WIN32
{ "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
#endif
{ "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
{ "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
{ "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
{ "struct_event_size", test_struct_event_size, 0, NULL, NULL },
BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR),
BASIC(event_foreach, TT_FORK|TT_NEED_BASE),
{ "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" },
{ "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" },
{ "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" },
{ "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" },
{ "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" },
#ifndef _WIN32
LEGACY(fork, TT_ISOLATED),
#endif
END_OF_TESTCASES
};
struct testcase_t evtag_testcases[] = {
{ "int", evtag_int_test, TT_FORK, NULL, NULL },
{ "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
{ "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
{ "peek", evtag_test_peek, 0, NULL, NULL },
END_OF_TESTCASES
};
struct testcase_t signal_testcases[] = {
#ifndef _WIN32
LEGACY(simplesignal, TT_ISOLATED),
LEGACY(multiplesignal, TT_ISOLATED),
LEGACY(immediatesignal, TT_ISOLATED),
LEGACY(signal_dealloc, TT_ISOLATED),
LEGACY(signal_pipeloss, TT_ISOLATED),
LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
LEGACY(signal_restore, TT_ISOLATED),
LEGACY(signal_assert, TT_ISOLATED),
LEGACY(signal_while_processing, TT_ISOLATED),
#endif
END_OF_TESTCASES
};